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Abstract

With the recent advances in high-throughput RNA sequencing (RNA-Seq), biologists are able to measure transcription with
unprecedented precision. One problem that can now be tackled is that of isoform quantification: here one tries to
reconstruct the abundances of isoforms of a gene. We have developed a statistical solution for this problem, based on
analyzing a set of RNA-Seq reads, and a practical implementation, available from archive.gersteinlab.org/proj/rnaseq/IQSeq,
in a tool we call IQSeq (Isoform Quantification in next-generation Sequencing). Here, we present theoretical results which
IQSeq is based on, and then use both simulated and real datasets to illustrate various applications of the tool. In order to
measure the accuracy of an isoform-quantification result, one would try to estimate the average variance of the estimated
isoform abundances for each gene (based on resampling the RNA-seq reads), and IQSeq has a particularly fast algorithm
(based on the Fisher Information Matrix) for calculating this, achieving a speedup of *500 times compared to brute-force
resampling. IQSeq also calculates an information theoretic measure of overall transcriptome complexity to describe isoform
abundance for a whole experiment. IQSeq has many features that are particularly useful in RNA-Seq experimental design,
allowing one to optimally model the integration of different sequencing technologies in a cost-effective way. In particular,
the IQSeq formalism integrates the analysis of different sample (i.e. read) sets generated from different technologies within
the same statistical framework. It also supports a generalized statistical partial-sample-generation function to model the
sequencing process. This allows one to have a modular, ‘‘plugin-able’’ read-generation function to support the
particularities of the many evolving sequencing technologies.

Citation: Du J, Leng J, Habegger L, Sboner A, McDermott D, et al. (2012) IQSeq: Integrated Isoform Quantification Analysis Based on Next-Generation
Sequencing. PLoS ONE 7(1): e29175. doi:10.1371/journal.pone.0029175

Editor: Andrey Rzhetsky, University of Chicago, United States of America

Received August 17, 2011; Accepted November 22, 2011; Published January 6, 2012

Copyright: � 2012 Du et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Mark.Gerstein@yale.edu

Introduction

The concepts of genes and isoforms have evolved and become

more complex [1]: the discovery of splicing [2–4] revealed that the

gene was a series of exons, coding for, in some cases, discrete

protein domains, and separated by long noncoding stretches called

introns. With alternative splicing, one genetic locus could code for

multiple different mRNA transcripts (isoform transcripts). This

discovery complicated the concept of the gene radically. For

instance, as of 2007, the GENCODE annotation [5] contained on

average 5:4 transcripts per locus.

With the recent development of high-throughput RNA

sequencing (RNA-Seq) technology, it is possible for biologists to

measure transcription with unprecedented precision. One problem

that can now be tackled is that of isoform quantification, where

one tries to reconstruct the abundances of similar isoforms based

on a set of RNA-Seq reads. Various methods have been developed

to solve this problem. In previous work, researchers proposed

different statistical frameworks to solve this problem. Xing et al.

[6] proposed a maximum likelihood problem, an expectation

maximization solution, and a Fisher information measurement for

performance estimation; Jiang et al. [7], based on Poisson model

assumption, formulated a maximum likelihood problem and its

numerical solution, and also utilized the observed Fisher

information matrix to sample the posterior distribution of isoform

quantity; Trapnell et al. [8] used variable read-length model

(normal distribution by default) and a sampling method similar to

[7] to derive the posterior distribution of isoform quantity; Richard

et al. [9] with a Poisson model, also used bootstrapping to study

the robustness of their method against non-uniform sequencing

effects; Lacroix et al. [10] studied the conditions under which the

problem can be solved, revealing that although neither single nor

paired-end sequencing guarantee a unique solution, paired-end

reads may be sufficient to solve the vast majority of the transcript

variants in practice.

These studies, however, have not fully addressed the problem of

isoform quantification in a couple of respects: First of all, they

usually assume that only one sequencing technique is used in an

experiment, and that the reads are uniformly sampled along the

transcripts. These are not necessarily good approximations to real

data. Second, while some theoretical results have been presented

on estimating the accuracy (e.g. average variance) of quantification

results, there does not yet exist a method to efficiently compute

these measurements other than using brute-force simulation,

which is computationally infeasible in large scale expriments

involving tens of thousands of genes and millions of sequencing
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reads. On the other hand, fast estimation of quantification

accuracy would not only enable researchers to better understand

the analysis results being obtained, but also will be useful in RNA-

Seq experiment design to optimally integrate different sequencing

technologies in a cost-efficient way.

In order to fill in these gaps, we have developed a generalized

statistical solution for the problem of isoform quantification, and a

practical implementation in a tool we call IQSeq (Isoform

Quantification in next-generation SEQuencing). IQSeq has the

following features which represent improvements over previous

work in isoform quantification in the following aspects:

1. It has a generalized statistical read generation function during

the sequencing process (i.e. a customizable function describing

how reads are randomly sampled from isoforms). This provide a

flexible way to incorporate characteristics of different sequencing

technologies (e.g. 39 end sequencing bias of transcripts).

2. It integrates the analysis of different sample sets generated from

different sampling technologies (e.g. long and short reads).

3. It has a fast algorithm for estimating the average variance of the

results provided by our expectation maximization based solution.

4. Given the estimated isoform abundance output, IQSeq also

provides an information theoretical method to measure the

overall transcriptome complexity.

In this paper, we will first introduce a mathematical definition of

the generalized partial sampling and distribution estimation

problem (which IQSeq is based on), and provide a expectation

maximization based iterative solution. Then we discuss in detail on

how to estimate the performance of this solution using Fisher

information based heuristics, and present fast algorithms that

implement the computation of these heuristics. Finally, we show

results of applying our methods to both simulated and real-world

data, illustrating scenarios where such integrated analysis can be

the most informative.

Methods

First, we formally define the isoform quantification with

multiple sequencing technologies as a generalized statistical partial

sampling problem, and present a computational solution based on

maximum likelihood estimation and expectation maximization.

We then show both analytical results and practical fast algorithms

to estimate the average variance of the solution on isoform

quantification, and compare their computational complexity

against brute-force methods. We present the main theoretical

results in this section, and detailed derivations can be found in

Text S1.

Problem Definition
We start by defining the generalized process of batch partial

sampling, which represents the sequencing process in RNA-Seq

experiments, and the relationships between partial samples and

the objects being sampled.

Definition 1. (Batch Partial Sampling) Let I~fI1,:::,IKg be

all the possible isoforms for a given gene, with relative abundances

H~(h1,:::,hK )
T , where

PK
k~1 hk~1. We assume that there are

M different partial sampling methods (sequencing techniques with

difference characteristics, e.g. long/medium/short, single/paired

end): Samp1,:::,SampM , and let S denote all the samples (reads):

S~fs from Sampmjm~1,:::,Mg. We also define ds,k~Ind

(partial sample (read) s is compatible with Ik), where Ind is the

indicator function. There are in total N~
PM

m~1 Nm samples,

where Nm is the total number of partial samples from Sampm.

Here we assume a two-step sampling process: First, a sampling

method Sampm chooses an isoform instance Ik according to H.

Second, the sampling method generates a partial sample s

according to a local partial sample generation model (the read

generation function) G
(m)
s,k ~Pr (generating sjIk,Sampm).

Definition 2. (Distribution Estimation based on Batch Partial

Samples) Given I , and S as defined in Definition 1, estimate H.

As shown in Figure 1, I are the isoforms with different relative

abundances H, and S are the single- and paired-end reads whose

sequences align with part of this gene region. Some of these reads

(e.g. read 2, 3 and 5) are compatible with multiple isoforms. The

ultimate problem is to estimate H based on I and S, i.e.,

reconstructing a distribution based on partial observations.

In the remaining part of this paper, we will use two notations to

describe a partial sample s: sm,i is the ith sample from Sampm; and

s
(k)

½a,b) stands for a partial sample from Ik, starting (inclusive) from

position a and ending (exclusive) at b in that isoform. We also

define exons as those nodes in the splicing graph of a gene, so that

there are no exons that overlap with each other (i.e. an exon in a

transcript may be a combination of multiple nodes of the splicing

graph). We have included in our software package a preprocessing

tool for grouping transcripts into gene clusters and formulating

corresponding splicing graphs.

Maximum Likelihood Estimation (MLE)
Definition 2 does not give an explicit criterion for a ‘‘good’’

estimation of H. Since the problem is defined in a statistical sampling

framework, it is natural to consider usingMaximumLikelihood as such

a criterion.

Definition 3. (Maximum-Likelihood Distribution Estimation

based on Batch Partial Samples) Given I , and S as defined in

Definition 1, find ĤH such that:

ĤH~argmaxH log(Pr(SjH)) ð1Þ

By plugging in the partial samples sm,is and G
(m)
s,k s, we can

rewrite the formula above as follows:

ĤH~argmaxH
X

M

m~1

X

s~sm,�

log
X

K

k~1

ds,khkG
(m)
s,k ð2Þ

In the next subsection, we demonstrate how this problem can be

solved by introducing a hidden variable Zs,k and using the

technique of Expectation Maximization [11].

Applying the Expectation Maximization Method
We define Zs,k~Ind(s is from Ik), which are the hidden

variables in this problem. Since Expectation Maximization gives

an iterative solution, we denote the estimation forH in the nth step

as H
(n), and further define f

(n)
s,k~EZjS,H(n) Zs,k½ �, which is the

expectation of Zs,k given H
(n) (the estimated paramters at the nth

step) and the reads S.

f
(n)
s,k~E

ZjS,H(n) Zs,k½ � ð3Þ

~
ds,kh

(n)
k G

(m)
s,k

PK
k0~1 ds,k0h

(n)

k0
G

(m)

s,k0

, ð4Þ

where s is generated by Sampm.

By performing an E step that computes
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Q(n)(H)~E
ZjS,H(n) log(Pr(Z,SjH))½ � ð5Þ

~

X

M

m~1

X

s~sm,�

X

K

k~1

f
(n)
s,kloghkzC ð6Þ

and a M step which maximizes Q(n)(H) with constraint:
PK

k~1 hk~1, we have:

h
(nz1)
k ~

PM
m~1

P

s~sm,�

ds,kh
(n)
k

G
(m)
s,k

PK
k’~1

ds,k’h
(n)
k’

G
(m)
s,k’

N
ð7Þ

as the new estimation for H.

The iterative estimation in Equation 7 is intuitively consistent

with the case of estimating a distribution based on full samples:

consider the scenario in which for each s, there is only one

k[1,:::,K satisfying ds,kw0, the right hand side of Equation 7 thus

becomes

PM
m~1

P

s~sm,�
ds,k

N
, which is exactly how the distribution

estimation problem with traditional full samples can be solved. In

the case of partial samples, our solution provides a way to adjust the

‘‘weight’’ each sample s contributes to the hks of different objects.

Analyzing the Performance of Estimation
GivenĤH obtained from theMLE solution presented in the previous

section, we would like to understand how much this estimate will

deviate from the ‘‘true’’H on average. Here we focus on the variance

of the ĤH, which describes how stable the MLE result is over many

different partial sample sets (obtained via additional experiments or re-

sampling) drawn from the same isoform set:

Average var(ĥhk)
� �

~

PK{1
k~1 var(ĥhk)

K{1
ð8Þ

As we will show later, although brute-force simulation can be

performed to obtain a relatively accurate estimation of this

measurement, it is may become computationally intractable when

there are too many reads and genes to be considered. We thus

propose to use a Fisher information based heuristic for estimating

Average var(ĥhk)
� �

, and present a fast algorithm to compute the

exact value of this heuristic.

We first introduce the Fisher information matrix [12,13] as a

basis for further discussion. The Fisher information is a way of

measuring the amount of information that the random samples S

carries about the unknown parameter H upon which the

likelihood function of H, Pr(SjH), depends. An important use of

the Fisher information matrix in statistical analyses is its

contribution to the calculation of the covariance matrices of

estimates of parameters fitted by maximium likelihood.

Let h1,:::,hK{1 be the free parameters, and hK~1{
PK{1

k~1 hk.

Definition 4. (Observed Fisher information matrix).

=(H)p,q~{
L
2log(Pr(SjH))

LhpLhq
, where p,q~1,:::,K{1 ð9Þ

~

X

M

m~1

X

s~sm,�

ds,pG
(m)
s,p {ds,KG

(m)
s,K

� �

ds,qG
(m)
s,q {ds,KG

(m)
s,K

� �

PK
k~1 ds,khkG

(m)
s,k

h i2
ð10Þ

Definition 5. (Expected Fisher information matrix).

I (H)p,q~E =(H)p,q

h i

ð11Þ

Covariance matrix of the maximum likelihood estimator
Let T(S)~(ĥh1,:::,ĥhK{1,1{

PK{1
k~1 ĥhk)

T , and y(H)~E T(S)½ �.
The Cramér-Rao bound [13] states that:

Figure 1. Reads (partial samples) in the isoform quantification problem.
doi:10.1371/journal.pone.0029175.g001
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covH T(S)ð Þ§
Ly(H)

LH
I (H)½ �{1 Ly(H)

LH

� �T

, ð12Þ

where Ly(H)=LH½ �u,v~Lyu(H)=Lhv, u~1,:::,K ; v~1,:::,K{1.

We then estimate y(H) by H, and use the bound above to

estimate the covariance matrix:

covH T(S)ð Þ&

{
PK{1

k~1 I{1
1,k

I{1
(K{1)|(K{1)

..

.

{
PK{1

k~1 I{1
K{1,k

{
PK{1

k~1 I{1
k,1 � � � {

PK{1
k~1 I{1

k,K{1

PK{1
i~1

PK{1
j~1 I{1

i,j

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

K|K

ð13Þ

This means that we only need I (H) in order to estimate the

performance of our MLE with different sampling method

combinations.

Heuristic for MLE performance estimation
In order to provide a single value measure for the expected

performance of Maximum Likelihood estimation, we propose to

use the following heuristic to estimate the average variance of ĤH:

Average var(ĥhk)
� �

&

PK{1
k~1

1

I (H)k,k

K{1
ð14Þ

This heuristic avoids the potential computational intensive and

numerically unstable computation of the inverse of I , and is

consistent with the theoretical result on the lower-bound of var(ĥh)

in one dimensional case:

var(ĥh)§
1

I (h)
ð15Þ

which is a specialization of the result in the previous subsection. In

other words, the precision to which we can estimate H is

fundamentally limited by the Fisher information.

In order to compute this heuristic, all we need is I (H) itself.

However, the brute-force computation (according to Definition 4

and 5) of this matrix will be time-consuming since its time

complexity is proportional to the total number of possible sample

sets (which in turn grows exponentially with the number of

samples). In the next section, we will present algorithms that can

compute this matrix in a more efficient fashion.

Efficient Computation of I (H)
First of all, we can decompose I (H) in the following way:

I (H)p,q~
X

M

m~1

NmI
(m)(H)p,q ð16Þ

where

I (m)(H)p,q~Es*Sampm {
L
2 log

PK
k~1 ds,khkG

(m)
s,k

LhpLhq

" #

ð17Þ

is the expected Fisher information matrix of a single partial sample

based on Sampm. Thus we need to be able to compute I (m)(H) in

order to obtain I (H).

Further decomposing I (m)(H)

I (m)(H)p,q~
X

K

k~1

hk
X

s~s
(k)

½a,b)
;V½a,b)[Ik

G
(m)
s,k =

(m)

s~s
(k)

½a,b)

(H)p,q ð18Þ

where

=(m)

s~s
(k)

½a,b)

(H)p,q~
ds,pG

(m)
s,p {ds,KG

(m)
s,K

� �

ds,qG
(m)
s,q {ds,KG

(m)
s,K

� �

PK
k’~1 ds,k’hk’G

(m)
s,k’

h i2
ð19Þ

is the Fisher information matrix of a partial sample s from Sampm
at ½a,b) in Ik.

A brute-force algorithm for computing =(m)

s~s
(k)

½a,b)

(H) can thus be

described as follows:

In Algorithm 4, if length is the length of a given sequence Ik,

then the whole algorithm consists of *
PK

k~1 length(Ik) compu-

tations of =(m)
s (H).

Equivalent partial samples
In order to continue our discussion on faster algorithms to

compute =(m)

s~s
(k)

½a,b)

(H), we introduce the concept of equivalent

partial samples below (the relavant proofs can be found in Text

S1):
Definition 6. Two partial samples s1 and s2 are equivalent

w.r.t. Sampm if and only if =(m)
s1

(H)~=(m)
s2

(H).
Lemma 1. If VIk[I , ds1,kG

(m)
s1,k

~ds2,kG
(m)
s2 ,k

, then s1 and s2 are

equivalent w.r.t. Sampm.
Definition 7. A set of partial samples S is an equivalent

sample set w.r.t. Sampm if and only if Vs1,s2[S, s1 and s2 are

equivalent w.r.t. Sampm.
Lemma 2. Given an isoform Ik and a sampling method Sampm, if we

divide all its possible partial samples into n non-overlapping equivalent sample

sets S1,S2,:::,Sn, then:

ð13Þ
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I (m)(H)p,q~
X

K

k~1

hk
X

n

i~1

jSijG
(m)
si ,k

=(m)
si

(H)p,q, for any si[Si ð20Þ

Results from a simple shotgun read generation model
In this subsection, we consider a simplified partial sample

generation model:

Definition 8. A simple shotgun sampling method Sampm
generates samples with fixed read length rm. When sampling from

an isoform Ik with length lk, there are in total lk{rmz1 different

samples s
(k)

½a,b), where a~0,1,2,:::,(lk{rm); and b~azrm. Each of

these samples has equal probability of being generated from Ik:

G
(m)
s,k ~1=(lk{rmz1).

Figure 2 illustrates simple shotgun sampling process and its

corresponding per-base coverage on the isoform being sampled.

Lemma 3. Given the sample generation model Sampm above, if two

samples s1 and s2 generated by this method are compatible with the same set of

isoforms, i.e. ds1,k~ds2,k,VIk[I , then s1 and s2 are equivalent w.r.t.

Sampm.

Theorem 1. Given the sample generation model Sampm above, if two

samples s1 and s2 generated by this method overlap with all the junctions in the

same set of connected exons ek1?ek2?:::?ekn , then s1 and s2 are

equivalent w.r.t. Sampm.

For example, in Figure 3, where the reads are generated from a

simple shotgun sampling process, the equivalent partial samples

are -read1, read2, read9}, -read10, read11}. Also, if we consider a

paired-end read as a long shotgun read with its gap filled, the

samples read5 and read6 are also (approximately) equivalent, if

their insert sizes are close to each other. However, read12 is not

equivalent to these reads, since its shotgun version overlaps with a

different exon junction set (with an addition exon).

Algorithms for efficiently computing I (m)(H)
Based on Definition 8 and Theorem 1, we can design the

following algorithm for efficiently computing I (m)(H) by combin-

ing the computation of this value for equivalent partial samples

from each isoform.

Figure 2. A simple shotgun read generation model.
doi:10.1371/journal.pone.0029175.g002
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In Algorithm 2, overlappingExons(s,Ik) identifies the connect-

ed exons set in Ik that overlaps with a given partial sample s, and

can be implemented with O( logNumExonsk) time complexity by

pre-computing an exon-position index table for the isoforms.

We can further reduce the number of times of computing

=(m)
s (H) by combining equivalent partial samples from across

isoforms: when an equivalent sample set from an isoform has been

identified, all the same samples from other isoforms can be

recorded in lists of intervals to avoid redundant computation of

their =(m)
s (H)s. The algorithm is shown below:

In Algorithm 3, minNotCoveredStart(CoveredSampleStartsk,

Sampm) finds the minimum position a[f0,1,:::, length(Ik){rmz1g
that is outside a given interval list CoveredSampleStartsk;

firstSample(Ik,Sampm,ConnectedExonSet) returns the partial

sample sk½a,b) from Ik covering all the exon junctions in

ConnectedExonSet with a minimum a, and can be implement-

ed with a worst-case O( logNumExonskzjConnectedExonSetj)
time complexity by using a pre-computed exon position index

table for the isoforms.

Complexity analysis
Given a set of K possible isoforms I~fI1,I2,:::,IKg, with lengths

l1,l2,:::,lK , respectively, and a shotgun sampling method Sampm

with sample read length rm as described in Definition 8, Algori-

thm 1 requires K�((lk) steps of computing =(m)
s (H)p,q. Thus

computing I (m)(H) using this brute-force algorithm requires

(K{1)2:
PK

k~1 lk operations of calculating =(m)
s (H)p,q. If we

assume that the average length of an isoform is lAvgIsoform, this

corresponds to *K3:lAvgIsoform computations of =(m)
s (H)p,q.

Suppose that on average an isoform can be divided into

NEqSampleSets equivalent sample sets by Algorithm 2, this algorithm

will then require *K3:NEqSampleSets steps of computing =(m)
s (H)p,q

to obtain the Fisher information matrix I (m)(H) for the given

sampling method, thus being more efficient than Algorithm 1 by a

ratio of lAvgIsoform=NEqSampleSets. Algorithm 3 will obviously be

even more efficient by avoiding the redundant computation of

some of the equivalent sample sets in Algorithm 2.

Using more complex G function in Algorithm 3
The sequencing technology being used in an RNA-Seq

experiment is usually more complicated than the simplified G

function described in Definition 8, which assumes equal sample-

length and uniform generative probability. In reality, a typical G

usually involves reads with different lengths within a certain range,

and also biased sample generation probability at different locations

Integrated Isoform Quantification Analysis
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of a full-length isoform. Although once such aG is defined, ourMLE

solution can treat it in the same way as it does for simplified versions,

Algorithm 3 no longer works ‘‘out of the box’’ due to its dependency

on Definition 8 to find equivalent partial samples. We discuss briefly

in this subsection on how to handle more complex features.

When the assumption of uniform sample generation still holds,

it is straightforward to handle samples with different lengths in

FIM computation. We can treat one sampling method as a

combination of multiple simplified methods as in Definition 8,

with different sample lengths fl1, � � � ,lLg:

I (m)(H)p,q~
X

lL

l~l1

Prmflength(s)~lgI (ml )(H)p,q ð21Þ

~

X

lL

l~l1

Prmflength(s)~lg {

L
2 log

PK
k~1 dsl ,khkG

(m,l)
sl ,k

LhpLhq

2

4

3

5 ð22Þ

where Prmflength(s)~lg represents the probability of generating

a sample with length l in sampling method Sampm, sl is a sample

with length l, and G
(m,l)
sl ,k

is the simplified sample generation

probability as in Definition 8, with sample length l.

In the case of non-uniform sample generation along the isoform,

if G
(m)
s,k is a step function (piece-wise constant function) for sample s

along isoform Ik, we will still be able to find equivalent sample sets

as described in Definition 7, based on both the isoform structures

and the intervals in G. If, however, very few such constant

components exist in G, we will need to relax the definition of

equivalent partial samples to satisfying ds1,k~ds2,k only. With this

relaxed definition, we can find samples Seq with equivalent

structural similarities to all the isoforms. In this case, if the isoforms

contain regions where any s1 and s2 from it satisfy

G
(m)
s1,k

~cs1,s2
:G(m)

s2,k
with a constant cs1 ,s2 for all k, we still have

=(m)
s1

(H)p,q~=(m)
s2

(H)p,q according to Equation 19, and the I (m)

can thus be efficiently computed using a variant of Algorithm 3 by

combining the computation for such equivalent partial samples.

For more complex G functions, however, approximation algo-

rithms may have to be introduced for fast computation of I (m).

Results

Simulation Results
Here we present our results on a set of simulated datasets. In

order to demonstrate the accuracy and efficiency of the methods

we developed, we first use simulations to show the performance of

our approach on simplified gene models and a real gene. These

simulations are useful in designing optimal sequencing experi-

ments for isoform quantification.

Simulation on simplified genes
Due to the complexity of real gene structure, we apply our

methods to three artificially constructed genes with simplified

isoform structures, so as to better illustrate how different

characteristics of the gene structures can affect the outcome of

the isoform quantification analysis.

As shown in Figure 4A, each of these genes has two different

isoforms, with the more abundant one shown in a darker color.

Two sampling techniques, short single and short paired-end (PE),

are used to generate reads from them, with a fixed total cost of

$0:20 (roughly corresponding to 12 medium length reads with

average size of 250 bp (*0:66coverage on the simplied genes), or

950 short reads with average length of 30 bp (*6x)). The per-base

costs of these sampling techniques are based on [14]. Different cost

combinations, e.g. different percentage of the total cost being

assigned to a certain sampling technique, are illustrated by the x-

axis in Figure 4B–D. For each of these cost combinations, we

randomly generate 1000 read sets, and use the MLE solution to

estimate ĤH, based on which Average var(ĥhk)
� �

are computed

(solid lines in Figure 4B–D). We also use Algorithm 3 to estimate

the same quantity, and plot the estimations using dashed lines in

the same figure for comparison. The results show that the FIM

Figure 3. Equivalent samples in a simple shotgun read generation model.
doi:10.1371/journal.pone.0029175.g003
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estimation of Average var(ĥhk)
� �

are close to the direct simulation

results, and also correctly predicts the trend in how this value

changes with different cost combinations. Also, different gene

structures have noticeable impact on the MLE accuracy, mostly

due to the ability of sampling techniques to distinguish isoforms

from each other with different gene structures.

Figure 4. Results on simplified genes. (a) Results on gene A (b) Results on gene B (c) Results on gene C.
doi:10.1371/journal.pone.0029175.g004

Table 1. Total time used by brute-force simulation vs. FIM based heuristic to estimate Average var(ĥhk)
� �

in simplified genes.

Total trials for one gene Number of trials|Number of sampling method combinations~1000|21

Total FIM computation for one gene Number of sampling methods~2

Total CPU time used by brute-force simulation *52 minutes

Total CPU time used by FIM based heuristic v1 second

doi:10.1371/journal.pone.0029175.t001
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Not only can the FIM based heuristic correctly approximate

how the performance of MLE changes with regard to different

sampling technique combinations, it is also able to dramatically

shorten the time of computation, as shown in Table 1. This is

mainly because while the computation of brute-force simulation

depends heavily on the number of reads being generated and the

number of trials needed to obtain a relatively stable estimation of

Average var(ĥhk)
� �

, the core computation taken by the FIM based

heuristic is the evaluation of individual FIMs for the sampling

techniques involved, which can be efficiently computed using

Algorithm 3, and then combined based on Equation 16 to estimate

Average var(ĥhk)
� �

under different cost combinations. Being able

to do these simulations fast is useful in designing optimal

expriments.

Efficiently Estimating quantification error: Application on
a typical gene
We have developed a Fisher information matrix (FIM) based

fast algorithm (Algorithm 3 in Methods section) for estimating the

quantification error in ĤH, and compared its speed with two other

benchmark algorithms. Here we consider the gene TCF7, which
has 10 known isoforms shown in Figure 5A. Figure 5B shows its

corresponding splicing graph [6,15], with 19 exon blocks, and 96

Figure 5. Computations on gene TCF7. (a) Known isoforms (b) Splicing graph (c) Simulation schema.
doi:10.1371/journal.pone.0029175.g005
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possible isoforms, which are all the possible paths from node

‘‘START’’ to node ‘‘END’’ in the splicing graph. Figure 5C shows

the brute-force way and Fisher information based method to

estimate Average var(ĥhk)
� �

.

When computing the expected Fisher information matrix

I (m)
s (H), a brute-force algorithm (Algorithm 1) requires 26902

computations of the observed Fisher information matrix =(m)
s (H),

while an improved algorithm developed by us (Algorithm 2)

involves 169 such computations, and the number for our final

algorithm (Algorithm 3) is 46, achieving a *585 times speedup

compared to the brute-force method. A summary of the speedups

is shown in Figure 6. Note that theoretical speedup is calculated

based on the number of key computational steps (per-read FIM

computation), while the actual speedup depends on the software

implementation of all steps in the algorithm.

Integrated analysis with multiple sequencing
technologies: Simulation on a typical gene
We present in this section the application of the FIM based

heuristic on a real gene, and compared the results to the ones

obtained from direct simulations. We pick TCF7 again as a typical

example gene with multiple isoforms. Similarly to our procedure

in the section on simplified genes, two sampling techniques,

medium and short shotgun sequencing (with average length of

250 bp and 30 bp, $70 and $7 per 1million base cost respectively),

are used to generate reads from them, with a fixed total cost of

$0:2, with 200 trials being conducted for each cost combination.

Two different sets of results are shown in Figure 7, one using all

the 96 possible isoforms deduced from its splicing graph, and the

other just using its 10 known isoforms. As in the previous section,

the results here show that the FIM estimation of

Average var(ĥhk)
� �

are close to the direct simulation results, and

also correctly predicts the trend in how this value changes with

different cost combinations.

Figure 8 presents a more detailed simulation focusing on short

paired-end reads. The tolerance value reflects the expectation of

the variance in insert size for such experiments: a 0 value means

that all the paired-end reads are expected to have exactly the same

insert size; the higher the tolerance is, the more relaxed are we on

the insert size variation (i.e. if the distance of the mapped positions

of the two ends of a read on a transcript is within the expected

insert size z={ a ‘‘tolerated’’ ratio, the paired-end read will be

considered ‘‘compatible’’ with the transcript). As we can see from

this figure, the higher the tolerance, the larger Average var(ĥhk)
� �

Figure 6. Speedup in FIM computation for gene TCF7.
doi:10.1371/journal.pone.0029175.g006

Figure 7. Simulation results on TCF7. (a) Results on all possible
isoforms (b) Results on known isoforms.
doi:10.1371/journal.pone.0029175.g007
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becomes, corresponding to a worse expected performance of

MLE. This can be explained by the fact that a higher tolerance

makes the sampling method less capable of distinguishing highly

similar isoforms from each other based on a single paired-end read

(e.g. GeneA in Figure 4A). The FIM based heuristic is again able

to correctly depict the different trends of MLE performance under

different cost combinations and tolerance settings.

We also show the computation time used by brute-force

simulation and FIM based heuristic in Table 2. Note that the

brute-force simulation is even more computational consuming,

mainly because more isoforms are involved in the MLE process.

Given the fact that there exist more than 20000 genes in the human

genome and that the simulation has to be rerun for every new

experiment to adjust its read counts (the number of reads attributed

to a gene region in the experiment), using the FIM based heuristic

instead for the purpose of estimating isoform quantification

accuracy is obviously a more computationally tractable choice.

Application to a model-organism (worm) dataset
To illustrate how we can interpret the H values output, we

further apply our MLE solution to a worm dataset [16–18], which

is a well-studied model organism. which is a well-studied model

organism. The worm has intermediate complexity in isoform

structures. It has isoforms but they are significantly simpler in

structure than in human, leading to interpretability in the results.

This dataset includes multiple developmental stages, and we were

able to compare the results on a same set of isoforms under

different conditions. The worm genome contains *20 K genes,

and the transcripts from each stage are sequenced with *50 M

short Solexa reads. This dataset is particularly useful for isoform

comparison since it contains multiple stages of splicing events that

are not overly complex.

Dataset description
Whole transcriptome sequencing data for worm L2, L3, L4 and

Young Adult stages, each stage with on average 50 M reads. The

annotation set (derived from the modENCODE project, [17,18])

has 21774 total genes. Of these, 12875 genes has multiple

isoforms, with an average of 4.344 isoforms per gene.

Comparison of isoform composition between stages
We first present the isoform quantification results on individual

genes in two different stages, early embryo (EE) and late embryo

(LE), to briefly illustrate the fact that different genes have different

isoform composition differences between stages. Here we use the

following formula to measure the difference in isoform composi-

tion of the same gene in two different stages:

Diffgenei (H
(Stage1),H(Stage2))~

PK
k~1 (h

(Stage1)
k {h

(Stage2)
k )2

K
ð23Þ

where K is the total number of isoforms in gene genei.

Figure 9 shows two examples of zero and non-zero Diff values.

The reads are plotted below the isoforms, and the numbers

associated with the isoforms are their estimated relative abun-

dances based on MLE. Furthermore, if we compute such values

for all the genes in these two stages, we can get a histogram of

isoform composition differences as illustrated in Figure 10, which

characterizes the general isoform composition difference between

stages. The distribution of differences in relative isoform

composition for genes is shown: Isoform quantification was

applied to RNA-Seq data in 4 developmental stages in worm

(L2, L3, L4, YA) and Diff score was calculated for each gene in all

6 pairwise comparisons. Because isoform quantification is noisy for

genes expressed at very low level, we plotted the distribution for

genes that have at least an RPKM value of 0:5 here (RPKM for a

gene is the sum of RPKMs of all its isoforms). Red bars represent

the average number of genes within the respective Diff score range,

while error bars indicate the maximum and minimum numbers.

Diff scores close to 1 indicate big changes in isoform composition,

or the relative expression level of isoforms between stages. The

histogram indicates that only a few genes (&43) show dramatic

differences in isoform expression between stages. (The number 43

is derived from a cutoff of 0:5 on the Diff score.) In Table 3, we

include a classification of the structural difference (59 UTR, 39

UTR, alternative exon, etc.), between the dominant transcripts in

such genes with different isoform compositions. When the different

dominant isoforms from a gene differ in two aspects, we assign 0:5
to each category. As shown in this table, many of the structural

differences are due to either Distinct 59 UTR or Overlapping 39

Figure 8. Simulation results on TCF7 with paired-end reads.
doi:10.1371/journal.pone.0029175.g008

Table 2. Total time used by brute-force simulation vs. FIM based heuristic to estimate Average var(ĥhk)
� �

in TCF7.

Total trials for one gene Number of trials|Number of sampling method combinations~200|21

Total FIM computation for one gene Number of sampling methods~2

Total CPU time used by brute-force simulation *10:6 hours

Total CPU time used by FIM based heuristic v1 second

doi:10.1371/journal.pone.0029175.t002
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UTR. We have also included in the supplementary website

(http://archive.gersteinlab.org/proj/rnaseq/IQSeq) the genes

with stage-wise isoform composition differences, ranked by their

FIM based estimation variances, and with a thresholded on Diff

score and RPKM at 0:5.

The effect of different isoform sets on MLE result
We also investigate how different isoform sets (e.g. with a

major/minor isoform missing, with an additional ‘‘dummy’’

isoform) will affect the MLE result, especially in terms of the

maximized likelihood value. We pick gene No. 7649 as a base

isoform set, using the same set of reads and the per-read average

maximized likelihood value LL to measure the goodness of fitting:

LLgenei
~

X

r[R

log
X

K

k~1

dr,khkGr,k ð24Þ

As we can see from Figure 11, the LL value always decreases

when we modify the ‘‘true’’ isoform set in an unfavorable fashion.

This shows that the likelihood score is an effective metric for

ranking isoform sets for a particular gene. We observe that the LL

value decreases the most in all cases when the dominant isoform is

removed from the isoform set Figure 11b), which indicates that a

more important element has a larger contribution in explaining

the generated reads. Correspondingly, when a low-probability or

dummy isoform (that is not similar to the dominant one) is added

to the input isoform set, the LL value decreases less significantly

(about half of the case with dominant isoform removal), and also

the isoform quantification results remain almost unchanged for the

other transcripts in the isoform set. In practice, this characteristic

can also be useful to eliminate non-existing isoforms - any isoform

that has little effect on either quantification result or LL score can

be considered ‘‘not important’’ for explaining the observed reads,

and can thus be removed from the isoform set when analyzing a

particular dataset.

Use of empirical G function
To illustrate how non-uniform G function works, we modeled

the bias of RNA-Seq data by aggregating signal of mapped reads

along annotated transcripts. A signal map of the first base of

mapped reads was generated. The signal was subsequently

mapped onto the transcript and aggregated for all genes with

Figure 9. Isoform composition in two stages. (a) Gene 14047 in two stages ( Diff~0) (b) Gene 7649 in two stages ( Diff~0:42).
doi:10.1371/journal.pone.0029175.g009
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signal isoform. An aggregation plot of such a signal map for Young

Adult is shown in Text S1. In this aggregation, each transcript is

divided evenly into 100 bins, with the signals normalized by the

sum of signals across all the bins. The normalized signal at each

bin thus represents the probability that a read is generated at

certain position of the transcript. These non-uniform probabilities

gave more realistic estimation of how the reads are generated, and

were plugged into the EM calculations. We compared the

quantification results for Young Adult worm with uniform and

non-uniform G function. The Pearson correlation score for

relative abundance is 0:996, and score for absolute abundance is

0:989. The results are similar for other stages. For the majority of

genes, the isoform quantification is largely dependent upon

whether reads are compatible with the different isoforms of the

gene, while the subtle differences in start position probabilities

have little influences on final estimation results. Only for a few

genes where the isoform structures are highly similar to each other,

the quantification results are different.

Also, there have been some recent works [19,20] studying the

sequencing biases in RNA-Seq data, with more sophisticated

modeling utilizing local sequence composition at different

positions along the transcript. Based on different assumptions on

sequencing bias, their results can be plugged into the G function to

derive more realistic quantification results.

Comparison with existing tools
In order to understand the performance of our method

compared with other existing tools, we have conducted additional

computational analysis by applying IQSeq and Cufflinks on 14

samples from MAQC-3 data [21]. We summarize our result in

Figure 12. The genes are categorized by their number of isoforms,

and Pearson correlations of the estimated isoform level RPKMs (in

logarithmic scale) from the two methods are calculated for each

category in each sample. The overall correlation of the isoform

quantification results from these two methods is *0:7 across all

samples, which indicates a similar characteristic with a near

Figure 10. Diff of all genes across four stages.
doi:10.1371/journal.pone.0029175.g010

Table 3. Classification of different isoform composition between stages.

Type L3 vs L2 L4 vs L2 L4 vs L3 YA vs L2 YA vs L3 YA vs L4

Overlapping 59 UTR 6.5 6 2.5 4 4.5 2.5

Distinct 59 UTR 7.5 26 13.5 20 11 11

Alternative Exon 4.5 6.5 3 4.5 3 4.5

Extended Exon 4 7 6.5 6.5 6 6.5

Overlapping 39 UTR 13.5 11 8.5 11.5 9.5 10

Distinct 39 UTR 2 3.5 3 2.5 3 1.5

doi:10.1371/journal.pone.0029175.t003
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Figure 12. Comparison between IQSeq and Cufflinks.
doi:10.1371/journal.pone.0029175.g012

Figure 11. Gene 7649: Leave out one isoform, or add a ‘‘dummy’’ isoform. (a) Standard calculation with all isoforms: LL~{7:22 (b) Leave
out the dominant isoform: LL~{7:35 (c) Leave out a non-dominant isoform: LL~{7:29 (d) Add a ‘‘dummy’’ isoform: LL~{7:29.
doi:10.1371/journal.pone.0029175.g011
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uniform read-generation assumption. Also, both outputs from

IQSeq and Cufflinks have *0:79 correlation with the Taqman

assay [22] (an qRT-PCR technique, which can be considered as a

gold-standard here). These results confirm consistency of our

method with previous work. Note, however, that with our method

one can readily ‘‘plug-in’’ more practical read generation models as

illustrated in the previous section, making it a more flexible tool to

handle and integrate data from different sequencing technologies.

Also, we compared the isoform quantification variances between

replicates with the FIM based variance estimations, and their

logarithmic values have a correlation of 0:59 (Figure 3 in Text S1).

Discussion

In this paper we explore the problem of integrating different

sequencing techniques to quantify the relative abundance of

different isoform transcripts, which can be generalized to the

problem of estimating the distribution based on partial samples

from different sampling techniques. We first introduce a statistical

framework to model the generative process of the partial samples,

using a ‘‘plugin-able’’ function G to allow flexible incorporation of

different sampling characteristics, and then present the original

problem as a maximum likelihood estimation (MLE) problem,

with an iterative solution based on expectation maximization,

which guarantees a locally optimum answer. This provides a

solution to the question of estimating a distribution based on

partial samples.

In order to further investigate the problem involving partial

samples, we introduce a heuristic based on the Fisher information

matrix (FIM) to estimate the variance of the previously presented

MLE solution. Also, in order to accelerate the computation of this

measurement, we introduce the concept of equivalent partial

samples and develop a fast algorithm, Algorithm 3, to accurately

calculate FIM, achieving a speedup of *500 times compared to

the brute-force method. Simulation results on both hypothetical

and real gene models also show that our FIM-based heuristic gives

a good approximation to the value of Average var(ĥhk)
� �

, and

accurately predicts the numeric order of this value under different

conditions. With this metric, we are also able to demonstrate

examples of how to efficiently find low-cost combinations of

different sampling techniques to best estimate the isoform

compositions in RNA-Seq experiments. Although we are only

using individual genes as examples, once we have good

assumptions of expression levels of different genes, this procedure

can be generalized to all the genes for the low-cost design of actual

whole genome RNA-Seq experiments.

What is more, by applying the MLE method to a worm RNA-

Seq dataset, we illustrate how we can compare the differential

isoform composition between different developmental stages, and

how different isoform sets (e.g. with a major/minor isoform

missing, with an additional ‘dummy’’ isoform) will affect the MLE

result, especially in terms of the maximized likelihood value,

showing that the likelihood score is an effective tool for ranking the

‘‘fitness’’ of isoform sets for a particular gene.

Since IQSeq estimates isoform quantity within a probabilistic

framework, it does not directly determine the existence of a certain

isoform transcript in the data, but rather gives probability

measures (ĤH) and corresponding RPKM values. The result of a

secondary experiment with high precision, e.g. qPCR, on a smaller

set of genes, can be used as a gold standard dataset to assist

answering such existence questions, with either a simple RPKM

value threshold that maximizes the prediction accuracy on the

gold standard (training) dataset, or more sophisticated classifica-

tion techniques that takes multiple characteristics (e.g. ĤH, overall

gene expression, FIM-based variance estimation) into account.

The FIM-based variance we are trying to estimate in the

proposed algorithm focuses mainly on the expected estimation

variance based on different read sets of similar on a same sample,

and is a measurement of estimation accuracy. In the case of read

sets from different biological replicates, the variances of interest

there are usually the actual differences in isoform composition of

particular genes between/among the replicates, and analysis on

such differences can be generally conducted as a downstream

procedure after the isoform quantification calculation.

As sequencing technologies constantly evolve, IQSeq will

remain able to provide integrated analysis of different datasets

with their own sequencing characteristics, and provide guidelines

for optimal RNA-Seq experiment design.
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