547.495.1:543.422.4:543.422.25

IR AND NMR STUDIES OF SYMMETRICALLY AND UNSYMMETRICALLY BONDED N,N-DIALKYLDITHIO-CARBAMATES

BY

H. C. BRINKHOFF and A. M. GROTENS

(Laboratory of Inorganic Chemistry, University of Nijmegen, Driehuizerweg 200, Nijmegen, The Netherlands)

In order to find characteristic differences between symmetrically and unsymmetrically bonded N,N-dialkyldithiocarbamates, their IR and ¹H NMR spectra have been examined. The IR data firmly underline a previously reported infrared criterion which makes it possible to distinguish the two types of bonding. In the spectra of the unsymmetrical N,N-diethyldithiocarbamates a band at 1000 cm⁻¹ is assigned to the C=S stretching mode.

Although the rotation around the S_2C — NR_2 bond in several dithiocarbamato complexes will be strongly hindered at low temperatures, no splitting of the NMR signals of the *N*-alkyl groups could be observed. This may be attributed to an extremely small difference in magnetic environment of the *N*-alkyl moieties in the rotamers.

IR-spectra

On the basis of limited data *Bonati* and Ugo^1 reported an infrared criterion by which unsymmetrically coordinated N,N-diethyldithiocarbamates (Et₂DTC) could be distinguished from the symmetrical ones (Fig. 1). They found

that the presence of two absorption bands in the region of $1050-950 \text{ cm}^{-1}$ is characteristic of the unsymmetrically bonded Et₂DTC groups. For the spectra of the symmetrical Et₂DTC derivatives only one band is observed in this region.

We have examined the IR-spectra of a series of EtaDTC compounds.

⁴ F. Bonuti and R. Ugo, J. Organomet. Chem. 10, 257 (1967).

It appeared that the spectra of the compounds, the Et_2DTC groups of which are known to be unsymmetrically coordinated, contain the two bands without exception, whereas in the spectra of the bidentate (symmetrical) Et_2DTC complexes only one band is observed (Table I). In Fig. 2 this is illustrated for N, N, N', N'-tetraethylthiuram disulfide $[(Et_2NCSS)_2 = Et_4TDS]$ and the bisdiethyldithiocarbamato complex of Zn(II).

Fig. 2. IR-spectra of Et₄TDS (A) and Zn(Et₂DTC)₂(B) recorded in CHCl₃.

These results give a broader basis for the criterion of *Bonati* and *Ugo*; it is probably of general applicability for DTC complexes. It should be noted that we have considered the data measured in solution rather than those in the solid state. The presence of two bands in the spectra of unsymmetrical Et₂DTC derivatives might be due to splitting of degenerate vibrational states. However, the spectra of symmetrical dithiocarbamates as *e.g.*, Ni(Et₂DTC)₂ (D_{2h}) and Cu(Et₂DTC)₂ (in the solid state the symmetry is lower than D_{2h}²), the symmetries of which do not allow degenerate states for the ligand vibrations, show notwithstandingly only one band. So no theoretical foundation for this criterion has been found.

² M. Bonamico, G. Dessy, A. Mugnoli, A. Vaciago and L. Zambonelli, Acta Cryst. 19, 886 (1965).

Upon complexation of Et₄TDS to Zn, Cd and Hg³ band I shifts to a lower frequency just like the band at 918 cm⁻¹ (band 111) which is present in the spectra of all Et₂DTC derivatives investigated. Band 111 was recently assigned to a CSS vibration on the basis of a comparative IR study of Et₂DTC and N,N-diethyldiselenocarbamato (Et₂DSC) complexes⁴. For band 11 no significant change could be observed. From the structure of the thiuram disulfide complexes which was indicated previously⁵ and confirmed recently by crystallographic work⁶, it follows

Unsymmetrical	Band I $\nu(C=S(1))$	Band 11	Band III v(CSS)(cm ⁻¹)
Et(Et_DTC)	1007 m	990 m	920 m
Me(Et_DTC)	1012 m	.990 m	919 m
Hgl.Me(Et.DTC)*	1002 m-w	989 m	909 m
ELTDS	1008 m	• 972 m	918 m
Hgl.(Et.TDS)	1000 m-w	972 m	910 m
Cdl _o (Et,TDS)*	992 m-w	971 m	907 m
Znl.(Et.TDS)*	991 m-w	971 m	907 m
As(Et_DTC)	1004 m-w	988 m	915 m
Sb(Et.DTC).	1000 sh	988 m	915 m
Bi(Et, DTC)	1000 sh	985 m	913 m
Se(Et, DTC)	1005 m	983 m	915 m
Te(Et, DTC)	1002 m	986 m	916 m
$Sn(Et_2DTC)_4^7$	1000 sh	991 m	917 m
symmetrical			-
Co(Et.DTC)	1005 m-w		918 m-w
Zn(Et, DTC)	991 m		914 m
Hg(Et, DTC)	989 m		913 m
Ni(Et,DTC)*	993 m		914 m
Ni(Et.DTC),+ · 1	*3 998 m-w		913 w
Cu(Et ₂ DTC) ₂ *	998 m		915 m

Table I IR data of Et₂DTC derivatives measured in CHCl₃.

The spectra were recorded in KBr. The accuracy of the data given is $\pm 2 \text{ cm}^{-1}$; as reference the band at 1028 cm⁻¹ of polystyrene was used, m = moderate intensity, w = weak intensity, sh = shoulder

⁵ H.C. Brinkhoff, A. M. Grotens and J.J. Steggerda, Rec. Trav. Chim. 89, 11 (1970).

P. T. Beurskens, J. A. Cras, J. H. Noordik and A. M. Spruijt, J. of Crystal and Molecular Structure, 1, 93 (1971).

¹ F. Bonuti, G. Minghetti and S. Cenini, Inorg. Chim. Acta 2, 375 (1968).

254

³ H. C. Brinkhoff, J. A. Cras, J. J. Steggerda and J. Willemse, Rec. Trav. Chim. 88, 633 (1969).

A. T. Pilipenko and N. V. Mel'nikova, Russ. J. of Inorg. Chem. 14, 236 (1969).

that the C—S[C—S(1)] bond lengths become longer upon complex formation. This weakening of the C—S bond correlated with the shift of band I to lower frequency leads to the assignment of this band to a vibrational mode wherein the contribution of the C—S stretching vibration is important. To verify this assignment a new complex $Hgl_2Me(Et_2-DTC)$ was prepared simply by adding equimolar amounts of Hgl_2 and MeS(S)CNEt₂ in acetone solution.

The Et_2DTC ester will complex mainly by means of the terminal sulfur atom [S(1)] like the R_4TDS ligands. The shift of the bands 1 and 111 to lower frequencies upon complexation gives support to our assignment of band I.

¹H NMR-spectra

It was reported that hindered rotation around the C-N bond can be observed by ¹H NMR for unsymmetrical R₂DTC derivatives like R₂DTC esters^{8.9}, R₄TDS and its complexes⁵. Hindered rotation for symmetrical R₂DTC derivatives in general cannot be observed by NMR. The compounds $Mo(NO)(R_2DTC)_3$ and $Ru(NO)(R_2DTC)_3$, which were studied by Johnson, Al-Obaidi and McCleverty^{10.11}, form an exception. This is caused by the non-equivalence of the N-alkyl groups with respect to the other ligands coordinated to the central atom. We have studied some unsymmetrical R₂DTC compounds in order to check if they could be distinguished from the symmetrical ones by NMR. For the compounds investigated only hindered rotation around the C...N bond is observed in N.N.N'.N'-tetramethylthiuram monosulfide (Me₄-TMS) which shows two singlets of equal intensity in its NMR-spectrum recorded at 30° in CDCl₃ solution with a spectrometer operating at 100 MHz. The splitting between the signals is 7 Hz. For $A_{s}(E_{t_{2}}DTC)_{s_{1}}$ its Sb and Bi analogues, As(Me₂DTC)₃, Se(Et₂DTC)₂ and Te(Et₂DTC)₂, however, no splitting of the N-alkyl proton resonances in CDCl_a and CS_2 solutions could be observed at temperatures as low as -60° . Even a spectrum of As(Et₂DTC)₃, recorded with a 220 MHz NMR spectrometer at -50° in a CS₂-toluene solution, shows no line broadening of the ethyl proton resonance peaks with respect to the CH_{a} -signal of toluene. This might be due either to a small, undetectable difference in the magnetic environments of the N-alkyl groups in the rotamers or to a small barrier to internal rotation. The former is sometimes found, de-

^{*} a. C. E. Holloway and M. H. Gitlitz, Can. J. Chem., 45, 2659 (1967);

b. A. E. Lemire and J. C. Thompson, ibid. 48, 824 (1970).

⁹ J. L. Richards, D. S. Tarbell and E. H. Hoffmeister, Tetrahedron, 4, 6485 (1968).

¹⁰ B. F. G. Johnson and K. H. Al-Obaidi, Chem. Comm. 876 (1968).

¹¹ B. F. G. Johnson, K. H. Al-Obaidi and J. A. McCleverty, J. Chem. Soc. A, 1668 (1969).

pending upon solvent, for the N-CH₃ protons of some alkyl-N-(arenesulfonylmethyl)-N-methylcarbamates $(XC_6H_4SO_2CH_2N(CH_3)CO_2R)^{12.13}$.

From the small differences in the C····N bond length found for Et₄-TDS¹⁴ and As(Et₂DTC)₃¹⁵ and the slight variations in the C····N stretching frequencies of the complexes investigated, R₄TDS and R'(R₂DTC) (Table II), it is concluded that the first explanation (valid at the temperatures mentioned) is most probably correct.

Experimental Part

¹H NMR spectra were recorded using a Varian HA-100 NMR spectrometer operating at 100 MHz. For recording the 220 MHz ¹H NMR spectrum the Varian AR 220 MHz NMR spectrometer was used. The infrared data were obtained, unless reported otherwise,

Table II

The C^{\dots}N stretching frequencies of a number of Me₂DTC and Et₂DTC derivatives; crystallographic data of the C^{\dots}N bond lengths.

<i>ν</i> (C N)(cm ⁻¹)		CN (Å)	
Me₄TDS	1505	1.3116	
MeTMS	1508		
Me(Me,DTC)	1498**		
Et(Me, DTC)	1498**		
As(Me, DTC)	1507		
Me(Et, DTC)	1493		
Me(Et, DTC)	1489**		
Et(Et,DTC)	1493		
Et(Et,DTC)	1489**		
ELTDS	1496	1.3514	
As(Et, DTC)	1494	1.3415	
Se(Et, DTC),	1 49 7 [`]		
Te(Et2DTC)2	1493		

The spectra were recorded in CHCl_a solution, using a **Beckmann IR 4** spectrophotometer.

* The spectra were recorded in CH₂Cl₂ solution.

- 12 S. van der Werf, Thesis, Groningen 1969, pg 50 and 51.
- ¹⁴ S. van der Werf and J. B. F. N. Engberts, Tetrahedron Letters 29, 3311 (1968).
- 14 I. L. Karle, J. A. Estlin and K. Britts, Acta Cryst. 22, 273 (1967).
- ¹³ M. Colapietro, A. Domenicano, L. Scaramuzza and A. Vaciago, Chem. Comm. 302 (1968).
- ¹⁶ K. Marøy, Acta Chem. Scand. 19, 509 (1965).

using a Perkin Elmer 157. The known compounds were prepared as described in the literature: Me₄TMS¹⁷, As(Et₂DTC)₃, Sb(Et₂DTC)₃, Bi(Et₂DTC)₃, Se(Et₂DTC)₂, Te(Et₂DTC)₂, Et(Et₂DTC). Me(Et₂DTC), Co(Et₂DTC)₃, Zn(Et₂DTC)₂, Hg(Et₂DTC)₂, Cu(Et₂DTC)₂, Ni(Et₂DTC)₂, Me₄TDS, Et₄TDS¹⁸ and Sn(Et₂DTC)₄⁷. The preparation of the thiuram disulfide complexes and Ni(Et₂DTC)₃⁺·I₃⁻ was as described in ref. 3. The synthesis of HgI₂(Et₄TDS) was reported earlier⁵.

 $CdI_2(Et_4TDS)$. A concentrated solution of I_2 (1 mole) in CS₂ was added to a concentrated solution of Cd(Et₂DTC)₂^{1H} in the same solvent. The white precipitate obtained was dissolved in acetone and reprecipitated by addition of petroleum ether (60-80°). The colourless needles melted at 139-142°.

Found : Cd 16.9; C 18.3; H 3.0 Calc. for Cdl_2 · $C_{10}H_{20}N_2S_4$ (662.7): Cd 17.0; C 18.1; H 3.0

 $ZnI_2(Et_4TDS)$ was obtained like CdI_2(Et_4TDS). Instead of acetone, chloroform was used for recrystallisation. Colourless needles were formed; m.p. 153–156°.

Found : Zn 10.6; C 19.7; H 3.3. Calc. for $Znl_2 C_{10}H_{20}N_2S_4$ (615.7): Zn 10.6; C 19.5; H 3.3.

 $Ni(Et_2DTC)_3I_3$. An excess of iodine was added to a solution of Ni(Et_2DTC)_2 in chloroform. The separated oil solidified on addition of petroleum ether (60-80°). Recrystallisation in acetone solution yielded needles which melted at 121-123°.

Found \circ : Ni 6.5; C 20.7; H 3.5. Calc. for Nil₃·C₁₅H₃₀N₃S₆ (884.2): Ni 6.6; C 20.4; H 3.4.

 $HgI_2Me(Et_2DTC)$. HgI_2 (1 mole) was added to a concentrated solution of Me(Et_2DTC) (1 mole) in acetone. After the HgI_2 had dissolved by complexation with the ester, light yellow plates were obtained on addition of petroleum ether (60-80°); m.p. 101-103°.

Found : C 12.0; H 2.2. Calc. for Hgl₂·C₆H₁₃NS₂ (617.7); C 11.7; H 2.1.

Acknowledgements

The investigations were supported in part by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organisation of Pure Research.

We wish to thank Prof. J. J. Steggerda for helpful discussions and are grateful to Ir. P. E. J. Verwiel (TNO) for recording the 220 MHz¹H NMR spectrum. The authors wish also to thank Mr. H. Smeets for recording the other NMR spectra and Mr. H. Langhout for performing the analyses.

(Received May 4th 1970)

¹⁷ J. v. Braun and F. Stechele, Ber. 36, 2275 (1903).

¹⁸ G. D. Thorn and R. A. Ludwig, The Dithiocarbamates and related compounds, Elsevier, Amsterdam, 1962.