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Heat shock proteins (HSPs) play a pivotal role in cell growth and variability. Since

conventional approaches are expensive and voluminous protein sequence information

is available in the post-genomic era, development of an automated and accurate

computational tool is highly desirable for prediction of HSPs, their families and sub-types.

Thus, we propose a computational approach for reliable prediction of all these

components in a single framework and with higher accuracy as well. The proposed

approach achieved an overall accuracy of∼84% in predicting HSPs,∼97% in predicting

six different families of HSPs, and ∼94% in predicting four types of DnaJ proteins,

with bench mark datasets. The developed approach also achieved higher accuracy

as compared to most of the existing approaches. For easy prediction of HSPs by

experimental scientists, a user friendly web server ir-HSP is made freely accessible at

http://cabgrid.res.in:8080/ir-hsp. The ir-HSP was further evaluated for proteome-wide

identification of HSPs by using proteome datasets of eight different species, and ∼50%

of the predicted HSPs in each species were found to be annotated with InterPro HSP

families/domains. Thus, the developed computational method is expected to supplement

the currently available approaches for prediction of HSPs, to the extent of their families

and sub-types.

Keywords: molecular chaperones, heat shock, protein folding, machine learning, di-peptide composition, DnaJ

proteins

INTRODUCTION

In the course of constant interaction between life and environment, cell experiences different
environmental stresses that slow down its original function including DNA, RNA, and protein
synthesis (Csermely and Yahara, 2005). Further, almost all these stresses induce a group of proteins
called as heat shock proteins (HSPs) that are found almost in all living organisms (Al-Whaibi,
2011). HSPs are considered as a major group of molecular chaperones assisting in proper folding
of partially folded or denatured proteins, organization of correct protein conformation, and
prevention of irreversible aggregation of damaged proteins (Hubbard and Sander, 1991; Zeng
et al., 2004; Poulain et al., 2010). Six major families of HSPs viz., HSP20, HSP40, HSP60, HSP70,
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HSP90, and HSP100 have been reported based on molecular
weight and functions (Ratheesh et al., 2012; Feng et al.,
2013). Besides chaperonin activities, HSPs are also known
to be involved in other functions like modulation of their
synthesis (Blaszczak et al., 1999), participation in signal
transduction pathways (Louvion et al., 1998), RNA processing
(Ruggero et al., 1998) etc. Furthermore, HSPs play vital role in
maintaining the overall cellular protein homeostasis (Mallouk
et al., 1999; Tytell and Hooper, 2001). Due to broad range
of functions of HSPs, their dysfunction causes many serious
disorders. In particular, aggregation of misfolded proteins causes
many neurodegenerative diseases including Alzheimer’s and
Parkinson’s disease (Hamos et al., 1991; Wu et al., 2004; Adachi
et al., 2009; Arawaka et al., 2010; Sajjad et al., 2010; Maiti et al.,
2014; Paul andMahanta, 2014; Lackie et al., 2017), cardiovascular
disease (Pockley, 2002), and cancer (Goldstein and Li, 2009). The
HSPs can also be used as therapeutic targets for cancer treatment
(Chatterjee and Burns, 2017; Saini and Sharma, 2017; Wu et al.,
2017), diagnosis of neurodegenerative disorders (Kampinga and
Bergink, 2016), and preventing the onset and progression of
atrial fibrillation (Hu et al., 2017). Owing to the wide range of
activities of HSPs, identification of HSPs, and categorizing them
into different families is an important and challenging problem
(Feng et al., 2013; Ahmad et al., 2015).

The advancement of relatively cheaper sequencing
technologies has witnessed a huge volume of protein sequences
that are added to the public databases (Feng et al., 2013; Ahmad
et al., 2015; Kumar et al., 2016). Due to lack of experimentally
validated structures in the databases, resource intensive
traditional method like nuclear magnetic resonance (NMR)
has become inappropriate for identifying HSP families in large
protein datasets (Redfield, 2004; Lange et al., 2012; Nasedkin
et al., 2015). Thus, the development of computational method
for identifying HSPs and their families is essential due to their
inexpensive and high throughput nature. To this end, some
computational methods i.e., iHSP-PseRAAAC (Feng et al., 2013),
JPred (Feng et al., 2014), JPPRED (Zhang et al., 2015), and
PredHSP (Kumar et al., 2016) have already been developed in the
recent past. In iHSP-PseRAAAC, support vector machine (SVM)
was used for predicting six different families of HSPs, based on
reduced alphabet amino acid composition (AAC) features of
protein sequences. The JPred was developed for prediction of
four types of HSP40 (DnaJ) proteins (Type-I, Type-II, Type-
III, and Type-IV) based on composition of clustered amino
acids and SVM predictor. In another approach, Ahmad et al.
(2015) employed different supervised learning techniques viz.,
k-nearest neighbor, probabilistic neural network, SVM, and
artificial neural network for prediction of six different families of
HSPs as well as four different types of DnaJ proteins, based on
different compositional features viz., pseudo AAC, split AAC,
and di-peptide compositions (DPC). The JPPRED employed
a more complex set of features for predicting different DnaJ
proteins. Keeping in mind the fact that a protein sequence should
be predicted first as HSP before being predicted to its family,
PredHSP was developed based on DPC using SVM. It identifies
HSPs in the first stage and classifies them into different families
in the second stage. Each of the above mentioned approaches has

their own advantages, and contributed in generating knowledge
for predicting HSPs. Though reasonable results have been
achieved in identifying HSP families, still there is a room for
improvement. In particular, there is a need to improve the
accuracy of prediction of HSPs and non-HSPs. Moreover, none
of the above mentioned tools were designed to predict all the
three components viz., HSPs, six families of HSPs, and four types
of DnaJ proteins in a single framework. Thus, the development
of a new computational approach is required for the prediction
of all these three components reliably, and in a single framework
as well.

Taking above prospects into consideration, we made an
attempt in this study to develop a novel computational method
for predicting all the three components in a single framework.
In the proposed approach, G-spaced di-peptide compositions
were used as input features and SVM as the prediction machine.
The proposed approach achieved higher accuracy than most
of the existing approaches in predicting HSPs, six families of
HSPs and four types of DnaJ proteins, while compared using
benchmark datasets. Besides, an online prediction server has also
been developed to help enable the researchers, scientists and
other stakeholders in predicting HSP families and their sub-types
with higher accuracy.

MATERIALS AND METHODS

As stated in many recently published articles (Chen et al., 2016;
Jia et al., 2016c; Liu B. et al., 2016; Liu Z. et al., 2016; Qiu et al.,
2016; Meher et al., 2017), five steps should be followed to set up
a sequence-derived-features based statistical predictor. The steps
are as follows:

i. Build standard training and test datasets to effectively train
and test the predictor.

ii. Map the input biological sequences into such numeric feature
vectors which can truly reflect their inherent association with
the target.

iii. Develop an efficient prediction algorithm.
iv. Properly perform the cross-validation tests.
v. Develop an online prediction server, which is freely accessible

to the users.

In the following sub-sections, we have described these steps
one-by-one.

Dataset
We considered the same dataset which was used to develop
PredHSP. This dataset contains 2,225 true HSP and 10,000 non-
HSP sequences. The true HSP dataset was actually constructed
by Feng et al. (2013) to develop iHSP-PseRAAAC, where
the sequences were originally collected from HSPIR database
(Ratheesh et al., 2012). Though HSPIR contains >9,900
sequences belonging to 277 genomes of both prokaryotes and
eukaryotes, the true HSP dataset was constructed after removing
the sequences with ≥40% pair-wise sequence identity in each
family of HSP, to reduce homologous bias and redundancy.
Further, the non-HSP dataset consisting of 10,000 sequences
was created first time in PredHSP, where the sequences were
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randomly drawn from Swiss-Prot (http://web.expasy.org/docs/
swiss-prot_guideline.html) based on the criterion that no two
sequences are homologous. After removing the sequences with
non-standard residues (residues other than 20 amino acids), a
final dataset consisting of 2,181 HSPs (354 HSP20, 1,257 HSP40,
159 HSP60, 278 HSP70, 52 HSP90, and 81 HSP100) and 9,965
non-HSPs was prepared (Table 1).

Construction of Balanced Dataset
The final dataset (2,181 HSPs and 9,965 non-HSPs) is highly
imbalanced, because the number of sequences in non-HSP
dataset are much higher than that of HSP dataset. By using the
highly imbalanced dataset to train the prediction model, the
results may get biased toward the class having larger number of
sequences i.e., major class (Chou, 2013; Chen et al., 2015; Liu
Z. et al., 2015; Xiao et al., 2015; Jia et al., 2016b; Liu B. et al.,
2017). In order to reduce the biasness, balanced datasets having
approximately same number of HSP and non-HSP sequences
were constructed for classification of HSPs and non-HSPs. More
clearly, balanced datasets consisting of 2,180 HSPs and 2,180
non-HSPs were prepared for classification of HSPs and non-
HSPs, which were randomly drawn from 2,181 HSPs and 9,965
non-HSPs, respectively. Classifications were also made among
different families of HSPs where a particular family is considered
as the positive set and the remaining families together as negative
set. Moreover, performances of prediction models were assessed
using leave-one-out cross-validation (LOOCV) technique as
similar to the earlier studies (Feng et al., 2013; Ahmad et al., 2015;
Kumar et al., 2016).

Feature Generation
Sequence-derived features viz., AAC and DPC were previously
used by Kumar et al. (2016) where the accuracy under DPC
feature was found to be higher than that of AAC. The reason
behind this could be the local ordering of amino acids that
are not accounted in AAC. On the other hand, the DPC not
only encapsulates the local ordering of amino acids but also
the global information of each protein sequence (Bhasin and
Raghava, 2004; Ding et al., 2004). Keeping this in mind, four
kinds of DPC i.e., 0-spaced, 1-spaced, 2-spaced, and 3-spaced
were used, which are nothing but the frequencies of all pairs of
amino acids conditioned with 0, 1, 2, and 3 skips, respectively
(Govindan and Nair, 2011). Besides, all possible combinations

TABLE 1 | Summary of the positive and negative datasets.

Class Dataset Description #Sequence*

Positive HSP20 sHSP 354

HSP40 DnaJ-class proteins 1,257

HSP60 GroEL/ES or chaperonin 159

HSP70 DnaK/chaperones 278

HSP90 HptG or Chaperonin 52

HSP100 Clp 81

Negative non-HSP — 9,965

*Sequences obtained after removing non-standard residues.

of 0-, 1-, 2-, and 3-gap (spaced) amino acid pair compositions
(GPC) were also used as features. Since, composition-transition-
distribution (CTD), autocorrelation function (ACF), and pseudo-
AAC (PAAC) features also take into account the local ordering of
amino acids as similar to GPC, they were considered as features.
For computing these features, BioSeqClass package (Hong, 2016)
of R-software (R Development Core Team, 2012) was used. A
brief description about the computation of GPC, PAAC, CTD,
and ACF features is provided below.

G-Spaced Amino Acid Pair Composition (GPC)

Each kind of GPC gives 400 descriptors, which can be defined

as fG(i, j) =
DG(i, j)
N−G−1 (i, j = 1, 2, ..., 20; G = 0, 1, 2, 3), where

DG(i, j) is the number of amino acid pairs represented by amino
acid i and j with G-gap, fG(i, j) represents the frequency of
occurrence and N is the length of sequence.

Pseudo Amino Acid Composition (PAAC)

The PAAC was first time used by Chou (2001) for the prediction
of protein sub-cellular localization. Unlike the discrete AAC,
the effects of sequence ordering are taken into consideration in
PAAC. This feature has been verified effectively in many protein-
related classifications (Wang et al., 2010). Based on the PAAC
features, each protein sequence can be mapped onto a (20+d)-
dimensional numeric feature vector for d-tier correlation factor.
In the current study, 1st-tier correlation was only considered by
which each sequence was converted into a numeric vector of 21
elements. Though more details can be found from the studies
of Chou (2005, 2009), a brief description about computing the
PAAC features is as follows:

Let ψ1ψ2ψ3 ...ψL−2ψL−1ψL be a protein sequence of L amino
acids long. Then, the ordering of amino acids in the sequence
can be represented by a set of discrete correlation factors
ρ1, ρ2, ..., ρd, where

ρj =
1

L− j

L−j
∑

i = 1

8(ψi,ψi+j) ; j = 1, 2, ..., d(< L).

The ρ1, ρ2, ..., ρd are called the 1st, 2nd, . . . , dth tier correlation
factors, respectively. The correlation function8(ψi,ψi+j) is given

by [2(ψi − ψi+j)]
2, where2(ψi) is the transformed feature value

of amino acid ψi. The value of 2(ψi) can be computed from the
original feature value2o(ψi) as follows:

2(ψi) =

2o(ψi)−
20
∑

i = 1

2o(ψi)
20

√

√

√

√

√

20
∑

i = 1

[

2o(ψi)−
20
∑

i = 1

2o(ψi)

20

]2

20

.

Thus, the PAAC of a protein can be represented by a (20+d)-
dimensional vector as [θ1, θ2, ..., θ20, θ21, ..., θ20+d]

′, where θx is
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represented as

θx =











































fx
20

∑

i = 1

fi + w

d
∑

j = 1

ρj

1 ≤ x ≤ 20

wρx − 20

20
∑

i = 1

fi + w

d
∑

j = 1

ρj

, 21 ≤ x ≤ 20+ d
,

where fx represents the occurrence of frequencies for the 20
amino acids in the protein sequence, ρj represents the jth tier
sequence correlation factor and w represents the weight for the
sequence-order effect.

Composition-Transition-Distribution (CTD)

Dubchak et al. (1995) introduced the CTD feature for the
prediction of protein folding classes. Since its introduction, it
has been widely used in many functional and structural related
studies of proteins (Cai et al., 2003; Govindan and Nair, 2011).
In CTD feature, composition (C) stands for the composition of
amino acids, transition (T) represents the percent frequency with
which residues of certain characteristics are followed by other
amino acids, and distribution (D) determines the sequence length
within which the first, 25, 50, 75, and 100% of the amino acids
of certain characteristics are placed. With the CTD feature, each
protein sequence of length L was mapped into a numeric vector
of length L+ {L ∗ (L−1)/2}+ (L ∗ 5).

Autocorrelation Function (ACF)

Features based on ACF take into consideration the dependencies
between the sequence features at each location. ACF-based
features are computed by taking into account the distribution
of amino acid properties along the sequence. In this study, ACF
features were computed based on all the 531 amino acid indices
available in AAindex database (Kawashima and Kanehisa, 2000).
With ACF feature encoding, each sequence was transformed
into a 531∗n-dimensional numeric feature vector, for nth order
autocorrelation. Here, we considered the 1st and 2nd order
autocorrelation only, because the number of features will increase
geometrically with increase in the order.

Support Vector Machine (SVM)
The SVM supervised learning technique (Cortes and Vapnik,
1995) has been extensively used in the area of computational
biology and bioinformatics (Chou and Cai, 2002; Chen and Lin,
2010; Lin and Ding, 2011; Xiao et al., 2012; Chen et al., 2013).
In the context of predicting HSPs, SVM has already been used
in earlier studies (Feng et al., 2013, 2014; Ahmad et al., 2015;
Zhang et al., 2015; Kumar et al., 2016). The kernel functions play
vital role as far as the predictive ability of SVM is concerned.
Using the kernel function, the input dataset is transformed into
a high-dimensional feature space in which the observations of
different classes are linearly separable by optimal separating
hyper plane. We also employed SVM for prediction purpose in
this study. Based on a sample dataset of 1,000 HSPs and 1,000
non-HSPs, all the four basic kernels (Linear, Polynomial, Radial,

and Sigmoid) with default parameters setting were initially used
to assess the prediction accuracy. Then, the model with the best
fitted kernel (having highest accuracy) was chosen and used in
the subsequent analysis. The svm function available in e1071
package (Dimitriadou et al., 2012) of R-software was used for
implementing SVMmodel.

Evaluating the Performance
Cross-validation is an essential tool in machine learning and
statistics. This procedure estimates the expected error of a
learning algorithm by running training and testing procedures
repeatedly on different partitions of the dataset (Geras and
Sutton, 2013). Here, five-fold cross-validation procedure was
adopted for evaluating the performance of the developed
approach. In this procedure, the dataset was partitioned into five
sets randomly, where in each set almost same number of HSPs
and non-HSPs were present. Four out of five sets were used to
train the prediction model and the remaining one set was used
for validation. Each set was used once for validation and thus
the whole process was repeated five times. The performance of
the method was measured by taking average over the five sets.
We considered the evaluationmetrics, viz., sensitivity, specificity,
accuracy, precision, andMatthew’s correlation coefficient (MCC)
to evaluate the performance of the proposed approach because
these measures have been widely accepted by researchers (Guo
et al., 2014; Lin et al., 2014; Liu B. et al., 2014, 2016; Jia
et al., 2016a,d; Liu et al., 2016; Meher et al., 2017) for assessing
the performance of statistical predictor. The above mentioned
performance metrics are defined as follows:

Sensitivity =
true positive (tp)

true positive (tp)+ false negative (fn)
;

Specificity =
true negative (tn)

tn+ false positive (fp)
;

Acccuracy =
tp+ tn

tp+ fn+ tn+ fp
;Precision =

tp

tp+ fp
;

MCC =
(tp× tn)− (fp× fn)

√

(tp+ fn)× (tp+ fp)× (tn+ fn)× (tn+ fp)
,

where tp, tn, fp, and fn represent the number of HSPs correctly
classified, non-HSPs correctly classified, non-HSPs misclassified
as HSPs and HSPs misclassified as non-HSPs, respectively. As
receiver operating characteristics (ROC) is also a widely used
measure (Baten et al., 2006), we further used area under ROC
curve (AUC-ROC) (Fawcett, 2006; Davis and Goadrich, 2013)
to evaluate the prediction accuracy of the proposed approach.
Furthermore, ROC is independent of class distribution and
precision-recall is a better measure over ROC under imbalanced
situation. Thus, areas under precision-recall curve (AUC-PR)
were used for comparing the performance of the developed
approach with the existing methods.

Comparison with Existing Methods
PredHSP is the only tool available in literature for classification
of HSP and non-HSP proteins. Thus, comparison was made
between the performances of PredHSP and the proposed
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approach by using two independent datasets. The first
independent dataset contains 96 human HSPs collected
from HUGO Gene Nomenclature Committee (HGNC) database
and the second dataset comprises of 55 rice HSPs, where 31 HSPs
(14 HSP20, 4 HSP60, 7 HSP70, 3 HSP90, and 3 HSP100) were
obtained from Wang et al. (2014) and 24 HSP70 were obtained
from Sarkar et al. (2013). We used these datasets to compare
our developed approach with the PredHSP, as the same datasets
have been used to evaluate the performance of PredHSP. Besides,
we have also prepared a non-HSP dataset consisting of 5,000
sequences that were randomly drawn fromUniProt (http://www.
uniprot.org/), where none of the sequences has >40% pair-wise
sequence identity to any other sequences in the dataset. We
constructed this independent negative dataset to evaluate the
performance of the PredHSP as well as to compare with that of
proposed approach, because the PredHSP has not been evaluated
with any independent negative dataset. Further, the classification
accuracy of the developed approach was compared against the
existing methods viz., PredHSP, iHSP-PseRAAAC, and Ahmad
et al. (2015) approach with respect to classification of different
families of HSPs. The performances were compared using 354
HSP20, 1,257 HSP40, 159 HSP60, 278 HSP70, 52 HSP90, and 81
HSP100 sequences, because the same datasets have been used
to evaluate the performance of PredHSP, iHSP-PseRAAAC, and
Ahmad et al. (2015) approach for classifying different families
of HSPs. For classification among different families of HSPs,
LOOCV technique was employed to assess the performances.

Prediction of DnaJ Protein Types
Besides classifying different families of HSPs, classifications were
also made among four different types of J-proteins (Type-1,
Type-II, Type-III, and Type-IV). The sequences of J-proteins
were obtained from an earlier study (Feng et al., 2014), accessible
at http://lin.uestc.edu.cn/server/JPred/data. These J-proteins
datasets, which were originally derived from HSPIR database,
were prepared after removing the sequences with non-standard
residues as well as the sequences having>40% pair-wise sequence
identities. The constructed dataset comprises of 63 Type-I, 53
Type-II, 1,107 Type-III, and 22 Type-IV sequences. Since the
number of sequences are small in different types (except Type
III), LOOCV was adopted for assessing the performance. These
datasets have been used to evaluate the performances of JPred
and JPPRED, for classification of four types of DnaJ proteins.
Therefore, we have also used the same datasets to evaluate the
proposed computational approach as well as to compare with
the above mentioned approaches. As the datasets are highly
imbalanced, AUC-PR was also used along with the other metrics
for comparing the performances.

Performance Evaluation with Interpro
Dataset
Since, the positive independent datasets used to evaluate the
performances of PredHSP and the proposed approach are very
small (96 human HSPs and 55 rice HSPs, as mentioned in section
Comparison with Existing Methods), the predictive abilities of
the developed computational method and PredHSP were also
assessed using HSPs of different families, which were collected

from InterPro database (https://www.ebi.ac.uk/interpro/). The
number of sequences in different families/domains, obtained
after removing the non-standard amino acids, are provided in
Table 2. We did not consider HSP100 because no match was
found for the keyword HSP100 in InterPro.

Proteome-Wide Identification
The proposed approach was also employed for proteome-wide
identification of HSPs and their families. Since HSPs are
present in all the three domains of life, we considered eight
different proteomes belonging to archaea (Methanothermobacter
thermautotrophicus), prokaryotes (Mycobacterium tuberculosis
and Escherichia coli), and eukaryotes (Arabidopsis thaliana,
Saccharomyces cerevisiae, Drosophila melanogaster, Oryza
sativa, and Caenorhabditis elegans). The total number of
proteins collected are 1,857, 4,187, 3,873, 6,479, 30,036,
37,228, 25,878, 20,249 for M. thermautotrophicus, E. coli,
M. tuberculosis, S. cerevisiae, A. thaliana, O. sativa, C. elegans,
and D. melanogaster, respectively.

Development of Prediction Server
To augment the practical applicability of the developed approach
as well as to make use of the proposed approach convenient
for the experimental scientists, a web server was also designed
and hosted for the prediction of HSPs, their families and sub-
types of DnaJ proteins. The server was developed using hypertext
mark-up language (HTML) and hypertext pre-processor (PHP),
where an in-house R-script was executed in the backend upon
submitting protein sequences in single letter code format. The
user can submit one or more protein sequences in FASTA format
where each sequence should contain only standard amino acid
residues.

RESULTS

Analysis of Kernels and Features
Based on the sample dataset of 1,000 HSPs and 1,000 non-
HSPs, performance metrics for different combinations of GPC
features (computed by taking average over five-folds) for all the
four kernels are shown in Figure 1A. With some exceptions in
sensitivity, it is observed that the performance metrics for the
radial basis function (RBF) kernel are higher than that of other
kernels. It is further observed that the performance metrics are
higher for the combined 0-, 1-, 2-, and 3-gap amino acid pair
features (GPC-0123), irrespective of the kernels used. From ROC

TABLE 2 | Number of HSP sequences collected from InterPro, corresponding to

different HSP families.

HSP family InterPro ID Description #Sequence

HSP 20 IPR031107 Small heat shock protein family 12,642

HSP 40 IPR001305 Heat shock protein DnaJ, Cysteine

rich domain

22,900

HSP 60 IPR001844 Chaperonin Cpn60 18,801

HSP 70 IPR012725 Chaperone DnaK 14,366

HSP 90 IPR001404 Heat shock protein HSP90 family 15,233
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curves of different features (Figure 1B), it is also seen that the
area covered under ROC curve of GPC-0123 feature is higher
than that of other feature sets i.e., PAAC, CTD, ACF of 1st

order (ACF-1), and ACF of 2nd order (ACF-2). In addition,
sensitivity, specificity, accuracy, andMCC are also observed to be
higher for the GPC-0123 feature set (Figure 1C). Furthermore, it
can be observed that the performance metrics under GPC-0123
feature set are much higher than that of DPC feature i.e., GPC-0
(Figure 1A), which is adopted in PredHSP for the prediction of
HSPs and their families.

Feature Selection Analysis
Although the prediction accuracies are observed to be higher
for GPC-0123 feature set (Figure 1), the number of features in
GPC-0123 are large (1,600) and prediction analysis by using
such a large number of features may take longer time. Thus,
we employed five different feature selection techniques viz.,
F-measure (FM) (Golub et al., 1999), Information gain (IG)
(Alhaj et al., 2016), LASSO (Tibshirani, 1996), Random Forest
(Breiman, 2001), and SVM (Cortes and Vapnik, 1995) to select
important features. The criteria for selecting important features
under each technique are provided in Data Sheet 1. Since 484
features are observed with non-zero coefficients under LASSO,
same number of features are also selected under other techniques.
Among 484 selected features, it is observed that most of the
features selected under IG and FM are among those selected
through other three selection techniques (Figure 2A). On the
contrary, large number of features selected under SVM and
LASSO are not among the features selected through other three
techniques. Based on the selected features under each technique,
performance of SVM was also assessed using the sample dataset
of 1,000 HSPs and 1,000 non-HSPs. Except specificity and
precision, higher values of performance metrics are observed
under 484 RF-based selected features (Figure 2B). Thus, the 484
RF-based selected features are considered in subsequent analysis.

Cross Validation Analysis
Using 484 RF-based selected features, prediction was made for
2,180 HSPs and 2,180 non-HSPs that were randomly drawn from
2,181HSPs and 9,965 non-HSPs, respectively.Moreover, to assess
the consistency of the proposed approach, prediction was made
over 100 such samples (where each sample consists of 2,180
HSPs and 2,180 non-HSPs) that were randomly drawn from the
available HSP and non-HSP sequences. Using the same datasets,
performance of PredHSP (DPC as features and SVM as classifier)
was also evaluated. Performance metrics averaged over five-folds
as well as 100 sample sets are given in Table 3. From the table, it
is observed that the specificities are higher than the sensitivities.
The proposed approach achieved ∼84% overall accuracy, which
is 2% higher than that of PredHSP (∼82%). In terms of all
the performance metrics, proposed approach is also observed
to achieve higher accuracy than that of PredHSP. Except MCC,
values of other performance metrics for the proposed approach
are observed >80%. On the other hand, except specificity and
precision, values of other performance metrics are <80% for
PredHSP. Besides, the performance metrics of the proposed

approach are also seen to be more stable (less standard error) as
compared to that of PredHSP.

Family-Wise Performance Analysis
Based on the 484 selected features, classifications were further
made among different families of HSPs by following LOOCV
technique. The values of different performance metrics are given
in Table 4. Overall accuracies of >96% are observed for all the
HSP families. It is also observed that the sensitivity, specificity
andMCC are higher for HSP40 as compared to the other families
of HSPs, and this may be due to the large number of sequences
in HSP40 that lead to a well fitted prediction model. On the
other hand, it is seen that the performance metrics (sensitivity,
precision, MCC) are low for HSP60, and this may be due to the
larger variability in the sequence length as compared to other
families (Figure 2C) as well as the number of sequences in that
family is 159 by which the model was not fitted well. Similarly,
the sensitivity for HSP90 is also low (75%), and the possible
reason for this may be that the number of sequences is less
(52). Since the datasets were highly imbalanced, specificities are
observed to be higher than the sensitivity. In terms of AUC-ROC
and AUC-PR, accuracies are observed to be higher for HSP100
followed by HSP40 and HSP20. On the other hand, lowest values
of AUC-ROC and AUC-PR are seen for HSP90 (Table 4).

Comparative Analysis of Family-Wise
Prediction
The performances of the developed approach, PredHSP and
iHSP-PseRAAAC were compared in respect of classification of
families of HSPs. Since family-wise accuracy is not available for
Ahmad et al. (2015) approach, weighted average accuracies were
also compared. Family-wise accuracies are shown in Figure 3A,
and the weighted average accuracies are shown in Figure 3B.
Higher values of sensitivities are observed for the proposed
approach in case of HSP 20, HSP40, HSP90, and HSP100 whereas
it is seen to be higher for PredHSP in other two families
(Figure 3A). However, in terms of sensitivities, the developed
approach outperformed iHSP-PseRAAAC for classification of
all the HSP families (Figure 3A). Though, specificities for all
the three approaches are observed at par (∼97%) for HSP20,
these are observed to be higher for the proposed approach
in rest of the five families of HSPs. Except HSP40, MCC of
the proposed computational method is also seen to be higher
than that of both PredHSP and iHSP-PseRAAAC in rest of
the families. Furthermore, average performance metrics of the
proposed approach are not only seen to be higher than that of
Ahmad et al. (2015) approach, but also over PredHSP and iHSP-
PseRAAAC (Figure 3B). Since, datasets are highly imbalanced,
values of AUC-PR are also computed. It is observed that except
for HSP60, values of AUC-PR for the proposed approach are
higher than that of PredHSP and iHSP-PseRAAAC in respect of
classifying other families of HSPs (Table 5). Further, it is seen that
except for HSP20, PredHSP outperformed iHSP-PseRAAAC in
terms of AUC-PR measure (Table 5). Also, it is observed that the
value of AUC-PR is lowest for prediction of HSP90 and highest
for the prediction of HSP100.
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FIGURE 1 | (A) Performance metrics of SVM for four different kernels, under different combinations of 0-, 1-, 2-, and 3-spaced base pair features. (B) ROC curves for

SVM with RBF kernel, under different feature sets i.e., ACF-1, ACF-2, CTD, GPC-0123, and PAAC. (C) Values of different performance metrics for SVM with RBF

kernel under different feature sets. It can be seen that the values of performance metrics for SVM with RBF kernel under GPC-0123 feature set are higher than that of

other feature sets.
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FIGURE 2 | (A) Venn diagram of the selected 484 features under each feature selection technique. It can be seen that a large number of features selected under

LASSO and SVM are not common to the features selected under other techniques. On the other hand, most of the features selected through F-measure and

Information gain are among those selected under other three techniques. (B) Performance metrics for SVM with RBF kernel with 484 selected GPC-0123 features

under each feature selection technique. It can be observed that values of performance metrics are higher for RF-based selected 484 GPC-0123 features.

(C) Distribution of length of sequences for each family of HSPs.

Performance Analysis Using Independent
Dataset
By using 2,181 HSPs and 2,181 non-HSPs (randomly drawn from
available non-HSPs) as training dataset, prediction was made for
the independent dataset consisting of 96 human and 55 riceHSPs.
In human, 85 are correctly predicted by both the approaches

whereas in rice 54 and 53 HSPs are correctly predicted by the
proposed approach and PredHSP, respectively (Table 6). Further,

out of 96 human HSPs, 84 and 83 are correctly predicted into

their corresponding families, whereas in rice 53 and 52 HSPs
are correctly predicted into their corresponding families by the
proposed approach and PredHSP, respectively (Table 6). Besides
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TABLE 3 | Performance metrics for the proposed approach with respect to classification of HSP and non-HSP sequences.

Method Sensitivity Specificity Accuracy Precision MCC AUC-ROC AUC-PR

Proposed 0.8262 (±0.0049) 0.8578 (±0.0047) 0.8420 (±0.0037) 0.8532 (±0.0043) 0.6844 (±0.0074) 0.8401 (±0.0046) 0.8567 (±0.0041)

PredHSP 0.7788 (±0.0052) 0.8190 (±0.0051) 0.7989 (±0.0041) 0.8114 (±0.0046) 0.5983 (±0.0080) 0.7558 (±0.0063) 0.7712 (±0.0071)

Value inside bracket indicates standard error.

TABLE 4 | Performance metrics for the proposed approach with regard to classification of different families of HSPs.

HSP family Sensitivity Specificity Accuracy Precision MCC AUC-ROC AUC-PR

HSP20 0.9463 0.9661 0.9628 0.8438 0.8718 0.9835 0.4860

HSP40 0.9745 0.9513 0.9647 0.9645 0.9276 0.9868 0.4884

HSP60 0.6792 0.9886 0.9661 0.8244 0.7307 0.9480 0.4516

HSP70 0.8849 0.9884 0.9752 0.9179 0.8871 0.9547 0.4633

HSP90 0.7500 0.9976 0.9917 0.8863 0.8112 0.8942 0.4277

HSP100 0.8889 0.9957 0.9917 0.8889 0.8846 0.9937 0.4935

independent set of HSPs, performances were also evaluated
with an independent negative dataset containing 5,000 non-HSP
sequences (as mentioned in “material and method” section).
It is observed that the number of false positives predicted by
PredHSP (1,398) are higher than that of proposed approach
(810), where 560 predicted HSPs by the proposed approach are
among the 1,398 of PredHSP (Figure 3C). So, it can be said that
the proposed approach and PredHSP may be equally efficient in
detecting the true positives, but number of false positives will be
lesser for the proposed approach as compared to PredHSP.

Performance Analysis Using Interpro
Dataset
The same training dataset (2,181 HSPs and 2,181 non-HSPs)
mentioned in the previous section was used for prediction of HSP
sequences collected from InterPro. The sequences of the InterPro
were also not present in the training dataset. Number of HSPs
predicted into different families by the proposed approach (ir-
HSP) and PredHSP are shown in Figure 4. It can be seen that the
number of correctly predicted HSP20 (9,960), HSP40 (18,721),
and HSP60 (17,313) by ir-HSP are higher than the correctly
predictedHSP20 (6,976), HSP40 (18,347), andHSP60 (16,833) by
PredHSP. On the contrary, number of correctly predicted HSP90
(12,408) by PredHSP are higher as compared to the number of
HSP90 (11,453) correctly predicted by ir-HSP. Furthermore, it
is observed that the total number of correctly identified HSPs
by ir-HSP is higher than that of PredHSP. Specifically, out of
83,942 InterPro HSPs, number of correctly identified HSPs by ir-
HSP and PredHSP are 74,383 and 72,622, respectively. Besides,
almost all the HSP70 are seen to be correctly identified by both
the methods.

Prediction Analysis of DnaJ Proteins
Accuracies in predicting the DnaJ proteins by the proposed
approach, JPred and JPPRED are given in Table 7. Both
sensitivity and specificity of the developed approach are observed
to be higher than that of JPred, for all the four types of

J-Proteins. Though the sensitivities of JPPRED are seen to
be higher, specificities are observed to be less than that of
other two approaches. It is further observed that the sensitivity
and specificity are more balanced in JPPRED as compared to
the other two methods, and this may be due to the use of
balanced dataset (number of observations in all the classes
are almost same) in JPPRED that is obtained by employing
synthetic minority over-sampling technique (SMOTE; Chawla
et al., 2002). On the other hand, values of specificity for the
proposed approach and JPred are observed to be higher than
that of sensitivity due to imbalanced-ness (number of instances
in Type-III is much higher than that of other classes). It is further
observed that the overall accuracy (proportion of correctly
predicted proteins for all the classes) of the proposed approach
(94.7%) is at par with that of JPred (94.06%) but much higher
than that of JPPRED (86.23%). Further, the proposed approach
is observed to outperform JPred in terms of AUC-PR, as far as
the classifications of four types of DnaJ proteins are concerned
(Table 7).We have also tabulated all the methods along with their
features that have been used for prediction of HSPs in earlier
studies and the same is provided as Table S1 inData Sheet 1.

Analysis of Proteome-Wide Prediction of
HSPs
The total number of HSPs predicted in each species, number
of predicted HSPs annotated with InterPro and number of
predicted HSPs annotated with HSP domains/families are shown
in Figure 5A, and family-wise annotation of predicted HSPs are
shown in Figure 5B. The proposed approach predicted 318 HSPs
in M. thermautotrophicus, 362 in E. coli, 581 in M. tuberculosis,
795 in S. cerevisiae, 4,112 in A. thaliana, 6,648 in O. sativa, 3,420
in C. elegans, and 2,067 in D. melanogaster. It is seen that the
percentage of HSPs are higher in both plant species (A. thaliana
and O. sativa) than in other organisms. This could be due to
the extra biotic and abiotic stress the plants tolerate due to
their immobile nature (Al-Whaibi, 2011; Park and Seo, 2015).
Further, highest number of HSPs are predicted with HSP40
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FIGURE 3 | (A) Bar diagrams of performance metrics for the proposed approach, PredHSP and iHSP-PseRAAAC with respect to classification of different families of

HSPs. With some exceptions (sensitivity in HSP60 and HSP70; MCC in HSP40), proposed approach is seen to achieve higher accuracy than that of other two

approaches. (B) Bar diagrams of weighted accuracies for the above mentioned three approaches along with the Ahmad et al. (2015) approach. It can be seen that

the weighted accuracies are higher for the proposed approach followed by PredHSP. (C) Venn diagram showing the number of HSPs predicted common (i.e., 560) to

the proposed approach and PredHSP, for the negative dataset of 5,000 protein sequences.

followed by HSP70 and HSP20 whereas lowest number of HSPs
are predicted with HSP90 (Figure 5B). In particular,>50% HSPs
are predicted with HSP40 and <1% are predicted with HSP90.

Out of total HSPs annotated with InterPro, ∼50% of them are
found to be annotated with HSP families/domains in each species
(Figure 5A).
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TABLE 5 | Values of AUC-PR for classification of different families of HSP, by the

proposed approach and two other existing approaches.

HSP family Proposed PredHSP iHSP-PseRAAAC

HSP20 0.4860 0.4418 0.4640

HSP40 0.4884 0.4703 0.4498

HSP60 0.4516 0.4629 0.4307

HSP70 0.4633 0.4419 0.4371

HSP90 0.4277 0.4101 0.3933

HSP100 0.4935 0.4880 0.4635

TABLE 6 | Number of observed and correctly predicted HSPs by the proposed

approach and PredHSP for the independent dataset of 96 human and 55 rice

HSPs.

Dataset HSP family Observed Predicted_family-wise

PredHSP Proposed

HGNC HSP20 11 8 (2 non-HSP,

1 HSP40)

9 (2 non-HSP)

HSP40 49 45 (4 non-HSP) 45 (4 non-HSP)

HSP60 15 9 (5 non-HSP,

1 HSP70)

10 (4 non-HSPs,

1 HSP100)

HSP70 17 17 17

HSP90 4 4 3 (1 non-HSP)

RICE HSP20w 14 12 (2 non-HSP) 13 (1 non-HSP)

HSP60w 4 4 4

HSP70w 7 7 7

HSP90w 3 3 3

HSP100w 3 3 3

HSP70s 24 23 (1 HSP20) 23 (1 HSP20)

wWang et al. (2014) datset sSarkar et al. (2013).

Performance Analysis Using Blast
Algorithms
To assess the performance using homology-based method, the
most widely used Basic Local Alignment Search Tool (BLAST;
Altschul et al., 1990) of NCBI was opted. Two different
versions of protein blast i.e., Blastp and Delta-Blast with three
different e-values i.e., 0.1, 0.01, and 0.001 were used for this
purpose. Moreover, the classification of HSPs and non-HSP was
made using 2,181 HSPs and 2,181 non-HSPs (as mentioned
in section Performance Analysis using Independent Dataset)
and performance was assessed through five-fold cross validation
technique. For cross validation, the offline version of Blast
software was installed in a local server, where Blastp and
Delta-Blast algorithms were executed. In each fold of the cross
validation, the training dataset was used as the database and the
corresponding test set was used as query. Each query sequence
was predicted as the HSP or non-HSP category based on the top
hit found in the blast search. From the analysis it is seen that
though the number of false positives are much less, no hits are
found for many of the true positives. In particular, no hits are
found for ∼23, ∼25, and ∼26% of true HSPs with e-values i.e.,
0.1, 0.01, and 0.001, respectively, in both Blastp and Delta-Blast.
Thus, by using homology-based method there is a probability of
losing information on true positives.

FIGURE 4 | Pie charts showing the number of correctly predicted HSP by

ir-HSP (proposed approach) and PredHSP, for different families of HSPs

collected from InterPro database. In case of HSP20, HSP40, HSP60, number

of correctly predicted HSPs by ir-HSP are higher than that of PredHSP,

whereas in HSP90 PredHSP performed better than ir-HSP. Almost all the

HSPs are correctly predicted by both the approaches for HSP70.

Online Prediction Server: ir-HSP
A web server named as “ir-HSP” has been established and hosted
at http://cabgrid.res.in:8080/ir-hsp to facilitate the prediction of
HSPs up to the level of families and sub-types.
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TABLE 7 | Performance metrics for the proposed approach, JPPRED and JPred

with regard to classification of four types of DnaJ proteins.

Method J-Protein Sensitivity Specificity Overall

accuracy

AUC-ROC AUC-PR

Proposed Type I 0.762 0.989 94.7 0.951 0.452

Type II 0.547 0.990 0.853 0.374

Type III 0.984 0.725 0.852 0.303

Type IV 0.591 0.987 0.823 0.381

JPPRED* Type I 0.921 0.859 86.23 – –

Type II 0.782 0.866

Type III 0.861 0.877

Type IV 1 0.86

JPred Type I 0.746 0.988 94.06 0.943 0.442

Type II 0.491 0.991 0.824 0.353

Type III 0.986 0.62 0.851 0.277

Type IV 0.381 1 0.801 0.375

*No source code or tool is available for running JPPRED. Besides, a combination of

different features has been used in JPPRED which is not clear from the manuscript, and

that is why the results could not be reproduced. Thus, we could not able to compute

AUC-ROC and AUC-PR for JPPRED. The sensitivity, specificity and overall accuracy of

JPPRED reported in the table are taken from the corresponding publication.

For user guidance with regard to input-output, execution and
interpretation of results, a help page has been provided in the
main menu. The SVM architecture for predicting HSPs, their
families and subtypes of DnaJ proteins by ir-HSP is explained
through a flow diagram (Figure 6). The results are displayed in
a tabular format with four columns. The first to fourth columns,
respectively, represent the serial number, sequence identifier,
types of predicted HSP (with sub-type of DnaJ, if predicted
as HSP40) or non-HSP, and probabilities with which they are
predicted in the respective classes. For reproducible research,
links to download the datasets used to train the prediction server
and other datasets used in this study are also provided at http://
cabgrid.res.in:8080/ir-hsp/dataset.html.

DISCUSSION

The discovery of heat shock response by Ritossa (1962) in the
salivary gland of drosophila larvae and subsequent recognition
of HSPs have laid down the foundation for expanding research
on HSPs (Tissieres et al., 1974; Morana et al., 1978). As
molecular chaperones, HSPs are vital bio-molecules that play
pivotal role in maintaining the structure of the cytoplasm in
eukaryotes and safeguarding life against proteotoxic stress (Pratt
and Toft, 1997; Csermely et al., 1998). Further, the broad
range of functions of HSPs makes them an attractive target
for pharmacological interventions. It is also believed that the
diversity present in different families of HSP makes the plants
to tolerate different biotic and abiotic stresses. Specifically, till
date, 52 plant species including maize, soybean, cotton, potato
have been genetically modified for heat stress tolerance (Al-
Whaibi, 2011). Due to diversified nature of HSPs and wide
range of functions, development of an automated method
for timely and reliably predicting HSPs and their families is

indispensable in the area of proteomics research (Feng et al.,
2013). Keeping this in view, this study presents an automated
system for identification of HSPs, their families and sub-types
of DnaJ proteins in a single frame work as well as with higher
accuracy.

In the proposed approach, the GPC features were used as
input for prediction by employing SVM predictor. The accuracy
under GPC feature set was found higher than that of DPC feature
set used in PredHSP, which resembles with the finding of Brinda
et al. (2015). Though it is true that the number of features in GPC-
0123 feature set were higher than that of other feature sets, this
may not be the only reason for getting higher accuracy because
the number of features in ACF-2 were also higher than that
of CTD but the accuracies were still lower than that of CTD
feature set. Instead of using imbalanced dataset, performance
of the proposed approach was assessed using balanced dataset
to avoid biasness toward the major class (Chou, 2013; Chen
et al., 2015). Moreover to assess the consistency with different
non-HSP sequences, performance of the proposed approach
was assessed over 100 sample sets, which seems to be more
logical as compared to that of using one sample set in PredHSP
(Kumar et al., 2016).

The DPC of standard amino acids was first used by Ahmad
et al. (2015) for classification of six different families of HSPs,
which was later adopted in PredHSP. This may be the possible
reason that the overall sensitivity, specificity, accuracy and MCC
were found to be approximately same for PredHSP and Ahmad
et al. (2015) approach (Figure 3B). Though DPC feature set was
initially used in iHSP-PseRAAAC, it was based on the reduced
amino acid alphabet (Etchebest et al., 2007). However, GPC
features were first time used in this study, and the accuracies
under this feature set were found higher than that of PredHSP,
iHSP-PseRAAAC, and Ahmad et al. (2015) approach with respect
to classification of six different families of HSPs (Figure 3B).
On the other hand, accuracy was found to be lowest for iHSP-
PseRAAAC and this may be due to the use of reduced amino
acid alphabet by which the variability present in the dataset
was not captured well by the prediction model. In respect of
predicting four types of DnaJ proteins, the proposed approach
achieved high accuracy than that of JPred. Though the JPPRED
achieved higher accuracy in terms of sensitivity, the developed
approach outperformed JPPRED in terms of overall accuracy.
Moreover, no computational tool is available for JPPRED to
predict DnaJ proteins, which further limits its application
with real-world protein sequence data. However, number of
features used in JPPRED (224) is almost half of those used in
the proposed approach (484) and JPpred (512). Nevertheless,
it can be said that the proposed approach will supplement
the existing approaches in predicting the four types of DnaJ
proteins.

With the independent datasets of 96 human HSPs and
55 rice HSPs, almost same number of HSPs were correctly
predicted into their corresponding families by both the proposed
approach and PredHSP. However, the number of false positives
were found higher for PredHSP as compared to the proposed
approach. Furthermore, based on the InterPro dataset of HSP
families/domain, the proposed approach was found to achieve
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FIGURE 5 | (A) Proteome-wide prediction of HSPs for eight different species, by using the proposed approach. It can be seen that ∼50% of the predicted HSPs are

annotated with InterPro HSP family/domain. (B) Family-wise distribution of predicted HSPs, where it is seen that >50% HSPs are predicted with HSP40 and <1%

with HSP90.

higher accuracies for HSP20, HSP40, and HSP60 than that
of PredHSP. On the other hand, PredHSP performed better
than the proposed approach for HSP90. In case of HSP70,
almost all the sequences were correctly predicted by both
the methods and this may be due to the fact that Hsp70
proteins are highly conserved. In particular, HSP70 contains
a conserved peptide binding domain, an ATPase domain, a
region at the middle having protease sensitive sites and a C-
terminal region enriched with G/P amino acids that enable the
proteins to bind with co-chaperones and other HSPs (Hartl,
1996; Tavaria et al., 1996; Bukau et al., 2006; Daugaard et al.,
2007).

The performance of the proposed approach was further
assessed at proteome level by using 8 different proteome datasets.
Though, most of the predicted HSP sequences were annotated
with InterPro domain,∼50% of themwere found to be annotated
with HSP domains/families in each species. Further, most of
them were found to be annotated with HSP40 followed by
HSP20. In particular, number of predicted HSP40s were found
to be higher for eukaryotes that resembles with earlier study
(Wacker and Muchowski, 2006). Since ∼50% of predicted HSPs
were found to be annotated with HSP domains/families, the
developed computational method is expected to supplement the
existing approaches for sequence annotation at proteome level.
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FIGURE 6 | Flow diagram showing the step-wise working procedure of the developed prediction server ir-HSP.

The developed prediction server ir-HSP will be of great help for
the experimental scientists to get the required results without
going into mathematical details.
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