
Volume 2, Number 1 (2011)

IR MOTION TRACKING AS A STANDARD
INPUT DEVICE
Michael Cimolini
Department of Computing Science, University of Alberta

M. Cimolini / Eureka 2 (2011)

24

Abstract
As our computing needs change and the availability of advanced input systems begin to increase we find that we are coming to the point
where current interfaces are beginning to become outdated. Touch interfaces are becoming abundant, but there is only so much that
one can do with a 2D input. This project tries to show that there is a potential for IR based interface systems to replace standard mouse
input in current as well as future interfaces. Our results show that both the accuracy and robustness of the IR system designed herein
are equivalent to that of standard mouse input.

 Introduction
As the pricing of IR based tracking systems decrease,

we find that they are now beginning to become affordable
for consumer use. As the programs we use become more
complex and our requirements from our systems increase
we are starting to see a shift away from conventional mouse
and keyboard input towards new input systems such as
touch systems and motion tracking. In this experiment we
look at the accuracy, robustness, and ease of use of an
IR based tracking system for use as an input device. We
compare the use of the IR system versus the mouse in
two tests, the first with a program designed specifically for
these tests, and the second with just the use of the standard
Windows environment. The goals of these experiments are
to show that an IR system could potentially replace mouse
input in future interfaces and to show that the IR systems
show the same reliability and accuracy as a standard
mouse.

Related Work
There has been some work in this field, but as far as

I have been able to determine there has been no work
specifically using an IR tracking system to track rigid
bodies, or work to determine how close in accuracy the
IR system and mouse are. Work by Vlasic et. al. [3] has
shown the use of a motion capture system for everyday
use that shows a high degree of accuracy and reliability.
This system uses ultrasonic sensors in combination
with accelerometers to track motion. The novelty of this
approach is that the ultrasonic sensors track the position
of the accelerometers, giving them a reference frame and
helping correct for drift. Jacanovic and MacKenzie [1]
created a system using optical tracking to control mouse
cursor movement. This system is similar in design to the
IR desktop application in this experiment, however, it uses
a printed marker which is tracked by a camera to control
the system based on head position. Takase and Sawada
[2] developed a system similar to the 3D brick breaker
application of this experiment; however they used optical
tracking to track a finger and hand as the control device
for their system, instead of the IR based tracking of this
experiment.

System Design
IR System

The IR tracking system used for these experiments

was the natural point OptiTrack system using their Arena
software system. This system uses six infrared cameras
to track IR reflective markers. For this experiment all six
cameras were calibrated and used, with a calibration area
of approximately 2m x 3m x 2.5m. This calibration was
completed using the inbuilt calibration tools in Arena. For
the tracked object, three reflective markers were used.
These markers were arranged on the supplied rigid body
marker in a triangle pattern. This marker array was then
attached to the back of a wrist brace so as to be worn on
the right hand with the markers on the back of the hand.
The Arena system software was used for motion tracking,
with the streaming settings active. Only rigid body data
was streamed which, for this experiment, meant that only
data from the markers which were used to track the users
hand were transmitted over the network.

Network Application
As Arena streams data through a network as a server, a

client application was needed to capture and use this data.
To this extent natural point created the NatNet SDK. This
is a software development kit designed specifically to build
client and server programs for use with the OptiTrack. The
SDK is written for use in a C or C++ developing environment.
For this experiment the SDK was used to create a client
which would capture and interpret the data from Arena.
This client was programmed in C++. The client program
consists of two parts. The first interacts with the server,
receiving data in a secure and reliable way through the
use of inbuilt function in the NatNet SDK. The second part
interprets this data from the Arena co-ordinates into screen
co-ordinates. This data is then passed along to the user
interactive program through either a socket connection as
in the case of the 3D brick breaker game, or directly as in
the case of the IR desktop application.

3D Brick Breaker
This was the first of the two applications designed for the

IR motion capture system. This application is very similar to
the application developed by Takase and Sawada [2]. The
premise and design for the game itself has been around
for many years and is an adaptation of the original pong
style games. The object of the game is to destroy all of the
blocks while keeping the ball in the playing area. The game
itself is programmed in Vizard, which is a development
environment and extension for the Python programming

M. Cimolini / Eureka 2 (2011)

25

language. As such this application was connected to
the network application through the use of the Windows
socket API so that data could be passed from the network
application. The game uses the inbuilt physics and
collision detection systems inherent in the Vizard libraries
for physics simulation in game. The brick model, paddle
model, and world model used in the game were modeled
in 3DS Max and exported using a plug-in available on the
WorldViz website, WorldViz being the developer of Vizard.
These models were exported in the .DAE format for easy
importing into the Vizard environment. The ball model
used is a model that comes packaged with the Vizard
program as part of the Duck Court example. The game
itself consists of 72 randomly arranged blocks, with the
blocks location being static between runs. The blocks were
laid out in a way such that there was no overlap between
blocks. Two nearly identical instances of the game were
created, with the only difference between the two being the
control method. One system was designed to be controlled
with the IR tracking system and the other with the mouse.
Mouse movement was mapped natively to the paddle,
such that the movement of the mouse directly correlated to
the movement of the paddle. For the IR controlled system,
the mapping to paddle movement was much the same as
with the IR desktop application; that being with reaching
up mapping to upward movement of the paddle, down
to downward movement, left to leftward movement and
right to rightward movement. The sensitivity of the system
was calibrated for the IR such that a motion of 0.75m was
necessary to move from either the left to the right of the
screen, or from the top to the bottom. Score was calculated
as the number of blocks destroyed minus the number of
balls missed. A ball was considered missed when it had
traveled passed the paddle in the negative z-axis, with the
z-axis being perpendicular to the plane of the monitor.

IR Desktop
This was the second of two applications designed to

take advantage of the IR motion capture system. This
application is designed to control the mouse in a standard
windows environment. This application was written in
C++, again using the NatNet SDK. It uses the Windows
API to emulate mouse movement and mouse clicks. The
application receives data from Arena through the network
application. Movement of the mouse is controlled by
movement of the tracked rigid body in the x and y co-
ordinates of the screen, with the x-axis being measure
perpendicular to the standing user, and the y-axis being
measured parallel to the standing user, such that reaching
up would move the mouse cursor up, left moving the cursor
left, down moving the cursor down, and right moving the
cursor right. The z-axis was measured perpendicular to the
x and y-axis, with reaching forward, away from the user,
being the positive z-axis, and reaching behind being the
negative z-axis. The z-axis was used to recreate mouse
movements, with a movement of approximately 5cm in the
positive z-axis in a period of 0.5seconds performing a left
mouse click. For this experiment only left mouse clicks were
used, however it would be possible to simulate right mouse
clicks in a similar fashion. The sensitivity of the system was

calibrated such that it would require a movement of 0.5m to
move the cursor from the top of the screen to the bottom of
the screen, and a movement of 1m would move the cursor
from the left of the screen to the right of the screen.

Experiment
For the experiment, participants were randomly assigned

to complete one of the two experiments first and then,
after a 5 minute rest, were asked to complete the other
experiment. For all participants, except for in one case,
the same camera calibration results and rigid body marker
calibration were used. For the one exception, the tracking
volume had to be lowered as the height of the participant
caused the markers to be lost while reaching towards the
bottom of the screen. In total, twelve participants completed
the experiment, with ten completing the IR desktop portion
and the full twelve completing the 3D brick breaker
portion. Throughout the experiment users were monitored
for soreness or discomfort in their shoulders or arms, as
these are noted as being related to gorilla arm syndrome,
a common problem with interfaces requiring the arm to be
raised for extended periods of time. Users were also asked
to complete a survey at the end of the experiment rating
their ability to continue to use the system for extended
periods of time. This was used in a qualitative measure,
not a quantitative measure, as a general assessment to
determine the need for future experiments focusing on this
issue.

3D Brick Breaker
For this experiment two metrics were measured, these

being time and score. Time was measured from when
the first ball was launched to when the last brick was
destroyed. It was used as a gross estimate more so then a
solid metric as the time taken is variable based on the luck
of bouncing of the ball. Also the system was designed to
change the launch angle of the ball based on the position
of the mouse cursor, which may have had some effect
on time as well. Score was used to calculate the number
of errors that being the number of times the ball passed
off screen. This was calculated by subtracting the score
from seventy two, the total number of blocks in the game.
Participants were assigned to complete the game using
either the IR tracking system or the mouse input first and
then, after a three minute rest, were asked to complete the
game a second time using the other input device. Users
were assigned to these two groups in a pseudo random
fashion, with six users being placed in each group. Each
participant was given the same instruction at that start
of each game, that being the objective of the game and
the controls. Each participant was given two minutes to
become familiar with the mouse controls, or four minutes
with the IR controls. During the four minutes with the IR
controls, the users were asked to touch each of the four
corners of the play area to determine that the IR tracking
system was properly calibrated and that they would indeed
be able to reach the entire playing area. In cases where this
was not possible, the game was restarted to recalibrate the
tracking and position of the paddle. Due to a small glitch in
the physics engine of the game, from time to time the ball

M. Cimolini / Eureka 2 (2011)

26

would pass through the walls of the environment. When this
occurred, a new ball was launched by clicking the mouse.
This did not deduct points from the users score. During the
participants playing of the IR controlled game, the mouse
would be moved at random to adjust the position that the
next ball would be fired at to emulate the way in which the
ball would be fired in the mouse controlled game.

IR Desktop
For this experiment three metrics were measured, with

these being time, errors, and number of clicks. Time and
clicks were the major comparison for this experiment, with
these being directly related to the speed and ease of use
of the system. Time was measured from when the first
instruction was read, until the last instruction had been
completed. Number of clicks was recorded as the number
of times the left mouse button was clicked in the case of
the mouse, or as the number of forward presses made by
the participant in the case of the IR system. Errors were
measured as the number of times that the IR system lost
tracking during the runs; this was used as a measure of
robustness for the system. As with the first experiment,
users were again assigned to two groups, with each group
starting with one of the two control methods and then, after
a ten minute rest, being asked to complete the experiment
with the other input method. The reason for the extended
rest in this case was due to the users having to complete
the same set of tasks, so a ten minute time interval was
used to try to cause the participants to forget the tasks they
had completed in the first run. During this time period users
were given a tour of the lab in hopes of aiding in causing
them to forget the tasks they had completed. There were
seven tasks that the users were asked to complete, all
being standard Windows tasks. These tasks were read
to the participants in order, with each subsequent task
after the first only being read after the user had completed
the previous task. The tasks were as follows: open an
internet browser, open any bookmarked webpage, close
the internet browser, open Notepad, close Notepad, open
the Trashcan, and close the Trashcan. The point of these
tasks was to cause the participants to interact with the
largest screen area possible. To this extent the icon for
the Trashcan was placed in the bottom right corner of the
screen, and the icon for the internet browser was placed
in the top right. As the user needed to reach the top left
corner to close the internet browser, and the bottom left to
open notepad, all corners of the screen were explored. The
Notepad and Trashcan windows were set to open in the
middle of the screen, allowing for exploring of the middle
of the screen as well. For each trial, users were asked to
begin with the cursor centered in the middle of the screen,
such that the starting position would not be a confounding
effect on the experiment, as well as allowing for a more
thorough navigation of the centre of the screen. For both
runs of the experiment, the screen resolution was lowered
to 1440x900, with the experiment being run on a 22” 16:10
aspect screen.

Results
3D Brick Breaker

The statistics between the mouse and IR inputs were
compared for both time and errors for this experiment, with
the recorded results listed in Table I. of the appendix.

The mean time for the IR input was 04:21.7 minutes,
and 03:51.7 minutes for the mouse input. For these results,
we get a t-value of 1.306262 versus a t-critical value of
2.200985, with 11 degrees of freedom. This gives a p-value
of 0.218117, meaning that there is no statistical difference
between the times for the two input methods. A similar
comparison of the errors leads us to a mean of 10.16667
for the IR and 9.916667 for the mouse. For this comparison
we have a t-value of 0.166317 versus a t-critical value of
2.200985with 11 degrees of freedom. This gives a p-value
of 0.870925, meaning that there is no statistical difference
between the errors. For both of these measurements we
find that we are unable to reject the null hypothesis that
there is no difference between controlling this program
with the IR system or with the mouse.

IR Desktop
The statistics between the mouse and IR inputs were

compared for time, errors, and clicks for this experiment,
with the recorded results listed in Table II. of the appendix.

The mean time for the IR input was 01:23.5 minutes and
00:21.1 minutes for the mouse input. For these results,
we get a t-value of 6.722904 versus a t-critical value of
2.262157with 9 degrees of freedom. This leads to a p-value
of 8.63^-5, meaning that there is a statistical difference
between these means. For the clicks we get a mean of 32.8
for the IR input and 14.2 for the mouse input. This leads
to a t-value of 9.1194 versus a t-critical value of 2.262157
with 9 degrees of freedom. This leads to a p-value of
7.66^-6, meaning that there is a statistical difference in the
mean value of clicks for the two input methods. The third
statistic, errors, had a mean value of 0.6 for the IR input and
0 for the mouse input. This leads to a t-value of 2.25 versus
a t-critical value of 2.262157 with 9 degrees of freedom.
This leads to a p-value of 0.051003, meaning that there is
no statistical difference in the number of errors for the two
input methods, but it is close.

Conclusion
A number of conclusions can be drawn from this

experiment. The first is that when it comes to direct control
of the cursor, an IR system can be just as reliable and
accurate as a mouse. This is shown most notably in the
3D brick breaker experiment, where neither time needed
to complete the game, nor number of errors showed any
statistical difference for the two systems. This means that
our null hypothesis that the two systems are the same
holds true. As this experiment only showed differences in
the ability to control the cursor we see that the accuracy
of the two systems is highly comparable. The fact that
there was also shown to be no statistical difference in the
number of errors in the IR system versus the mouse in the
IR desktop experiment shows that an IR system can be just
as reliable as the mouse, even when used in a standard
Windows environment for which the mouse was designed

M. Cimolini / Eureka 2 (2011)

27

and optimized. From the IR desktop experiment we do,
however, see a statistical difference in both time and
number of clicks required. As we have noted previously that
accuracy was no different for the mouse and IR system,
we can attribute the difference in time to the clicking
performed in the IR desktop experiment. This is mainly due
to the design of the system. During the forward pressing
motion of the hand to perform clicks in with the IR system,
it was often noted to be the case that this would cause
the mouse pointer to move, causing the participant to miss
their intended target, leading to both an increase in clicks
and, as a result, time taken to complete the experiment.
Implications that can be drawn from these results are thus;
an IR system can be as accurate and reliable as a mouse,
though some conventions will need to be taken to augment
the IR system with a more robust and accurate method of
performing clicks than was presented in this research.

Future Work
3D Brick Breaker

Any future work on the 3D brick breaker game would
likely focus on depth perception. Through the trials it was
noted that participants had difficulty tracking the exact
location of the ball due to a lack of depth cues. Possible
improvements to this system would be the inclusion of
shadows for the ball, bricks, and paddle on all four walls
of the environment allowing the users eyes to track these
to determine relative depths. The other would be to modify
the program to work with a 3D display which would then
add depth perception to the program by the nature of the
display.

IR Desktop
Future work for this system would focus on finding a

better method to control clicking the left and right button.
Methods that have been noted thus far would be using
tracking of a second hand and having gestures from that
hand control clicking, while having the main hand control
movement. This would also allow for a form of multi touch,
as two points could then be tracked. A second idea would
be to add some sort of button system to the tracked hand
or as a separate device to allow for clicking with the buttons
of that device instead of through the use of gestures.

General Program
There is quite a bit that can be done as future work

with the system in general. The first would be to add more
tracking markers to the rigid body to increase the accuracy
of tracking and to decrease errors. The second would be
to look into possibilities to reduce the number of cameras
used in tracking to decrease the size of the system, as
well as decreasing the price. The third would be looking
into the design of other games for the system as there is
definitely some possibility for use of a system such as this
for physical rehabilitation.

References

[1] Javanovic, R., & MacKenzie, I. S., MarkerMouse: Mouse Cursor
control using a head-mounted marker. Proceedings of the 12th
International Conference on Computers Helping People With Special
Needs, ICCHP, 2010, pp.49-56. Berlin: Springer.

[2] Takase, H., & Sawada, H., Gestural interface and the intuitive
interaction with virtual objects. ICCAS-SICE, 2009, pp.3260-3263.

[3] Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M.,
Matusik, W., & Popović, J. (2007). Practical motion capture in
everyday surroundings. In International Conference on Computer
Graphics and Interactive Techniques (3rd ed., Vol. 26, Article 35).
San Diego, California: ACM SIGGRAPH.

Appendix

TABLE I.
3D Brick Breaker Results

TABLE II.
IR Desktop Results

Brick	 Breaker	
IR	 Mouse	

Time	 Score	 Bricks	 Left	 Errors	 First	 Time	 Score	 Bricks	 Left	 Errors	 First	
04:21.8	 59	 0	 13	 Y	 02:39.6	 67	 0	 5	 N	
06:32.2	 63	 0	 9	 Y	 03:06.3	 56	 0	 16	 N	
04:10.8	 60	 0	 12	 N	 04:27.6	 60	 0	 12	 Y	
05:30.9	 54	 0	 18	 N	 04:23.4	 61	 0	 11	 Y	
04:55.1	 61	 0	 11	 N	 03:33.3	 66	 0	 6	 Y	
04:22.2	 62	 0	 10	 Y	 05:31.7	 54	 0	 18	 N	
04:02.7	 64	 0	 8	 Y	 03:06.8	 64	 0	 8	 N	
04:03.4	 67	 0	 5	 Y	 03:04.8	 64	 0	 8	 N	
03:52.7	 65	 0	 7	 N	 03:55.2	 62	 0	 10	 Y	
03:56.7	 62	 0	 10	 N	 04:45.0	 63	 0	 9	 Y	
02:41.3	 68	 0	 4	 N	 03:25.3	 66	 0	 6	 Y	
03:51.1	 57	 0	 15	 Y	 04:20.8	 62	 0	 10	 N	

Windows	
IR	 Mouse	

Time	 Errors	 Clicks	 First	 Time	 Errors	 Clicks	 First	
01:18.7	 0	 37	 Y	 00:18.8	 0	 19	 N	
02:46.3	 2	 39	 N	 00:32.8	 0	 14	 Y	

01:06.0	 2	 29	 N	 00:22.3	 0	 12	 Y	

01:35.3	 1	 32	 Y	 00:15.6	 0	 13	 N	

00:54.8	 0	 22	 N	 00:19.8	 0	 15	 Y	

01:06.6	 0	 36	 N	 00:20.8	 0	 14	 Y	

01:19.5	 0	 31	 Y	 00:20.3	 0	 14	 N	

01:11.5	 1	 36	 Y	 00:17.7	 0	 13	 N	

00:52.6	 0	 24	 N	 00:16.7	 0	 14	 Y	

01:43.8	 0	 42	 Y	 00:25.9	 0	 14	 N	

