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Abstract—RGB-D sensors such as the Microsoft Kinect or
the Asus Xtion are inexpensive 3D sensors. A depth image is
computed by calculating the distortion of a known infrared
light (IR) pattern which is projected into the scene. While these
sensors are great devices they have some limitations. The distance
they can measure is limited and they suffer from reflection
problems on transparent, shiny, or very matte and absorbing
objects. If more than one RGB-D camera is used the IR patterns
interfere with each other. This results in a massive loss of depth
information. In this paper, we present a simple and powerful
method to overcome these problems. We propose a stereo RGB-
D camera system which uses the pros of RGB-D cameras and
combine them with the pros of stereo camera systems. The idea
is to utilize the IR images of each two sensors as a stereo pair to
generate a depth map. The IR patterns emitted by IR projectors
are exploited here to enhance the dense stereo matching even if
the observed objects or surfaces are texture-less or transparent.
The resulting disparity map is then fused with the depth map
offered by the RGB-D sensor to fill the regions and the holes that
appear because of interference, or due to transparent or reflective
objects. Our results show that the density of depth information
is increased especially for transparent, shiny or matte objects.

I. INTRODUCTION

The introduction of RGB-D cameras such as the Microsoft

Kinect or the Asus Xtion did not only influence consumer elec-

tronics, but also had an impact on several research disciplines

such as robotics research, image processing, game design,

and virtual reality applications [25, 14, 1, 15, 16]. RGB-D

cameras consist of an infrared (IR) projector which emits a

know pattern of structured IR light, an IR and an RGB camera.

The estimation of depth is based on an internal triangulation

process. The IR structured light source emits a constant pattern

of speckles projected onto the scene. This pattern is acquired

by the infrared camera and is correlated against a reference

pattern. The reference pattern is generated by capturing a plane

at a known distance from the Kinect sensor, and is stored

in the camera’s memory. When a speckle is projected on an

object whose distance to the sensor is smaller or larger than

that of the reference plane the position of the speckle in the

infrared image will be shifted in the direction of the baseline

between the IR projector and the projection centre of the IR

camera. These shifts are measured for all speckles by a simple

image correlation process to generate a disparity map. For each

pixel the distance to the sensor can then be retrieved from the

corresponding disparity pixel.

This revolutionized in some way the robotic and computer

vision research scene, as now a sensor producing dense 3D

point clouds in a reasonable quality is available at a price

below USD 200. While the sensor is a great device, it has

some restrictions: (1) it has a minimum range of about 80 cm

and a maximum range of up to 5 m; (2) it is frail when used

under real light conditions; and (3) it has problems to generate

depth information on certain surfaces. In particular, when the

observed surface is transparent, reflective or absorptive, the

measurement is quite bad. This is because the appearance of

projected speckles on such surfaces depend not only on their

distances to the sensor, but also on multiple factors including

viewpoints. Another problem occurs, when two or multiple

RGB-D cameras work with overlapping views at the same

time, because each sensor will see its own IR light pattern as

well as the patterns of the other IR projectors and then will be

unable to distinguish its own pattern. While some solutions to

the latter problem have been proposed (e.g. in [16]) they do

not solve the problem. And still the problem of the minimal

distance of about 80 cm remains.

To overcome these problems, in this paper we present a

novel approach to combine ordinary stereopsis with the RGB-

D sensor. We use two low-cost RGB-D cameras (ASUS Xtions

in our case) and arrange them as a stereo system. The new

system yields much better depth image results than a single

RGB-D camera alone. This solves, moreover, the problem of

not detecting transparent objects as well as those which have

bad emittance properties such as black objects or mirrors.

The proposed approach is rather simple, yet very effective.

All we need to do is to calibrate a pair of RGB-D cameras

as a stereo camera system. One of the cameras serves as a

reference camera. The 3D depth information from the scene is

reconstructed using ordinary stereo registration. As one needs

texture information for stereo registration, we did not choose

to use RGB images from the cameras, but we make use of the

IR image. This image yields very rich texture information, as

the IR projector of the RGB-D camera projects an IR pattern

into the scene. This helps to even detect depth information

where in an ordinary RGB image not much texture information

is available. Besides scenes with little to no texture, we can

also compute depth information of transparent objects such as



(a) RGB image (b) Corresponding IR image (c) Depth map (one RGB-D camera) (d) Depth map (two RGB-D cameras)

Figure 1. Illustrating some of the RGB-D-camera weaknesses. This scene shows different kinds of surfaces (reflective, absorptive and transparent from glass
and plastic) which cannot be captured by RGB-D camera. Note the interference (more areas with invalid depth information) when the scene is captured with
two RGB-D cameras.

glasses or reflective objects such as mirrors.

The rest of the paper is as follows. Next, we review the re-

lated work that have addressed both problems, the transparent

object detection and the interference problems as well as some

works on improving RGB-D depth information with stereo in

Section II. In Section III, our novel method is presented. We

first describe the procedure to calibrate the IR cameras, to

rectify the IR images and then to estimate a disparity map

based on IR correspondence matching. After that we outline

how to fuse the obtained disparity map with the depth map

offered by the RGB-D sensor. In Section IV, our method is

verified through a number of experiments on images which

include interferences and different types of objects that cannot

be correctly sensed by an RGB-D sensor alone and the results

are discussed. We conclude with a summary and an outlook

to future work in Section V.

II. RELATED WORK

The fusing of multiple RGB-D cameras in order to observe

a wider field of view and to increase the reliability and

robustness of 3D depth measurements is required for several

applications such as human motion estimation [2, 4, 24], face

recognition [13], gesture recognition [5], 3D simultaneous

localization and mapping (SLAM) [11, 3], and many others.

Deploying multiple RGB-D sensors with overlapping views

will produce interference effects because the IR patterns of

the different cameras overlap. The interference dramatically

degrades the depth quality causing many invalid (black) depth

pixels as shown in Figure 1(a)–1(d). The left two images of

the figure show the RGB and the IR image of the scene, the

two images to the right in Figure 1 show the reconstructed

depth maps of the scene. Figure 1(d) was captured with two

RGB-D cameras which leads to many invalid depth pixels due

to the described interference effects.

Recently, some methods have been proposed to tackle this

problem. In [19], Rafibakhsh et al. propose a geographical

configuration of sensors to reduce interferences. They rec-

ommended an angle of 35¶ between two sensors mounted

at the same height. Assuming that the interference holes are

small and isolated, and the observed surface is smooth and

continuous, Maimone and Fuchs [15] devised a filling and

smoothing algorithm by modifying median filters to fill all

holes while preserving edges. In [8], the problem of filling

in depth information at spots where the RGB-D sensor does

not provide any depth values is addressed. This happens, for

example, at object borders. They propose to use a bilateral

filter that combines spatial and temporal information gathered

from the RGB-D video stream. A different approach to fill the

holes in the depth map is taken in [17]. They align texture and

depth boundary in order to estimate missing depth information.

In [7, 16] the idea to minimize interference by exploiting

motion blur introduced by additional hardware components is

proposed. The motion blur is induced by vibrating the RGB-D

camera unit using an offset-weight vibration motor. A small

amount of motion is applied to a subset of the sensors so

that each unit sees its own IR projected pattern sharply, while

seeing a blurred version of the IR patterns of the other units.

In [21] another hardware solution is proposed by Schroder

et al. They use hardware shutters for mitigating interference

between concurrently projecting sensors, where IR emitter on

each RGB-D sensor is blocked in turn so that the IR patterns

do not interfere. However, the frame rate of depth maps are

reduced with the number of Kinects.

Another problem of RGB-D sensors is its high sensitiv-

ity to the visual characteristics of observed objects, such

as transparency, absorption and reflection. These objects are

quite common, for instance, in household environments in

the form of drinking glasses, bottles or vases. Until now

no robust solution for detecting transparent objects and their

reconstruction have been proposed.

In [14], Lysenkov et al. propose a Kinect-based method

for transparent object detection which exploits the fact that

many transparent objects appear as holes in the depth map.

These holes are used as candidates for transparent objects

and serve as an initialization for a segmentation process to

extract the object contours in the RGB image. Alt et al. [1]

propose an algorithm to reconstruct transparent objects in

unstructured environments based on identifying inconsistent

depth measurements caused by refractive or reflective effects

on the surfaces while moving a depth sensor around the scene.

The detection in this case is limited to transparent objects with

smooth and curved surfaces where refractive effects dominate.

Recently, a couple of papers [9, 22] propose combining the

Kinect depth sensor with an external stereo system, aiming to



Figure 2. The setup of the Asus Xtion IR image stereo system used in our
experiments.

improve the accuracy of the depth map. In [23], Chiu et al.

propose a cross-model stereo vision approach for the Kinect.

They present a cross-modal adaptation scheme to improve

the correspondence matching between RGB and IR cameras.

The combination method produces depth maps that include

sufficient evidence for reflective and transparent objects. The

idea is similar to ours. However, while they improve the depth

information from the RGB-D camera up to 30%, they still fail

to return depth information for transparent, shiny, or matte

objects.

In this paper, we propose a simple yet novel method to

overcome almost all RGB-D sensor weaknesses with the single

hardware requirement to use two RGB-D cameras instead

of one, but without any conditions or limitations on the

observed environment. The idea is to use each two RGB-D

cameras as a stereo system and carrying out correspondence

matching between IR images to build an additional depth map.

Experimentally, we found that this depth map is insensitive

to transparent, absorbing and reflective surfaces. In addition

when this map is combined with the depth map offered by

the RGB-D sensor, the problem of interference is completely

resolved.

III. COMBINING STRUCTURED LIGHT WITH STEREO

As mentioned above the RGB-D camera fails to capture

objects and surfaces made from transparent, reflective and

absorptive materials. In addition when at least two cameras

are used to view the same scene, the interference problem

decreases the quality of the estimated depth map. The RGB-D

camera measures the depth by projecting a constant speckle

pattern on a standard plane surface and saves the IR image as

a reference image in the internal memory. The reference and

the live captured image are used for triangulation to estimate

depth under the assumption that the appearance and the relative

shifts of speckles is only related to the depth of surface where

they are projected.

Lower camera

(reference camera)
Upper camera

Synchronizer

Mono calibration (compute

Mi,l, Me,l matrices)

Mono calibration (compute

Mi,u, Me,u matrices)

Stereo calibration

(compute F ,R,T mat.)

Stereo rectification

(compute Q and

remap matrices)

Calibration data

IR lower image IR upper image

Sync. IR upper +

lower images

Figure 3. Calibration procedure

This assumption is violated in two cases: (1) if the pro-

jected plane is reflective, refractive, absorptive or transparent;

(2) several RGB-D cameras interfere with each other. In the

first case the appearance of speckles is dramatically modulated

by the visual properties of the observed objects. In the latter

case when two or more cameras share a common field of view,

each camera cannot distinguish between its own pattern and

that of another camera.

We propose a new method that tackles both issues. Our

idea is to consider the IR images that capture the projected IR

speckles at the same time. The appearance and interference of

speckles will seem almost identical in both IR synchronized

images. If these images are calibrated and rectified, we can

utilize them as a stereo pair to generate an additional depth

map. Figure 2 shows our camera setup. The speckles and

their interference will improve the correspondence matching

results even if the observed surfaces are texture-less. The

projected IR pattern of the two cameras yield a lot of texture

information that helps to solve the correspondence problem

for the stereo camera. Figure 1(b) gives an impression of how

much additional texture information is provided by the IR

pattern. In the next section we outline the camera calibration

for the proposed camera setup before we describe the imaging

pipeline in Section III-B. Some implementation details are

given in Section III-C.

A. Stereo Camera Calibration, Rectification and Matching

To compute a depth map from a stereo image pair, it

is necessary to calibrate the cameras and then to rectify

the images. The goal of the stereo calibration process is to

estimate the projection matrix of each individual camera that

describes the projective transformation between the 3D scene

and its image and to estimate the fundamental matrix that

describes the epipolar geometry between two corresponding

images. The estimation of both matrices can be done by

generating 3D artificial points that can be easily, reliability and

rapidly detected in the captured images. Therefore, available

implementations, for instance in OpenCV or Matlab, use



checkerboards for calibrating these parameters. The offline

stereo camera calibration routine is shown in Figure 3. We

follow the notation of [10]. In our calibration method, the

IR emitters are covered during the stereo calibration and

rectification processes. This improves the reliability of the

checkerboard corner detection.

1) Mono Calibration: For each camera, we assume a

pinhole camera model, describing the perspective projection

from a 3D point P in the world coordinate frame to its 2D

points onto the image planes pu from the upper camera and

pl from the lower camera, respectively. The pinhole camera

model considers the intrinsic camera parameters in a matrix

Mi,u, Mi,l, such as focal length and the lens distortions, and

extrinsic parameters in a matrix Me,u, Me,l corresponding to

the translation and rotation of each camera between the camera

and the world coordinate system. The matrix Me,u includes

the 3 ◊ 3 rotation matrix Ru and the 3D translation vector

Tu from the upper camera origin to the world coordinate

centre with Me,u = [Ru | Tu] and Me,l = [Rl | Tl] for

the lower camera, respectively. The perspective projections of

the mono calibration step can be described by the following

equations, calculating the projection of a 3D point P to the

2D points pu and pl on the image planes from the upper and

the lower camera with pu = Mi,u · Me,u · P = Mu · P and

pl = Mi,l · Me,l · P = Ml · P , respectively.

2) Stereo calibration: The stereo calibration step com-

putes the rotation matrix R and the translation vector T =
[T0 T1 T2]T between the two camera coordinate systems. In

both coordinate systems the vectors Pu = [Xu Yu Zu]T and

Pl = [Xl Yl Zl]
T represent the same 3D point P resulting in

Pu = R · (Pl ≠ T ). The epipolar plane is spanned by the two

vectors T and Pl. The vector (T ≠ Pl) is inside this plane, so

the dot product must be zero: (Pl ≠ T ) · (T ◊ Pl) = 0. Hence,

(T ◊ Pl) =

S

U

0 ≠T2 T1

T2 0 ≠T0

≠T1 T0 0

T

V · Pl = A · Pl

and Pu = R ·(Pl ≠T ) which is R≠1Pu = Pl ≠T . Substituting

(Pl≠T ) with R≠1Pu and the cross product (T ◊Pl) with A·Pl

and rearranging the equation we obtain (Pl ≠ T ) · (T ◊ Pl) =
0 … RT Pu · A · Pl = P T

u · R · A · Pl = 0 where the matrix

E = R · A is called the essential matrix. The corresponding

homogeneous points on the image planes pu and pl can be

described through the fundamental matrix F with pu ·F ·pl =
0. The fundamental matrix considers the intrinsic parameters

from the upper and lower camera Mi,u and Mi,l and can be

calculated with the essential matrix E by F = M≠T
i,u ·E ·M≠1

i,l .
3) Stereo Rectification and Matching: The next step is the

stereo rectification. We need to compute the rotation matrices

for each camera so that the corresponding epipolar lines in all

viewing planes become collinear with each other. It takes all

epipoles of an original stereo setup to infinity. After the recti-

fication, corresponding points in the upper and lower images

are on the same vertical line. The output is a 4◊4 reprojection

matrix Q, which transforms the disparity value into a depth

map. The reprojection from the disparity map D to a 3D point

cloud is calculated as Q · [x y d 1]T = [X Y Z W ]T . The

2D point is reprojected to 3D space as [X/W Y/W Z/W ]T

by dividing through the homogeneous component.

Once the IR images are rectified, a disparity map can easily

be computed by searching for correspondence pixels on the

corresponding epipolar parallel lines. The decision that two

pixels are corresponding pixels is related to the similarity of

the local appearance around them. There are many ways to

measure the similarity cost including the Sum of Absolute

Differences (SAD), which is the most common used similarity

cost due to its computational simplicity.

SAD(p(x, y), Dp) =
w

ÿ

i=≠w

w
ÿ

j=≠w

(|Imgl(x + i, y + j) ≠ Imgu(x + i, y + j + Dp)|)

where (2w + 1) ◊ (2w + 1) is the local block size and

Imgl, Imgu are the lower and upper rectified stereo infrared

image pair. Current stereo methods can be divided into two

major classes: local and global methods. Local methods try

to estimate optimal disparities for each point only based on

the local appearance around the point which can lead to dis-

continuities in the estimated disparity map. Global approaches

optimize all disparities at once by making explicit smoothness

assumptions of the disparity map and then calculating it by

minimizing a global energy function. However, the required

computation time is considerably higher.

The Semi-global Block Matching [12] incorporates the

advantages of both method classes, achieving good trade-

off between the low complexity and the high quality. The

semi-global matching method aims to minimize a global 2D
energy function by solving a large number of 1D minimization

problems.

E(D) =
ÿ

p

(SAD(p(x, y), Dp)+

ÿ

Np

P1T [|Dp ≠ Dq| = 1]) +
ÿ

Np

P2T [|Dp ≠ Dq| > 1])

where T [.] returns 1 if its argument is true and 0 otherwise.

The first term is the similarity cost for all pixels p at their

disparities Dp. The second term penalizes small disparity

differences of neighbouring pixels Np of p with the constant

weight P1. Similarly the third term penalizes large disparity

steps with a higher constant penalty P2. Using a lower penalty

P1 for small disparity changes permits an adaptation to curved

surfaces. The penalty P2 for larger disparity changes preserves

discontinuities. The 2D energy function is computed along 1D
paths from 8 directions towards each pixel of interest using

dynamic programming. The costs of all paths are summed for

each pixel and disparity. The disparity is then determined by

winner takes all, then a sub-pixel interpolation is performed by

fitting a parabola to the winning cost value and its neighbours.

After that a left-right consistency check is performed for

mismatches and occlusion invalidation.
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B. Fusion Algorithm

The idea is to fuse the depth information from the RBG-

D sensor and from the proposed IR stereo matching to

tackle the problem of interference and material-sensitivity.

The complete pipeline and the basic algorithm is shown

in Figure 4. The depth images as well as the IR images

from both cameras are registered and synchronized. After that

they provide corresponding timestamps. The stamped images

are being rectified making use of the extrinsic and intrinsic

camera parameters estimated in the calibration step, Imgrect
l =

remaplower(Imgl)Imgrect
u = remapupper(Imgu), where Imgl

and Imgu, resp., are the lower and upper raw IR images

and Imgrect
l and Imgrect

u , resp., are their rectified versions.

remaplower and remapupper are transformation functions for

the lower and the upper camera. After the rectification of

the IR images, we use them to estimate a disparity map,

D = estimate disp(Imgrect
l , Imgrect

u ). which is then used

to compute the stereo depth map DM stereo = D · Q with

Q the reprojection matrix computed in the stereo rectifica-

tion process for calculating 3D information from disparity

maps. Because the DM stereo is computed in the coordinate

system of the lower camera, the remaplower is also applied

on the lower depth map offered by the Xtion to keep an

identical arrangement of the depth pixels in both depth maps:

DM rect
l = remaplower(DM l). For the remapping process, an

interpolation function is used to compute pixels coordinates for

non-integer points. This leads to introduce non-zero invalid

pixel into the depth map around the black invalid pixel

regions. These pixels are eliminated before conducting the

fusion process by using a morphological erosion function

DM rect,er. = erode(DM rect). The fusion process is then

done by replacing the values of invalid depth pixels by

corresponding one from the IR stereo matching:

DM comb. =

I

DM rect,er., if DM rect,er. ”= 0

DM stereo, otherwise

C. Implementation Details

In the implementation of the proposed method we used

standard functions from the OpenCV library [6], the Robot

Operation System ROS [18] and the Point Cloud Library

(PCL) [20]. From the ROS framework two packages are used,

the cv_bridge and the message filters. cv_bridge

is as its name implies only used for bridging between

OpenCV image data types and ROS image messages. The

message filters package consists of few filter imple-

mentations including Synchornizer which synchronizes

multiple messages by their timestamps and only passing them

through when all have arrived. In our implementation, the

Synchornizer filter is used to synchronize lower and upper

IR images for stereo calibration and the disparity estimation

procedures and to synchronize lower IR and depth images for

the depth map fusion process.

The OpenCV framework provides some functions for the

purpose of camera calibration, stereo rectification and disparity

estimation. The functions findChessboardCorners and

cornerSubPix are used to detect checkerboard corners

in sub-pixel resolution. The cameraCalibrate function

is used to estimate the camera matrix and the distortion

coefficients for each individual camera iteratively by mini-

mizing reprojection errors over all detected corners in several

images. The stereoCalibrate function conducts also a

similar optimization procedure to compute the essential matrix

E and the fundamental matrix F of the two views with

F = M≠T
u · E · M≠1

l and a rotation and translation matrices

that project the coordinate system of the first camera onto

the coordinate system of the other one that is selected as

a reference camera. The stereo rectification process aims to

reproject the image planes of the two cameras so that the

epipolar lines in one image are parallel to epipolar lines in

the other image. To this end, the epipolar points in both

images must be shifted to the infinity. In OpenCV framework,

this is done by the function stereoRectify. The function

takes as input the camera matrices, distortion coefficients and

projective transformations computed by stereoCalibrate



(a) RGB image (b) IR image (c) Depth image from Xtion
(with interference from second
projector)

(d) Depth image combined (e) Comparison between
(green) IR stereo and (blue)
RGB-D Sensor depth at the
scan line

(f) RGB image (g) IR image (h) Depth image from Xtion
(with interference from second
projector)

(i) Depth image combined (j) Comparison between
(green) IR stereo and (blue)
RGB-D Sensor depth at the
scan line

Figure 5. Comparison of depth maps: Scene1 shows an office table top. Both IR projectors are turned on and lead to interference in the Xtion depth image;
Scene2 shows the office ceiling with reflecting lamps. Only the IR projector from the reference camera was used.

(a) IR image of the scene 1 (b) Point cloud from depth sensor (c) Point cloud from IR stereo

(d) IR image of scene 2 (e) Point cloud from depth sensor (f) Point cloud from IR stereo

Figure 6. Comparison of point clouds; The first row shows how missing depth information are filled in for a table top scene. (b) shows the missing depth
information in the point cloud acquired by the Xtion. In (c) most of the missing points were reconstructed by IR stereo; in the second scene wide areas such
as the monitor and keyboard, the booklet and the keyring, the spoon and the arm holding the mouse cannot be detected by the RGB-D sensor, but with the
combined depth map from RGB-D depth and stereo depth. The red marks in the centre of the image show the origin of the two camera coordinate systems.



and cameraCalibrate functions and returns the projec-

tions required to map the epipoles to infinity. To estimate

the disparity map from rectified IR images, the OpenCV

class StereoSGBM is used. Figure 4 shows the complete

procedure.

IV. EMPIRICAL EVALUATION

To evaluate the effectiveness of our approach, multiple

experiments have been run on different scenes that include

different types of objects that cannot be detected by an RGB-

D sensor. Here two examples of these scenes are presented.

The first scene (presented in Figures 5(a)–5(d)) involves two

glasses and plastic bottle as example for transparent objects

and table lamp made from stainless steel as an example for

a reflective object; in the background there is a black plate

as an example for an absorptive object. The second scene

is presented in Figures 5(f)–5(i) and shows lamps (some are

turned on and some off) in the ceiling of an office as another

example for surfaces that cannot be sensed by the RGB-D

depth sensor.

We consider two different cases: (1) the IR emitters of both

cameras are active; and (2) the IR emitter of the non-reference

camera is blinded to illustrate the performance of the proposed

method for resolving the interference problem. Figures 5(a)–

5(e) show the result of the first scene with taking into account

the effect of interference. In Figures 5(f)–5(j) we present

the result of the second scene without interference effects.

Comparing the depth maps in both scenes the advantage of our

approach to overcome the weaknesses of sensor depth becomes

apparent. As shown in Figures 5(c) and 5(h), in the regions

where transparent, reflective or absorptive objects appear in the

scene, the sensor depth map shows black pixels (here repre-

sented in dark blue) which means that no depth information at

all is available for these regions. In contrast, Figures 5(d) and

5(i) show that the depth of such objects can be measured by IR

stereo with an accuracy similar to that achieved by the depth

sensor. In case of Figure 5(d), one can see that the effect of

interference is resolved completely. For both scenes, we also

compare the accuracy of the depth information of the RGB-

D sensor (blue dots with the stereo information (green dots)

in Figs. 5(e) and 5(j) for a certain shown in Figs. 5(d) and

Figs. 5(i), resp. As can be observed yield RGB-D and stereo

very similar depth information, the RGB-D camera, however,

has many regions where no information are available at all.

In Table I we show quantitative results of the IR stereo

system. The table compares the invalid (black) pixels, where

no depth information is available. For the two scenarios, we

also compare the number of invalid pixels when both IR

projectors are used (denoted by w/ interference) and only one

is used (denoted by w/o interference). We compare Sensor

depth, which denotes the depth map from the sensor acquired

through structured light, IR stereo which shows the invalid

pixels for the stereo depth computation based on the IR

images, and finally Combined depth where invalid pixels

coming from the sensor are filled by stereo IR information.

As can be seen in the table, there is a dramatic decrease in the

number of invalid pixels from RGB-D to IR stereo. Obviously,

the combined depth map does not yield further improvements

in the number of invalid pixels. The interference has only little

effect on the disparity computation.

The second set of experiments even more show the power

of our approach to sense reflective, transparent, and absorptive

objects. The scenes in Figure 6 involve many objects including

a table lamp made from stainless-steel, a transparent glass,

black surfaces from a monitor and keyboard, shiny surfaces

from a booklet, etc. We acquire point clouds by the Xtion

depth sensor and the IR stereo system. The point clouds are

shown in Figure 6. As one can see in the figures, IR stereo

is nearly completely able to acquire depth information where

the Xtion sensor only shows invalid pixels.

Further, we wanted to find out about the accuracy of the

computed depth maps. We captured a texture-less plane surface

from different distances. The plane was parallel to the sensor

image plane so that all pixels had the same depth. After that

we computed the distance from the camera to the plane by

the depth sensor and by our IR stereo system. During this

experiment, the IR emitter of the non-reference camera was

blinded to neutralize the interference effects. The obtained

results are listed in Table II. One result is that the IR stereo

can overcome the RGB-D distance limitation. With a baseline

of 0.045 m (see Figure 2 for our camera setup) we are able to

measure minimal distances of 0.5 m. The accuracy achieved

by IR stereo is similar to that provided by the depth sensor.

The proposed method runs on a Core-i7 processor @

3.40 GHz with a frequency of 5–6 Hz when the disparity is

computed. In our prototype implementation, we compute the

disparity for all pixels. A dramatic speed-up is expected by

limiting the computation of disparity only to pixels of black

holes in sensor depth map.

V. CONCLUSION

In this paper we proposed a novel, yet simple method to

improve the depth information provided by an RGB-D sensor.

Such sensors use structured infrared light to acquire depth

information of a scene. However, RGB-D cameras suffer from

several limitations: (1) they cannot detect transparent, shiny or

absorptive surfaces, as the IR pattern gets distorted; (2) they

have a minimal range of about 0.8 m. Our approach is to use

two RGB-D sensors in a stereo setting. Instead of computing a

depth map based on RGB information, we make use of the IR

images of the RGB-D sensor. The advantage is that even when

there is little to no texture information in the RGB images

for finding corresponding pixels to compute the disparity,

the projected pattern in the IR image provides rich texture

information. With our method we are able to robustly detect

transparent objects such as glasses, shiny objects such as mir-

rors, or absorptive objects such as matte surfaces. Further, with

a baseline of 0.045 m we are able to acquire minimal distances

of 0.5 m. This is an improvement over the Kinect’s or Xtions’s

minimal distance of 0.8 m. Our results show that the number of

invalid pixels in the depth map can be decreased dramatically

with combining the raw depth information provided by the



Table I
COMPARING THE NUMBER OF INVALID PIXELS WITH AND WITHOUT INTERFERENCE FOR THE TWO SCENES FROM FIG. 5

No. of invalid pixels
Scene 1 Scene 2

w/ interf. w/o interf. w/ interf. w/o interf.

Sensor depth 69643 50610 44448 30240

IR stereo depth 298 219 673 708

comb. depth 298 219 673 708

Table II
ACCURACY COMPARISON BETWEEN PLAIN XTION DEPTH MAPS AND IR STEREO DEPTH MAPS AT DIFFERENT DISTANCES.

Camera type
Distance [mm]

500 1000 1500 2000 2500 3000 3500 4000

Plain Xtion N/A 1003 1503 2002 2504 3007 3506 4009

IR stereo Xtion 499 997 1494 1989 2499 2995 3493 3991

sensor with the IR stereo computations. As another result, we

show that interference problems when using more than one

RGB-D sensor for acquiring point clouds can be overcome by

filling in the missing depth information from our combined

depth map. The stereo computation works with 5–6 Hz in

our prototype implementation. This is a rather low frame

rate compared to the 30 Hz of the RGB-D sensor. For future

work, we plan to increase the frame rate of our system by a

fair amount. For our prototype implementation, we computed

the IR stereo depth map for all pixels. A dramatic increase

in the speed could simply be achieved by only computing

stereo depth information for pixels, where the ordinary RGB-

D sensor is unable to provide depth information. For another

future work, we plan to apply the proposed IR stereo method

on a set of Kinect sensors distributed in an industrial robot arm

workspace to enhance object manipulation and obstacle avoid-

ance capabilities of the robot and in mapping and localization

tasks for mobile systems.
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