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Abstract This paper describes a new MATLAB software package of iterative regular-

ization methods and test problems for large-scale linear inverse problems. The software

package, called IR Tools, serves two related purposes: we provide implementations of

a range of iterative solvers, including several recently proposed methods that are not

available elsewhere, and we provide a set of large-scale test problems in the form of

discretizations of 2D linear inverse problems. The solvers include iterative regulariza-

tion methods where the regularization is due to the semi-convergence of the iterations,

Tikhonov-type formulations where the regularization is explicitly formulated in the

form of a regularization term, and methods that can impose bound constraints on the

computed solutions. All the iterative methods are implemented in a very flexible fash-

ion that allows the problem’s coefficient matrix to be available as a (sparse) matrix, a

function handle, or an object. The most basic call to all of the various iterative meth-

ods requires only this matrix and the right hand side vector; if the method uses any

special stopping criteria, regularization parameters, etc., then default values are set au-

tomatically by the code. Moreover, through the use of an optional input structure, the

user can also have full control of any of the algorithm parameters. The test problems

represent realistic large-scale problems found in image reconstruction and several other

applications. Numerical examples illustrate the various algorithms and test problems

available in this package.
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1 Introduction

In this paper we are concerned with discretizations of linear inverse problems of the

form

Ax ≈ b, A ∈ R
M×N , (1)

where the vector b represents measured data (typically with noise) and the matrix

A represents the forward mapping. There are no restrictions on M and N . Given A

and b, the aim is to compute an approximation of the unknown vector x. We are

concerned with large-scale problems, where A is either represented by a sparse matrix,

or is given in some other form (i.e., a user-defined object or a function handle) in which

matrix-vector products with A, and also possibly AT , can be performed efficiently. Such

problems arise, e.g., in computed tomography [6], image deblurring [12], and geoscience

[36].

Although the iterative methods described in this paper can be used for any large-

scale linear system, we are mainly interested in problems that are ill-posed in the

sense that the singular values of A gradually decay and cluster at zero. The decay rate

depends on the problem, and many large-scale problems tend to have a rather slow

decay – however, due to the large problem dimensions the matrix is very ill conditioned

and hence the computed x is very sensitive to errors in b. Regularization is therefore

needed in order to produce stable solutions to (1).

Regularization is often achieved by solving a penalized least-squares problem of the

form

min
x

{
‖Ax− b‖22 + λ2 Ω(x)

}
, (2)

where the term Ω(x) is chosen to reflect the specific type of regularization that is suited

for the problem. In the case where Ω(x) = ‖x‖22 and Ω(x) = ‖Lx‖22 we obtain the

classical Tikhonov regularization problem. A different way to achieve regularization is

to apply an iterative method directly on the fit-to-data term (e.g., min ‖Ax−b‖22), and
terminate the iterations when semi-convergence is achieved; that is, terminate when a

desired approximation is obtained, but before noise starts to show up in the solution.

Using an iterative method in this way is often referred to as iterative regularization.

For more details on these issues see, e.g., [21] and [35].

As the computational problems associated with (1) become large, it is crucial to

formulate the forward computation – represented by A – in a convenient and storage-

efficient way. For example, problems in various types of computed tomography appli-

cations typically lead to sparse matrices. For other problems, such as image deblurring

and inverse diffusion, it is most convenient to formulate the forward problem – and

possibly its adjoint – as computations performed by a function (in MATLAB via a

function handle or an object). Our package allows all these representations of A, thus

making it suitable for many large-scale problems.

The software is distributed as a compressed archive; uncompressing the file will

create a directory that contains the code. More information can be found in the

README.txt file contained in the package. The software is available from Netlib http:

//www.netlib.org/numeralgo/ as the naXX package. To obtain full functionality it is

recommended to also install the MATLAB package AIR Tools II [24] available from

Netlib as the na47 package.

This package has two significant aims: The first one is to provide model implemen-

tations of a range of iterative algorithms that can be used for large-scale ill-posed linear

inverse problems, including several recently proposed methods that are not available

http://www.netlib.org/numeralgo/
http://www.netlib.org/numeralgo/
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elsewhere. The second aim is to provide a set of new test problems for large-scale linear

inverse problems that can be used to experiment with the iterative methods in this

package, or as benchmark test problems for newly developed algorithms. Our software

satisfies the following design objectives:

– The software is easy to use: the installation is very simple and there are no files to

be compiled. There is no need for commercial MATLAB toolboxes.

– Additional iterative methods and test problems are provided via interface to the

package AIR Tools II [24].

– Calls to all iterative solvers and all test-problem generators are simple, and essen-

tially identical.

– Strict naming conventions are used for all functions, such as IR for the iterative

solvers and and PR for the test-problem generators.

– We include realistic 2D test problems, presented in such a way that they require

no special background knowledge of the applications from which they arise.

– The functions are easy to use; default values are provided for any parameters needed

by the iterative solvers and problem generators.

– At the same time, the user can take full control of the functionality by changing

these parameters through an optional options input structure.

– Stopping rules and paradigms for choosing regularization parameters are integrated

within the iterative methods.

– Information about the performance of the iterative methods is returned in an op-

tional Info output structure.

– Visualization of the right-hand side b (the data) and the approximate solution x

for all test problems is done by two functions PRshowb and PRshowx.

– Users can easily expand the package to include new solvers and/or new test prob-

lems.

Other MATLAB packages are available for inverse problems, but they can either be

used only on small-scale problems, or they focus on one specific application or type

of regularization scheme (e.g., image denoising, or tomographic reconstruction, or ℓ1-

regularization, or total variation). We are not aware of other packages that fully contain

the broad range of iterative solvers in this new IR Tools package, including several

recently proposed methods that are not available elsewhere. The solvers include iter-

ative regularization methods where the regularization is due to the semi-convergence

of the iterations, Tikhonov-type formulations where the regularization is explicitly for-

mulated in the form of a regularization term (e.g., a 1-, or 2-norm, or total variation

penalization), and methods that can impose bound constraints on computed solutions.

Compared to our earlier software packages for regularization, we make the following

remarks:

– Regularization Tools [22] does not allow A to be a function handle or an ob-

ject, and was designed for small-scale problems. In addition, the small-scale test

problems included in Regularization Tools are outdated and do not represent

current important applications.

– Restore Tools [30] focuses solely on image deblurring problems, and A must be

a MATLAB object.

– AIR Tools II [24] (a drastically expanded version of the original AIR Tools

package) is primarily aimed at tomographic image reconstruction.

This paper is organized as follows. Section 2 gives an overview of the iterative solvers

provided in IR Tools, while Section 3 describes the various test problems. Examples
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using the solvers and test problems available in IR Tools are given in Section 4, and

Section 5 contains concluding remarks.

2 Overview of the Iterative Solvers

The overall goal for our package is to provide robust and flexible implementations of

regularization algorithms based on iterative solvers for linear problems, in a common

framework where all calls are of the form

[X, Info] = IR___(A, b, K, options);

Here, A is the discrete forward operator, b is the measured data, the vector K deter-

mines which iterations are stored as columns in X, options is a structure that defines

the algorithm parameters, and Info is a structure containing information about the

iterations, such as residual norms, and what stopping criterion led to the iterations be-

ing terminated. Throughout the package we follow the convention that all error norms

and residual norms are relative. This means that, if the true solution x is provided to

the iterative method through the options structure (see below for for an explanation

on how to do this), and x(k) is the kth iteration vector, then in Info.Enrm we return

∥∥x− x(k)
∥∥
2
/‖x‖2, k = 1, 2, 3, . . .

Similarly, if b is the right-hand side of a least squares problem then in Info.Rnmr and

Info.NE Rnrm (when relevant) we return

∥∥b−Ax(k)
∥∥
2
/‖b‖2 and

∥∥AT (b−Ax(k))
∥∥
2
/
∥∥AT b

∥∥
2
, k = 1, 2, 3, . . .

Inputs K and options, and output Info are optional, so that all solvers can be used

with the simple call:

X = IR___(A, b);

In this case (depending on the method), default values are used for regularization

parameters and stopping criteria, and X contains the approximate solution at the final

iteration. The inclusion of the input parameter options has the effect of overriding

various default options, depending on the considered solver and on the fields specified

in options. Moreover, if the user stores in options additional information about the

test problem, additional information about the behavior of the solver can be stored in

the output structure Info; for instance, if the true solution is stored in options, then

the relative errors are computed at each iteration and returned in Info. To determine

what the possible default options for the various test problems are, use:

options = IR___(’defaults’)

One can then change the default options either by directly changing a specific field, for

example,

options.field_name = field_value;

or by using the function IRset,

options = IRset(options, ’field_name’, field_value);
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Note that, in the above example using IRset, it is assumed that the structure options

is already defined, and only one of its field values is changed. It is possible to change

multiple field values using IRset, for example,

options = IRset(options, ’field_name1’, field_value1, ...

’field_name2’, field_value2, ’field_name3’, field_value3);

It is also possible to use IRset without a pre-defined options structure, such as

options = IRset(’field_name’, field_value);

In this case, all default options are used, except field name.

Our package includes some standard Krylov subspace algorithms, as well as their

hybrid versions where regularization is applied to the problem projected in a Krylov

subspace. Other algorithms are based on flexible Krylov subspace methods, where an

iteration-dependent preconditioner is used to penalize or impose constraints on the

solution; sometimes these methods are combined with restarts. For both approaches,

the regularization comes from projecting onto the Krylov subspace (possibly combined

with regularization of the projected problem) or from applying the method to a penal-

ized problem of the form (2). Tables 1 and 2 give an overview of each of the iterative

solvers in the package, and some additional discussion is provided in the following

subsections. For full details of the algorithms we refer to the papers listed in Table 1.

2.1 Methods Relying on Semi-Convergence

For many iterative methods regularization can be enforced by terminating the process

before asymptotic convergence to the un-regularized and undesired (least squares) so-

lution. The underlying mechanism, which is typically referred to as semi-convergence,

is well understood, cf. [21, Chapter 6] and the references therein. Three of the methods

in this package compute the solution x(k) of the problem

min
x
‖Ax− b‖22 subject to (s.t.) x ∈ Sk , (3)

where Sk is a linear subspace of dimension k that takes one of the following forms:

IRcgls : Sk = Kk = span{AT b, ATAAT b, (ATA)2AT b, . . . (ATA)k−1AT b},

IRenriched : Sk = Kk +Wp,

IRrrgmres : Sk = K̂k = span{Ab,A2 b, . . . Ak b}.

(4)

Here Kk and K̂k are k-dimensional Krylov subspaces, and Wp is a low-dimensional

subspace whose p basis vectors are chosen by the user to represent desired features in

the solution.

For IRcgls it is possible to apply priorconditioning – a type of preconditioning

that modifies the underlying Krylov subspace. Consider a Tikhonov penalization/reg-

ularization term of the form Ω(x) = ‖Lx‖22 with an invertible matrix L. In order to

produce conforming iterates we introduce a new variable ξ such that x = L−1ξ and,

implicitly, apply CGLS to the modified problem minξ ‖AL−1ξ−b‖22, and then compute

x(k) = L−1ξ(k). This is equivalent to solving (3) with Kk in (4) replaced by the Krylov

subspace

KL,k = span{P AT b, (P ATA)P AT b, (P ATA)2P AT b, . . . (P ATA)k−1P AT b}, (5)
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Table 1 List of iterative methods in IR Tools; the two functions IRart and IRsirt require
AIR Tools II. The naming convention in the Type column is as follows. “Semi-convergence”:
methods that rely on semi-convergence, cf. §2.1. “Penalized”: methods that solve the full
penalized problem, cf. §2.2. “Hybrid”: methods that penalize the projected problem, cf. §2.3.
“PRI”: methods based on penalized and/or projected restarted iterations, cf. §2.4.

Method Description Type Ref.

IRart The algebraic reconstruction technique,
also known as Kaczmarz’s method.

Semi-convergence [15]

IRcgls The conjugate gradient algorithm ap-
plied implicitly to the normal equations.
Priorconditioning allowed.

Penalized (λ 6= 0)
Semi-conv. (λ = 0)

[21]

IRconstr ls Projected-restarted iteration method
that incorporates box and/or energy
constraints. Priorconditioning allowed.

PRI [7]

IRell1 Simplified driver for IRhybrid fgmres

for computing a 1-norm penalized solu-
tion.

Hybrid [16]

IRenrich Similar to IRcgls but enriches the CGLS
Krylov subspace with a low-dim. sub-
space that represents desired features of
the solution.

Semi-convergence [10]

IRfista First-order optim. method FISTA that
solves the Tikhonov problem with box
and/or energy constraints; L = I only.

Penalized (λ 6= 0)
Semi-conv. (λ = 0)

[3]

IRhtv Penalized restarted iteration method
that incorporates a heuristic TV penal-
ization term.

PRI [16]

IRhybrid fgmres Hybrid version of flexible GMRES that
applies a 1-norm penalty term to the
original problem.

Hybrid [16]

IRhybrid gmres Hybrid version of GMRES that applies
a 2-norm penalty term to the projected
problem. Priorconditioning allowed.

Hybrid [9],
[18]

IRhybrid lsqr Hybrid version of LSQR that applies a
2-norm penalty term to the projected
problem. Priorconditioning allowed.

Hybrid [13]

IRirn Iteratively reweighted norm approach
(penalized restarted iterations) for com-
puting a 1-norm penalized solution.

PRI [33]

IRmrnsd Modified residual norm steepest de-
scent method to solve nonnegatively
constrained least squares problems.

Semi-convergence [31]

IRnnfcgls Flexible CGLS method to solve nonneg-
atively constrained least squares prob-
lems.

Semi-convergence [19]

IRrestart A general framework for penalized
and/or projected restarted iteration
methods.

PRI [7],
[16]

IRrrgmres Range restricted GMRES method. Semi-convergence [8]

IRsirt Simultaneous iterative reconstruction
techniques (CAV, Cimmino, DROP,
Landweber, SART).

Semi-convergence [24]
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Table 2 Overview of the types of problems that can be solved with this software. The set C
is either the box [xMin, xMax]N or the set defined by ‖x‖1 = xEnergy. The matrix L must have
full rank. A star ∗ means that the function computes an approximation to the solution.

Problem type Functions

minx ‖Ax− b‖2
2

+ semi-convergence
IRart, IRcgls, IRenrich, IRsirt,
IRrrgmres (M = N only)

minx ‖Ax− b‖2
2

s.t. x ≥ 0
+ semi-convergence

IRmrnsd, IRnnfcgls

minx ‖Ax− b‖2
2

s.t. x ∈ C
+ semi-convergence

IRconstr ls∗, IRfista

minx ‖Ax− b‖2
2
+ λ2‖Lx‖2

2
IRcgls, IRhybrid lsqr,
IRhybrid gmres (M = N only)

minx ‖Ax− b‖2
2
+ λ2‖Lx‖2

2
s.t. x ∈ C IRconstr ls∗, IRfista (L = I only)

minx ‖Ax− b‖2
2
+ λ‖x‖1 IRell1∗ (M = N only), IRhybrid fgmres∗

(M = N only), IRirn∗

minx ‖Ax− b‖2
2
+ λ‖x‖1 s.t. x ≥ 0, IRirn∗

minx ‖Ax− b‖2
2
+ λTV(x)

with or without constraint x ≥ 0
IRhtv∗

where P = (LTL)−1; see [21, Chapter 8] for motivations and details. In this package

L can represent the 1D and 2D Laplacian with zero boundary conditions, or L can be

a user-specified matrix with rank(L) = N .

Four other methods relying on semi-convergence are based on first-order optimiza-

tion methods (with step length ω), and they can incorporate constraints that can be

formulated as a projection PC onto a convex set C:

– IRart, the algebraic reconstruction technique, is a row-action method that involves

each row aTi of A in a cyclic fashion:

x← PC

(
x+ ω

bi − aTi x

‖ai‖
2
2

ai

)
.

The convention in this package is that one iteration involves one sweep through

all the rows. This method can be understood as a projected incremental gradient

method [1].

– IRsirt is a class of projected gradient methods of the form

x(k+1) = PC

(
x(k) + ωD1 A

TD2

(
b−Ax(k)

))
,

and the five different realizations in this package arise from different choices of

the positive diagonal matrices D1 and D2. The default is the SART algorithm for

which the elements of D1 and D2 are the 1-norms of the columns and rows of A,

respectively.

– IRfista with regularization parameter λ = 0 implements a particular instance of

the FISTA algorithm of the form

x(k+1) = PC

(
x(k) + ωk

(
x(k) − x(k−1))),

where ωk depends on the iteration number. This scheme accelerates the conver-

gence of first-order optimization methods.
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– IRmrnsd is an unconstrained and modified steepest-descent algorithm of the form

x(k+1) = x(k) + ωk diag
(
x(k)

)
AT (b−Ax(k)

)
,

where the nonnegativity is imposed by the “weight matrix” diag(x(k)) and by

bounding the step length ωk. All elements of the initial vector must be nonnegative.

Yet another method depends on semi-convergence: IRnnfcgls is a particular imple-

mentation of the flexible CGLS algorithm that uses a judiciously constructed precon-

ditioner, which changes in every iteration, to ensure convergence to a non-negative

solution [19].

Nonnegativity constraints are hardwired into IRmrnsd and IRnnfcgls, while the

other three methods can incorporate general box constraints (with nonnegativity as a

special case), as well as a so-called energy constraint, which has the form

‖x‖1 = constant ,

where the constant is specified by the user.

2.2 Methods for Solving the Penalized Least Squares Problem

Two of the methods in the above category, IRcgls and IRfista, can also be used

to solve the penalized least-squares problem (2) with Ω(x) = ‖Lx‖22 (i.e., Tikhonov

regularization), which corresponds to the least squares problem

min
x

∥∥∥∥∥

(
A

λL

)
x−

(
b

0

)∥∥∥∥∥

2

2

⇔ x = (ATA+ λ2 LTL)−1AT b, (6)

where L is either the identity matrix or any of the matrices described as priorcon-

ditioners in Section 2.1. In this case we ignore semi-convergence and instead rely on

asymptotic convergence to the penalized solution in (6). Note that in IRfista users

can only set L = I, but they have the option to also incorporate box constraints and/or

the energy constraint.

Two other penalization functions can be handled: the 1-norm, Ω(x) = ‖x‖1, which
enforces sparsity on x, and Ω(x) = TV(x), where the total variation (TV) function is

defined in a discrete setting by

TV(x) =
∑√

[Dhx]
2
i + [Dvx]2i .

Here the two matrices Dh and Dv compute finite difference approximations to the hor-

izontal and vertical partial derivatives, respectively, and the sum is over all elements

of x for which these can be computed. These penalized problems are solved approxi-

mately by means of our implementations of particular hybrid methods IRell1, IRhtv

and IRirn; hybrid methods are described in more detail in the following subsection.
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2.3 Hybrid Krylov Subspace Methods that Regularize the Projected Problem

In hybrid Krylov subspace methods the penalization is moved from the “original prob-

lem” (2) to the “projected problem”, i.e., the least squares problem restricted to the

Krylov subspace [12]. The main advantage is that the search for a good regularization

parameter is done on the projected problem, which has relatively small dimensions and

is therefore less computationally demanding than working with the original large-scale

problem. This means that the regularization parameter is iteration dependent, and is

adjusted as the Krylov subspace grows. Therefore, we use the notation λk to denote the

regularization parameter corresponding to the kth iteration. We provide three hybrid

methods:

– IRhybrid lsqr is, similarly to IRcgls, based on the Krylov subspace Kk defined in

(4); the underlying LSQR method explicitly builds an orthonormal basis for this

space allowing us to easily formulate and solve the penalized projected problem.

The default approach for choosing the regularization parameter λk for the projected

problem is weighted generalized cross validation (GCV).

– IRhybrid gmres follows the same idea, except that it is based on the Krylov sub-

space span{b, K̂k−1}, where K̂k−1 is analogous to the subspace defined in (4). By

default it uses GCV to determine the regularization parameter λk for the projected

problem.

– IRhybrid fgmres is based on a flexible version of the approximation subspace

used for IRhybrid gmres, which incorporates an iteration dependent preconditioner

whose role is to emulate a 1-norm (sparsity) penalty term on the solution. By de-

fault it uses GCV to determine the regularization parameter λk for the projected

problem.

We note that, with λ = 0, the hybrid LSQR algorithm in IRhybrd lsqr is mathemati-

cally equivalent to LSQR – as well as CGLS, available in IRcgls with λ = 0. Similarly,

with λ = 0 the hybrid GMRES algorithm in IRhybrid gmres is mathematically equiv-

alent to the GMRES algorithm.

We also note that when λ 6= 0 and L 6= I, the Krylov subspace in (5) that underlies

the hybrid LSQR algorithm is different from the Krylov subspace underlying CGLS

when applied to the Tikhonov problem (6) – although they are identical when L = I;

see [27] for details.

2.4 Penalized and/or Projected Restarted Iterations (PRI)

These functions are based on restarted inner-outer iterations. Semi-convergent or pe-

nalized Krylov methods, or hybrid iterative solvers, are used in the inner iterations,

and every outer iteration produces a new approximate solution that incorporates the

desired properties or constraints. This general framework is implemented in the func-

tion IRrestart, which is called by other functions (IRconstr ls, IRhtv and IRirn)

with more specific goals. The experienced user can run IRrestart in such a way that a

variety of combinations of inner solvers and outer constraints are heuristically incorpo-

rated into the approximate solution, and may wish to add further application-specific

constraints. IRrestart can handle penalized and/or projected schemes as detailed be-

low.
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Penalized Restarted Iterations

Initialize x(0) and L0

for ℓ = 0, 1, 2, . . .

r(ℓ) = b−Ax(ℓ)

w(ℓ) = argminw ‖Aw − r(ℓ)‖22 + λ2ℓ ‖Lℓ w‖
2
2

x(ℓ+1) =

{
x(ℓ) + w(ℓ)

PC

(
x(ℓ) + w(ℓ)

) depending on the user’s choice

update Lℓ+1

end

Projected Restarted Iterations

Initialize x(0)

for ℓ = 0, 1, 2, . . .

r(ℓ) = b−Ax(ℓ)

w(ℓ) = argminw ‖Aw − r(ℓ)‖2
x(ℓ+1) = PC

(
x(ℓ) + w(ℓ)

)

end

Note that, in addition to updating the regularization matrix Lℓ, the user can also

choose to incorporate a projection at each outer iteration of the Penalized Restarted

Iterations. For methods based on restarts, the concept of total number of iterations,

i.e., the number of iterations performed jointly in the inner and outer iterations, should

be considered.

Computation of the update w(ℓ) at the ℓth outer iteration is performed by means

of some of the iterative solvers in this package. The number of inner iterations in

these solvers acts as a regularization parameter and is always chosen by one of the

stopping-rule methods discussed in Section 2.5 below. We emphasize that this has the

consequence that even without a stopping rule for the outer iterations (except for the

maximum number of iterations), the specific mandatory choice of stopping rule for the

inner iterations influences the behavior and convergence of the outer iterations.

We note that most of these restarted iterations can be regarded as a heuristic

approach to resemble first-order optimization methods and, in particular, they are

reminiscent of an alternating projection scheme onto convex sets. We will not pursue

this aspect further here.

There are three functions that act as easy-to-use drivers to IRrestart for specific

purposes.

The function IRconstr ls uses the restarted iterations to enforce box and energy

constraints, by projection onto the relevant convex sets at each outer iteration. The

two functions IRhtv and IRirn use the restarted iterations to approximate a penalized

solution with penalty term Ω(x) = TV(x) and Ω(x) = ‖x‖1, respectively. The penalty

is enforced through a 2-norm ‖Lℓ · ‖2, where the matrix Lℓ is chosen to enforce the

desired penalty; it depends on the current iterate x(ℓ) as follows:

– IRhtv: Lℓ =

(
L̂ℓDh

L̂ℓDv

)
with L̂ℓ = diag

((
(Dhx

(ℓ))2i + (Dvx
(ℓ))2i

)−1/4
)
.

– IRirn: Lℓ = diag
(∣∣x(ℓ)i

∣∣−1/2
)
.
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2.5 Stopping Rules and Parameter Choice Strategies

Since the iterative solvers in this package are designed for regularization of inverse

problems, we provide well-known stopping rules for such problems. Also parameter

choice strategies for setting the regularization parameter λk for hybrid methods are

surveyed: these are related to the discrepancy principle and generalized cross validation.

The basic idea behind the discrepancy principle is to stop as soon as the norm of

the residual b−Ax(k) is sufficiently small, typically of the same size as the norm of the

perturbation e of the right-hand side, cf. [21, §5.2]. In this package, where all norms

are relative, this takes the form

stop as soon as ‖b−Ax(k)‖2/‖b‖2 ≤ η · NoiseLevel ,

where η is a “safety factor” slightly larger than 1, and NoiseLevel is the relative noise

level ‖e‖2/‖b‖2. If the noise level is not specified, then the default value used in all

codes is 0. To solve a noise-free problem with a given threshold τ , the user may set

η = 1 and NoiseLevel = τ . The specific implementation of this stopping criterion

takes different forms, depending on the circumstances:

– For the functions that leverage semi-convergence, IRart, IRcgls, IRenrich, IRfista,

IRmrnsd, IRrrgmres and IRsirt, the implementation is done in a straight-forward

way.

– For the functions that use hybrid methods, IRell1, IRhbyrid fgmres,

IRhybrid gmres and IRhybrid lsqr, we implemented the “secant method” from

[17], which updates the regularization parameter for the projected problem in such

a way that stopping by the discrepancy principle is ensured.

– For the functions that use inner-outer iterations, IRconstr ls, IRhtv, IRirn,

IRnnfcgls and IRrestart, the discrepancy principle is applied to the solver in

the inner iterations, and the outer iterations are terminated when either ‖x(ℓ)‖2,
‖Lx(ℓ)‖2, or the value of the regularization parameter, at each restart, has stabi-

lized.

The basic idea behind generalized cross validation (GCV) is to choose the solution

that gives the best prediction of the unperturbed data, cf. [21, §5.4]. This method is

practical only for the hybrid methods, where it can be applied to the projected problem.

Let Wk be a matrix with orthonormal columns that span the relevant Krylov subspace

for the approximation of the solution, and let AWk have the factorization AWk =

Zk+1 Rk, where Zk+1 has orthonormal columns and Rk is either lower bidiagonal or

upper Hessenberg, depending on the chosen Krylov method. Then we apply Tikhonov

regularization to the projected problem miny∈Rk ‖Rk y − ZT
k+1b‖2 to obtain y

(k)
λ =

R#
k (λ)ZT

k+1b, where R#
k (λ) is a “fictive” matrix that defines the regularized solution.

The regularization parameter λk minimizes the GCV function

Gk(λ) =
‖Rk y

(k)
λ − ZT

k+1b‖2

Q− w trace
(
Rk R

#
k (λ)

) ,

and we provide three different variants of this function:

standard GCV: Q = k + 1 w = 1 (cf. [20]),

modified GCV: Q = M − k w = 1 (cf. [32]),

weighted GCV: Q = k + 1 w < 1 (cf. [13]).
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Once λk is determined we put x(k) = Wk y
(k)
λk

. The iterations are terminated as soon

as one of these conditions is satisfied:

– The minimum of Gk(λ), as a function of k, stabilizes or starts to increase within a

given iteration window.

– The residual norm ‖b−Ax(k)‖2 stabilizes.

When GCV is applied to methods that use inner-outer iterations, similarly to the

discrepancy principle case, the GCV is applied to the inner iterations, and the outer

iterations are terminated when some stabilization occurs in ‖x(ℓ)‖2, ‖Lx
(ℓ)‖2, or the

regularization parameter.

In addition to these stopping rules, there are cases where semi-convergence is not

relevant – either because the data is noise-free or because we iteratively solve the

Tikhonov problem. In these cases it is preferable to terminate the iterations when the

residual for the (penalized) normal equations is small, i.e.,

stop as soon as ‖AT b− (ATA+ λ2LTL)x(k)‖2/‖A
T b‖2 ≤ NE Rtol ,

including the case λ = 0. This stopping rule can be used in the functions IRcgls,

IRenrich, IRfista and IRmrnsd. The function IRrrgmres does not solve a least squares

problem, so instead of the normal equations we can consider the “RRGMRES residual”

Ab−Ax(k) and stop as soon as ‖Ab−Ax(k)‖2/‖Ab‖2 is small.

3 Overview of the Test Problems

While realistic test problems are crucial for testing, debugging and demonstrating

algorithms to solve inverse problems, there are very few collections available. One

exception is the set of simple 1D test problems in Regularization Tools, but they

are outdated and do not represent current large-scale applications. For this reason, we

find it necessary to provide a new set of more realistic 2D test problems that are better

suited for testing algorithms that are designed especially for large-scale applications,

such as the iterative methods implemented in this package. When choosing these test

problems we had the following criteria in mind:

– The functions for generating the test problems must be easy to use, with good

choices of default parameters.

– At the same time, the user should have full control of the underlying model param-

eters via an options input.

– The test problems can be used as “black boxes” without any specific knowledge

about the application domain.

– It must be easy to add noise to the data.

– The right-hand side b (the data) and the solution x can be easily visualized.

The functions for generating the test problems, together with a few auxiliary func-

tions, are listed in Table 3. Although the test problems represent a variety of applica-

tions, they all use the same calling sequence,

[A, b, x, ProbInfo] = PR___(n, options);

with two inputs: n, which defines the problem size, and the structure options for setting

the model parameters. Either or both can be omitted, and default options produce a

suitable test problem of medium difficulty. Note that throughout the paper, and in
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Table 3 Overview of the types of test problems provided in this package, plus some related
functions. The problems PRseismic, PRspherical and PRtomo require AIR Tools II [24].

Test problem type Function Type of A

Image deblurring PRblur (generic function)

– spatially invariant blur PRblurdefocus, PRdeblurgauss,
PRdeblurmotion, PRdelburshake,
PRdeblurspeckle

Object

– spatially variant blur PRblurrotation Sparse matrix

Inverse diffusion PRdiffusion Function handle

Inverse interpolation PRinvinterp2 Function handle

NMR relaxometry PRnmr Function handle

Tomography

– seismic travel-time tomography PRseismic Sparse matrix or
function handle

– spherical means tomography PRspherical Sparse matrix or
function handle

– X-ray computed tomography PRtomo Sparse matrix or
function handle

Add noise to the data:
Gauss, Laplace, multiplicative

PRnoise

Visualize the data b and the so-
lution x in appropriate formats

PRshowb, PRshowx

Auxiliary functions for some test
problems

OPdiffusion, OPinvinterp2,
OPnmr

all of the implemented test problems, the input n (lower case) defines the problem

size, but does not necessarily give explicit information about the actual sizes of the

matrix A and vectors x and b. We use the convention that M × N (i.e., with the use

of upper case letters M and N) denotes the dimensions of the matrix A; the precise

relationship between n and M and N depends on the application. For example, in an

image deblurring problem, the input n creates a test problem with images having n×n

pixels, and M = N = n2. The help documentation for each of the PR test problems

provides more details, and can be viewed with MATLAB’s help or doc commands.

In the output parameters, A represents the forward operation, b is a vector with

the noise-free data, x is a vector with the true solution, and ProbInfo is a structure

that contains useful information about the problem (such a image dimensions, problem

type, and important model parameters). The type of A depends on the test problem:

– For image deblurring, A is either an object that follows the conventions from Re-

store Tools [30], or a sparse matrix (depending on the type of blurring).

– For inverse diffusion, inverse interpolation, and NMR relaxometry, A is a function

handle that gives easy access to functions, written by us and stored as OP files,

that perform matrix-vector multiplications.

– For the tomography problems, the user can choose A to be a sparse matrix or a

function handle; the former gives faster execution but requires more memory, while

the latter executes slowly but has very limited memory requirements.
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When a function handle is used for A, then our iterative methods expect A to conform

to the following definitions:

u = A(x, ’notransp’); computes the matrix-vector multiplication u = Ax,

v = A(y, ’transp’); computes the matrix-vector multiplication v = AT y,

dims = A([], ’size’); returns the effective size of the matrix A,

that is, dims(1) = M and dims(2) = N , the dimensions of A. In some cases (e.g.,

inverse diffusion) it may be difficult to implement the multiplication with AT . In these

cases, only transpose-free iterative methods should be used. Note that our test prob-

lems illustrate the three possibilities (sparse matrix, user-defined object, and function

handle) for representing the problems that can be handled by our software, and they

provide templates for users who want to write code for their own problems.

The input parameter options is a structure that can be used to override various

default options. To determine what the possible default options for the various test

problems are, use:

options = PR___(’defaults’);

One can then change the default options either by directly changing a specific field, for

example,

options.field_name = field_value;

or by using the function PRset,

options = PRset(options, ’field_name’, field_value);

Note that in the above example using PRset, it is assumed that the structure options

is already defined, and only one of its field values is changed. It is possible to change

multiple field values using PRset, for example,

options = PRset(options, ’field_name1’, field_value1, ...

’field_name2’, field_value2, ’field_name3’, field_value3);

It is also possible to use PRset without a pre-defined options structure, such as

options = PRset(’field_name’, field_value);

In this case, all default options are used, except field name. In the following subsections

we provide some additional specific examples.

3.1 Image Deblurring

Image deblurring (which is sometimes referred to as image restoration or deconvolution)

is an inverse problem that reconstructs an image from a blurred and noisy observation.

Image deblurring problems arise in many important applications, such as astronomy,

microscopy, crowd surveillance, just to name a few [2,4,26,28]. A mathematical model

of this problem can be expressed in the continuous setting as an integral equation

g(s) =

∫
k(s, t) f(t) ds+ e(s) , (7)

where s, t ∈ R
2. The kernel k(s, t) is a function that specifies how the points in the

image are distorted, and is therefore called the point spread function (PSF). If the
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kernel has the property that k(s, t) = k(s − t), then the PSF is said to be spatially

invariant; otherwise, it is said to be spatially variant.

In a realistic setting, images are collected only at discrete points (pixels), and

are also only available in a finite region. Therefore one must usually work directly

with the discrete model (1) where b and x are vectors that represent the blurred and

sharp images, and A is a large, usually ill-conditioned matrix that models the blurring

operation.

From equation (7) it can be observed that each pixel in the blurred image is formed

by integrating the PSF with pixel values of the true image scene. Generally the integra-

tion operation is local, and so pixels in the center of the viewable region are well defined

by the linear system (1). However, pixels of the blurred image near the boundary of

the viewable region are affected by information outside the viewable region. Therefore,

in constructing the matrix A, one needs to incorporate boundary conditions to model

how the image scene extends beyond the boundaries of the viewable region. Typical

boundary conditions include zero, periodic, and reflective [26]. Note that it is generally

not possible to know precisely what values should be assigned to x outside the borders

of the viewable region, and so even in the noise-free case (i.e., e = 0), the product Ax

is unlikely to be exactly equal to b.

IR Tools includes several test problems with various blurring operations:

– PRblurdefocus simulates a spatially invariant, out-of-focus blur.

– PRblurgauss simulates a spatially invariant Gaussian blur.

– PRblurmotion is a spatially invariant blur that simulates relative linear motion, at

a 45 degree angle, between an imaging device and the scene.

– PRblurrotation simulates a spatially variant rotational motion blur around the

center of the image.

– PRblurshake simulates spatially invariant motion blur caused by shaking of a cam-

era. The path of motion is generated randomly, so repeated calls to PRblurshake

will create different blurring operators, unless the random number generator is

manually set to a specific value using MATLAB’s built-in rng function.

– PRblurspeckle simulates spatially invariant blurring caused by atmospheric tur-

bulence.

As stated earlier in this section, these test problems can be called as follows:

[A, b, x, ProbInfo] = PRblur___(n, options);

The two inputs, n and options are optional; if they are not specified, default values

are used (e.g., the default value for n is 256). In the case of spatially invariant blur

examples, A is a psfMatrix object that overloads the multiplication operation * to

efficiently implement matrix vector multiplications with A and AT ; for further details,

see [30]. In the case of spatially variant rotational motion blur, A is a sparse matrix

[25].

As will be illustrated in Section 4, it is very easy to use the iterative methods we

provide in the package with A for either the psfMatrix object or sparse matrix format.

It is also easy for users to test their own iterative methods with these problems because

matrix-vector multiplies can be computed using standard MATLAB operators, such as

r = A’*(b - A*x);

In addition, the effective matrix size of A (if it could be constructed explicitly as a full

matrix) can be found using MATLAB’s built-in size function. For example, with the

default n = 256, then
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dims = size(A);

returns the vector dims = [65536, 65536].

The options structure can be used to set the boundary conditions to zero, periodic,

or reflective; if nothing is specified, the default choice is reflective. It is possible to

construct a problem where Ax is exactly equal to b; that is, the specified boundary

conditions used to construct A exactly model how x behaves outside the viewable

region. Because this situation is unrealistic, we consider it to be a classic example

of committing an “inverse crime”. To construct such an example, use the options

structure:

options = PRset(’CommitCrime’, ’on’);

[A, b, x, ProbInfo] = PRblur___(options);

The structure options can also be used to modify a variety of other default parameters,

including:

– options.trueImage can be used to choose one of several (true scene) test images

provided in the package, or it can be a user-defined test image; it is returned in the

vector x. Default is an image of the Hubble Space Telescope.

– options.PSF can be used to choose one of several point spread functions imple-

mented in the package, or it can be used to set a user-defined PSF, stored as a

two-dimensional array. Default is a Gaussian PSF.

– options.BlurLevel sets the severity of blur; choices are ’mild’, ’medium’ (de-

fault), or ’severe’.

– options.BC sets the boundary conditions; choices are ’zero’, ’periodic’, or

’reflective’ (default).

We close this subsection with an example, where we generate a speckle blur test

problem, choosing the (non-default) test image ’satellite’, and reset the blur level

to ’severe’:

options = PRset(’trueImage’, ’satellite’, ’BlurLevel’, ’severe’);

[A, b, x, ProbInfo] = PRblurspeckle(options);

The vectors b and x produced by this test problem can be displayed using PRshowb

and PRshowx,

PRshowb(b, ProbInfo)

PRshowx(x, ProbInfo)

We could also display the PSF using either of these “show” functions, or by using

MATLAB’s standard mesh command:

PRshowx(ProbInfo.psf, ProbInfo)

mesh(ProbInfo.psf)

In each of the “show” cases, we change the colormap to hot, and in the PSF case we use

a square root scale to display the image intensity. The results are shown in Figure 1.

3.2 Inverse Diffusion

This is a simple PDE test problem where the solution is represented on a finite-element

mesh and the forward computation involves the solution of a time-dependent PDE. The
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Fig. 1 Data produced by the test problem PRblurspeckle, with the true image scene shown
on the left, the blurred image scene shown in the middle, and the PSF (which defines the
matrix A) shown on the right. The PSF is displayed on a square root scale.

Fig. 2 Illustration of the 2D inverse diffusion problem PRdiffusion with n = 64. Left: the
true solution x corresponding to the initial function u0. Right: the data b corresponding to the
function uT at time T = 0.01.

underlying problem is a 2D diffusion problem in the domain [0, T ] × [0, 1] × [0, 1] in

which the solution u satisfies
∂u

∂t
= ∇2u (8)

with homogeneous Neumann boundary conditions and a smooth function u0 as initial

condition at time t = 0. The forward problem maps u0 to the solution uT at time

t = T , and the inverse problem is then to reconstruct the initial condition from uT .

We discretize the function u on a uniform finite-element mesh with 2(n − 1)2 tri-

angular elements; think of the domain as an (n − 1) × (n − 1) pixel grid with two

triangular elements in each pixel. Then u is represented by the N = n2 values at

the corners of the elements. The forward computation – represented by the function

handle A – is the numerical solution of the PDE (8), and it is implemented by the

Crank-Nicolson-Galerkin finite-element method.

The true solution x and the right-hand side b consist of the N values of u0 and uT ,

respectively, at the corners of the elements; see Figure 2 for an example, which was

generated using the statement:

[A, b, x, ProbInfo] = PRdiffusion;

This basic call uses the default input value of n =128, and sets default values for

options, which includes
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– options.TFinal is the diffusion time (default is 0.01).

– options.Tsteps is the number of time steps (default is 100).

As previously stated, A is returned as a function handle that can be used to perform

matrix-vector multiplications. As will be illustrated in Section 4, all of the iterative

methods that we provide in the package do not require any additional information

from the user. In case users would like to use this test problem in their own iterative

algorithms, we recall that matrix-vector multiplications can be computed using a simple

function call. For example, to compute r = b−Ax, use the MATLAB statement

r = b - A(x, ’notransp’);

Note that we do not provide code for the adjoint problem, meaning that A(y,’transp’)

is not available, and thus only transpose-free iterative solvers can be used with this

test problem. Note also that if A could be constructed explicitly, it would be an

N × N matrix, where N = n2. The following MATLAB statement can be used to

determine this information:

dims = A([], ’size’);

thus, with the default value of n = 128, N= 16384.

As with other test problems in this package, an alternate value for n can be directly

specified as an input to PRdiffusion. For example, if we want to use n = 256, and

default values for options, then we can simply call PRdiffusion as follows:

[A, b, x, ProbInfo] = PRdiffusion(256);

In addition, the default values for options can easily be changed using PRset. For

example, if we want to use n = 256, a diffusion time of 0.3, and 50 time steps, then we

type:

options = PRset(’TFinal’, 0.3, ’Tsteps’, 50);

[A, b, x, ProbInfo] = PRdiffusion(256, options);

3.3 Inverse Interpolation

Inverse interpolation is the problem of computing the values of a function on a regular

grid, given function values on arbitrarily located points, in such a way that interpolation

of the gridded function values (the unknowns) produces the given values (the data).

This is obviously an inverse problem whose specifics depend on the type of interpolation

being used.

As a simple example, consider linear interpolation on a 1D grid with grid points

tGj , j = 1, 2, . . . and data (ti, bi) on the arbitrary points t1 < t2 < t3 < . . .; then the

unknown function values xj at the grid points must satisfy the interpolation relations

(for all i):

bi = xj +
ti − tGj

tGj+1 − tGj
(xj+1 − xj), where ti ∈

[
tGj , tGj+1

]
.

This gives a simple linear system of equations Ax = b with a sparse coefficient matrix

A (two nonzeros per row). Note that A is rank deficient if there are consecutive grid

intervals with no data points.
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Fig. 3 Illustration of the 2D inverse interpolation problem PRinvinterp2 with n = 50. Left:
the true solution x defined on a regular grid. Right: the data b defined on randomly scattered
points.

Our test problem PRinvinterp2 involves a regular 2D grid with N = n2 grid points

(sGj , tGj ) generated by meshgrid(linspace(0,1,n)), and there are M = N data points

(si, ti) randomly distributed in [0, 1]× [0, 1]. The data values bi at the random points,

as well as the true solution xj at the grid points, are samples of the smooth function

φ(s, t) = sin(πs) sin(π/2 t). See Figure 3 for an illustration; the figures are generated

with PRshowx and PRshowb after constructing the default test data, that is with the

following lines of MATLAB code:

[A, b, x, ProbInfo] = PRinvinterp2;

PRshowx(x, ProbInfo)

PRshowb(b, ProbInfo)

The default value of n is 128, but test data with other values of n can be easily generated

by specifying this value directly as an input to the function, e.g.,

[A, b, x, ProbInfo] = PRinvinterp2(256);

The options structure has only one field, options.InterpMethod, which can be used to

choose one of four different types of interpolation: nearest-neighbour, linear (default),

cubic, and spline. For example, to use the default value of n = 128, but the optional

cubic interpolation, use the following code:

options = PRset(’InterpMethod’, ’cubic’);

[A, b, x, ProbInfo] = PRinvinterp2(options);

The forward computation (corresponding to multiplication with A) is always done by

means of MATLAB’s interp2 function, and thus A is not constructed explicitly as

a matrix, but instead is represented by a function handle. In this test problem we

also provide the adjoint operation, so the function handle A can be used to compute

matrix-vector multiplications with both A and AT . As was mentioned in the previous

test problem, all of the iterative methods that we provide in the package do not need

any additional information from the user. In case users would like to test their own

iterative algorithms, we recall that matrix-vector multiplications with A and AT can be

computed using simple function calls. For example, r = AT (b−Ax) can be computed

as

r = A(b - A(x, ’notransp’), ’transp’);
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In addition, to get the effective size of A (that is, if it could be constructed explicitly),

use the MATLAB statement

dims = A([], ’size’);

With the default value n = 128, the result is dims = [16384, 16384]. Because the

adjoint operation (corresponding to AT ) is coded by us, it is not necessary to use

transpose free methods with this test problem.

3.4 NMR Relaxometry

Nuclear Magnetic Resonance (NMR) relaxometry consists of reconstructing a distribu-

tion of relaxation times associated with the probed material, starting from a signal mea-

sured at given times. Two-dimensional (2D) NMR relaxometry can be performed using

particular excitation sequences and acquisition strategies, so that the joint distribution

of the longitudinal and transverse relaxation times T 1 and T 2 can be recovered, pro-

viding more chemical information about the probed material than its one-dimensional

analogous [29]. 2D NMR relaxometry is mathematically modeled using the following

Fredholm integral equation of the first kind

∫ T̂ 2

0

∫ T̂ 1

0

k(τ1, τ2, T 1, T 2) f(T 1, T 2) dT 1 dT 2 = g(τ1, τ2) , (9)

where g(τ1, τ2) is the noiseless signal as a function of experiment times (τ1, τ2), and

f(T 1, T 2) is the density distribution function. The kernel k(τ1, τ2, T 1, T 2) in equation

(9) is separable and given by

k(τ1, τ2, T 1, T 2) =
(
1− 2 exp(−τ1/T 1)

)
exp(−τ2/T 2) ,

and, upon variable transformation, it can be regarded as a Laplace kernel. Perturba-

tions arising in 2D NMR relaxometry measurements are typically modeled as Gaussian

white noise. Common techniques to regularize the inversion process include the incor-

poration of box constraints and smoothness priors on the solution [5].

We discretize the integral in (9) using the the midpoint quadrature rule with loga-

rithmically equispaced nodes

T 1
1 , T

1
2 , . . . , T

1
n1

and T 2
1 , T

2
2 , . . . , T

2
n2

,

and considering a corresponding change of variables. We then enforce collocation on

the logarithmically equispaced sampled values

τ11 , τ
1
2 , . . . , τ

1
m1

and τ21 , τ
2
2 , . . . , τ

2
m2

,

so that equation (9) can be discretized as

A1 X (A2)T = B , (10)

where

A1
ℓ1,k1

= 1− 2 exp(−τ1ℓ1/T
1
k1
) , ℓ1 = 1, . . . ,m1 , k1 = 1, . . . , n1 ,

A2
ℓ2,k2

= exp(−τ2ℓ2/T
2
k2
) , ℓ2 = 1, . . . ,m2 , k2 = 1, . . . , n2 ,

Bℓ1,ℓ2 = g(τ1ℓ1 , τ
2
ℓ2
) , ℓ1 = 1, . . . ,m1 , ℓ2 = 1, . . . ,m2 ,

Xk1,k2
= f(T 1

k1
, T 2

k2
) , k1 = 1, . . . , n1 , k2 = 1, . . . , n2 .
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Equation (10) is a consequence of the fact that the kernel in (9) is separable. Taking

M = m1m2 and N = n1n2, and defining x ∈ R
N and b ∈ R

M as the vectors obtained

by stacking the columns of X ∈ R
n1×n2 and B ∈ R

m1×m2 , respectively, we obtain the

linear system (1). Due to the separability of the kernel k the matrix A has Kronecker

structure, A = A2 ⊗ A1; we do not construct A explicitly, but instead use a function

handle that implements matrix-vector multiplications with A and AT through the

relation (A2 ⊗ A1)x = vec
(
A1 X (A2)T

)
. The function to construct this example is

PRnmr and, like other applications in our package, is called using:

[A, b, x, ProbInfo] = PRnmr(n, options);

The input parameter n specifies the size of the relaxation time distribution to be

recovered, and can either be an integer scalar, in which case it is assumed that n

= n1 = n2, or a vector n = [n1, n2]. The default value is n = 128.

As with the previous example, since A is a function handle, to compute

r = AT (b − Ax) (e.g., for users who want to use this problem to test their own

iterative methods) we can use the MATLAB statement

r = A(b - A(x, ’notransp’), ’transp’);

and the effective size of A can be obtained as

dims = A([], ’size’);

With the default value of n = 128, this returns dims = [65536, 16384].

The options structure can be used to change other default parameters, including:

– options.numData is the number of acquired measurements, m1 and m2. Default is

m1 = 2n1 and m2 = 2n2.

– options.material specifies the phantom for the relaxation time distribution, which

can be set to be ’carbonate’ (default), ’methane’, ’organic’ or ’hydroxyl’. The

chosen phantom is returned as the vector x.

– options.Tloglimits is an array with two values, [Tlogleft, Tlogright], that

define the limits for the logarithm of the relaxation times T , where

T 1 = logspace(Tlogleft, Tlogright, n1),

T 2 = logspace(Tlogleft, Tlogright, n2),

The default is [−4, 1].
– options.tauloglimits is an array with two values, [taulogleft, taulogright],

that define the limits for the logarithm of the relaxation times T , where

τ1 = logspace(taulogleft, taulogright, m1),

τ2 = logspace(taulogleft, taulogright, m2),

The default is [−4, 1].

The plots shown in Figure 4 were obtained by using PRshowx and PRshowb to display

the data produced from the most basic call to PRnmr with default choices for n and

options; that is,

[A, b, x, ProbInfo] = PRnmr;

PRshowx(x, ProbInfo)

PRshowb(b, ProbInfo)



22 Silvia Gazzola et al.

Fig. 4 Illustration of the NMR relaxometry problem PRnmr with problem size n = 128. Left:
the true solution x as a function of (log10(T

1), log10(T
2)). Right: the data b as a function of

(log10(τ
1), log10(τ

2)).

3.5 Tomography

Tomographic reconstruction problems come in many different forms, and we provide

three different types of such problems, which can generate data using one of the fol-

lowing three statements:

[A, b, x, ProbInfo] = PRtomo(n, options);

[A, b, x, ProbInfo] = PRspherical(n, options);

[A, b, x, ProbInfo] = PRseismic(n, options);

All three problems are from the AIR Tools II package and we refer to [24] for more

details and pictures of the test images. In each case the default value of n determines

the size of x (specifically, x represents an n×n image). The fields that can be specified

in options depend on the kind of tomography taken into account.

PRtomo is used to generate test problems that model X-ray attenuation tomography,

often referred to as computed tomography (CT). This kind of tomography plays a large

role in medical imaging and materials science. The data consists of measurements of

the damping of X-rays that penetrate the object and, to a good approximation, can be

assumed to travel along straight lines; see [6] for details and mathematical models. The

goal is then, from the data, to reconstruct an image of the object’s spatially varying

attenuation coefficient.

Since each ray only traverses a small number of the total amount of image pixels,

the matrix A will be very sparse (for an n × n image there are at most 2n nonzero

elements per row of A). We provide two different measurement geometries (there are

many more in practice):

– options.CTtype = ’parallel’ (default) gives a parallel-beam tomography where,

for each source-detector position angle, there are a number of equidistantly spaced

parallel X-rays. This is the typical geometry in synchrotron X-ray measurements,

and it corresponds to the well-known Radon transform.

– options.CTtype = ’fancurved’ gives, for each source-detector position angle, a

fan of X-rays from a single source to a curved detector, with an identical angular

span between all the rays. This is often the case in large medical X-ray scanners.
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The data is usually organized as an image called the sinogram, in which each column

consists of the data for one source-detector position angle. The user can choose the

number of angles, the number of rays per angle, etc.

PRspherical is used to generate test problems that model spherical means tomog-

raphy. This kind of tomography arises, e.g., in photo-acoustic imaging based on the

spherical Radon transform, where the data consists of integrals along circles whose

centers are located outside the object. The goal is to reconstruct an image of the initial

pressure distribution inside the object (caused by a laser stimulation). Since each circle

only intersects a small number of image pixels, the matrix A is sparse. The data is or-

ganized in a sinogram-like image whose columns are the data for each circle center. The

user can choose the number of circle centers and the number of concentric integration

circles per center.

PRseismic is used to generate test problems that model seismic travel-time tomog-

raphy. This type of tomography uses measurements of the delay of seismic waves to

reconstruct an image of the slowness (the reciprocal of the sound speed) in the do-

main of interest. In our model problem, the sensors are located along two edges of

the image (corresponding to the surface and one bore hole) while the wave sources

are located along a third edge (corresponding to another bore hole). We provide two

different models of the seismic wave:

– options.wavemodel = ’ray’ (default) corresponds to an assumption that the wave

frequency is infinite, such that the waves can be well represented by straight lines

(similarly to X-ray tomography).

– options.wavemodel = ’fresnel’ corresponds to a model with a finite wave fre-

quency, where it is assumed that the wave is confined to its first Fresnel zone – a

cigar-shaped domain with its endpoints at the source and the detector.

Similarly to X-ray tomography, in both cases we obtain a sparse matrix, which is more

sparse for the line model. We organize the data in an image where each column contains

all the measurements from one source. Since A is a sparse matrix for all the tomography

test problems, standard MATLAB operators for multiplication, transpose, etc., can be

used.

3.6 Adding Noise to the Data

We also provide a function in order to make it easy to add noise to the data b:

[bn, NoiseInfo] = PRnoise(b, NoiseLevel, kind);

where the output bn = b + noise is the noisy data; noise is the vector of perturbations,

and it is available within the output structure NoiseInfo. As is the case with other

PR functions, PRnoise can be called without specifying any input, in which case

default values are used. The noise is scaled such that

‖noise‖2/‖b‖2 = NoiseLevel (11)

with the default NoiseLevel = 0.01. We provide three different kinds of noise that can

be easily obtained by setting the following options:

– kind = ’gauss’ (default) gives Gaussian white noise, noise(i) ∼ N (0, σ2), with

zero mean and with the standard deviation σ chosen to satisfy (11): This noise is

easily generated by means of:
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[bn, NoiseInfo] = PRnoise(b, NoiseLevel, ’gauss’);

– kind = ’laplace’ gives Laplacian noise, noise(i) ∼ L(0, β), with zero mean, and

the scale parameter β is chosen to satisfy (11). This noise is easily generated by

means of:

[bn, NoiseInfo] = PRnoise(b, NoiseLevel, ’laplace’);

– kind = ’multiplicative’ gives a specific type of multiplicative noise (often en-

countered in radar and ultrasound imaging [14]) where each element bn(i) equals

b(i) times a random variable following a Gamma distribution Γ(κ, θ) with mean

κ θ = 1 and the parameter κ chosen such that (11) is approximately satisfied:

[bn, NoiseInfo] = PRnoise(b, NoiseLevel, ’multiplicative’);

Information about the kind of generated noise and its level are available within the out-

put structure NoiseInfo. Note that PRnoise makes use of MATLAB’s random number

generator functions, and thus to construct repeatable experiments (i.e., to generate

the same bn for multiple experiments), users should use MATLAB’s rng function to

control the seed of the random number generator before calling PRnoise.

Other types of noise can be added by means of the function imnoise from MAT-

LAB’s Image Processing Toolbox.

While Poisson noise is also a common type of noise in imaging, it is not included

in this package because it does not conform to the use of PRnoise. Specifically, in the

presence of Poisson noise each noisy data element bn(i) is an integer random variable

following the Poisson distribution P(b(i)), i.e., the noise-free data element b(i) is

both the mean and the variance of bn(i). Hence, if we want to scale the “noise” vector

noise = bn−b then we can only do this by scaling the noise-free data vector b. Poisson

noise can be incorporated by means of poissrnd from the Statistics Toolbox.

Another important type of noise, which arises in X-ray computed tomography, can

be referred to as “log-Poisson” (not a standard name). Here the noisy elements of the

right-hand side in the linear model (1) are given by bi = log(d̃i) with d̃i ∼ P(di),
where di is the expected photon count for the ith measurement. It can be shown that

log(d̃i) approximately follows the normal distribution N (log(di), d
−1
i ) (corresponding

to a quadratic approximation of the associated likelihood function, cf. [34]). This pro-

vides a simple way to generate reasonably realistic noise for X-ray tomography problems

of the form (1) with the code:

noise = randn(size(b))./sqrt(b);

bn = b + noise;

Again, note that one must scale the noise-free b in order to scale the relative noise

level.

4 Examples and Demonstrations

In this section we demonstrate the use of the iterative reconstruction methods and the

test problems by means of some numerical examples. Scripts to run these examples are

available in IR Tools with the naming convention EX .
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4.1 Solving 2D Image Deblurring Problems with CGLS and Hybrid Methods

Here we illustrate the use of IRcgls and IRhybrid lsqr using the speckle image de-

blurring example PRblurspeckle described in Section 3.1. We use the default image

size of n = 256 (i.e., the true and blurred images have 256 × 256 pixels), the default

true image (Hubble Space Telescope), the default level of blurring (moderate), and we

add 1% Gaussian noise; specifically, we generate the data using the following lines of

MATLAB code:

NoiseLevel = 0.01;

[A, b, x, ProbInfo] = PRblurspeckle;

[bn, NoiseInfo] = PRnoise(b, ’gauss’, NoiseLevel);

Figure 5 shows the resulting true image x (Fig. 5a) and the blurred and noisy image

bn (Fig. 5b). We begin by running IRcgls for 100 iterations, saving only the iteration
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Fig. 5 Image blurring test data for the example in Section 4.1: (a) true image, (b) blurred
and noisy image.

satisfying the stopping criterion; we use the input options to provide the true solution

to IRcgls, so that we can investigate how the relative errors behave at each iteration.

Specifically:

options = IRset(’x_true’, x);

[X, IterInfo_cgls] = IRcgls(A, bn, options);

Note that in this example we do not specify a maximum number of iterations, so the

method uses the default value 100. The output X contains the solution at the final

iteration; in this example, convergence criteria are not satisfied, so the method runs

the full 100 iterations, and thus X is the solution at iteration 100. Also note that because

we specified the true solution x in options, the relative errors ‖x(k)−x‖2/‖x‖2 at each

iteration are saved in the output structure, IterInfo cgls.Enrm. A plot of the relative

errors can then be easily displayed as

plot(IterInfo_cgls.Enrm)

From this plot, which is shown by the blue solid curve in Figure 6, we observe the well-

known semi-convergence behavior of CGLS, and we can also observe that the smallest

relative error occurs at iteration 40 (denoted by the red circle in the plot). We refer to

the solution where the relative error is minimized as the “best regularized solution.”

One feature of our iterative methods is that if the true solution is provided through
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the options structure, then in addition to computing error norms, this best regularized

solution is also saved in IterInfo cgls.BestReg.X, and the iteration where the error

is smallest can be found in IterInfo cgls.BestReg.It. Thus, if we want to display

this solution where the error is minimized, we can use PRshowx as follows:

PRshowx(IterInfo_cgls.BestReg.X, ProbInfo)

This solution is shown in Figure 7a.
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Fig. 6 Relative error plot for the image deblurring test problem from the example in Sec-
tion 4.1. The blue solid curve displays the iteration history (relative errors) of IRcgls, the
red circle marks iteration 40, where the IRcgls relative error is at its minimum value, and
the magenta square marks iteration 25, which is the IRcgls stopping iteration chosen by
the discrepancy principle. The black dashed curve is the iteration history (relative errors) of
IRhybrid lsqr, and the magenta × marks iteration 33, which is the IRhybrid lsqr stopping
iteration chose by the discrepancy principle.
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Fig. 7 Restored images from the example in Section 4.1: (a) restored image using 40 iterations
of IRcgls, (b) restored image after 25 iterations of IRcgls, (c) restored image after 33 iterations
of IRybrid lsqr.

Using the true solution to determine a stopping iteration is cheating, but our im-

plementations can use other schemes that do not require knowing the true image. For

example, if we know the noise level in the data, then that information can be used

along with the discrepancy principle to determine a stopping iteration. To do this, we

simply need to change the options, and run IRcgls; specifically,
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options = IRset(options, ’NoiseLevel’, NoiseLevel);

[X, IterInfo_cgls_dp] = IRcgls(A, bn, options);

In this case, the discrepancy principle terminates IRcgls at iteration 25. The relative

error at this iteration is shown by the magenta square in Figure 6. It is well-known

that the discrepancy principle tends to compute overly smooth solutions, which can be

observed in Figure 6, and the corresponding computed restoration shown in Figure 7b.

We conclude this subsection by illustrating the use of one of the hybrid methods,

namely IRhybrid lsqr. This scheme enforces regularization at each iteration, and thus

avoids the semi-convergence behavior seen in IRcgls. As in the case of IRcgls, we

will use the noise level, along with the discrepancy principle, to choose regularization

parameters at each iteration, and to determine a stopping iteration. Specifically, if we

use IRhybrid lsqr and if we properly modify the information about the regularization

parameter choice in the previously defined options,

options = IRset(options, ’RegParam’, ’discrep’);

[X, IterInfo_hybrid] = IRhybrid_lsqr(A, bn, options);

the method terminates at iteration 33 (which can be found from the output structure

IterInfo hybrid.its).

If we want to show that IRhybrid lsqr avoids the semi-convergence behavior, we

need to force the method to run more iterations, past the recommended stopping

iteration. We can do this by using an additional NoStop specification in the options.

That is,

options = IRset(options, ’NoStop’, ’on’);

[X_hybrid, IterInfo_hybrid] = IRhybrid_lsqr(A, bn, options);

With the NoStop option turned ’on’, the iterations continue to the default maxi-

mum of 100. In this case, the vector X hybrid is the solution at iteration 100, but we

also save the solution at the recommended stopping iteration in the output structure,

IterInfo hybrid.StopReg.X, and the iteration where the stopping criterion is satis-

fied is saved in IterInfo hybrid.StopReg.It. Note that the field StopReg is different

than the field BestReg: the former stores information about the solution that satisfies

the stopping criterion; the latter stores information about the best computed solution

(and requires x true to be specified among the input options). The relative errors for

100 iterations of IRhybrid lsqr are shown in the black dashed curve of Figure 6, with

the recommended stopping iteration denoted by the magenta ×. The solution at this

recommended stopping iteration is shown in Figure 7c.

The code used to generate the est problem and results described in this example is

provided in our package in the script EXblur cgls hybrid.m.

4.2 Solving the 2D Inverse Interpolation Problem with Priorconditioned CGLS

Here we use the 2D inverse interpolation test problem PRinvinterp2 to illustrate how

to use prior-conditioning in IRcgls. We begin by generating the test problem using n

= 32, and add 5% Gaussian noise:

n = 32;

[A, b, x, ProbInfo] = PRinvinterp2(n);

bn = PRnoise(b, 0.05);
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The true solution x and data b were already shown in Section 3.3, Figure 3; the data bn

looks very similar to b. We attempt to solve this problem with three different versions

of CGLS:

– Standard CGLS, using the statement:

K = 1:200;

[X1, IterInfo1] = IRcgls(A, bn, K);

Unfortunately, without providing additional information, CGLS cannot recognize

an appropriate stopping iteration, and the final computed solution is a poor ap-

proximation; see Figure 8a.

– Priorconditioned CGLS with options.RegMatrix = ’Laplacian2D’ which enforces

zero boundary conditions everywhere. This can be computed using

options.RegMatrix = ’Laplacian2D’;

[X2, IterInfo2] = IRcgls(A, bn, K, options);

In this case, CGLS finds a better approximate solution at iteration 6, except at one

of the region boundaries; see Figure 8b.

– We can also create our own prior-conditioning matrix L. Specifically we construct

a matrix L that is similar to the 2D Laplacian, except we enforce a zero derivative

on one of the boundaries;

L1 = spdiags([ones(n,1),-2*ones(n,1),ones(n,1)],[-1,0,1],n,n);

L1(1,1:2) = [1,0]; L1(n,n-1:n) = [0,1];

L2 = L1; L2(n,n-1:n) = [-1,1];

L = [ kron(speye(n),L2) ; kron(L1,speye(n)) ];

L = qr(L,0);

options.RegMatrix = L;

[X3, IterInfo3] = IRcgls(A, bn, K, options);

In this case, the iteration terminates after k = 10 iterations, and because the prior-

conditioner enforces correct boundary conditions, we obtain a very good computed

approximation; see Figure 8c.
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Fig. 8 Illustration of the solution of the 2D inverse diffusion problem PRdiffusion with n =
32 by means of IRcgls. See the text for details.

In this example, we rely on the default normal equations residual for the stopping

rule, ‖AT (b− A x(k))‖2/‖A
T b‖2 ≤ options.NE Rtol = 10−12, where x(k) is the com-

puted approximate solution at iteration k. We also remark that in each of the calls
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to IRcgls, the third input argument K = 1:200 is used to request that the methods

return all solution iterates in X1, X2 and X3. For example, since the first call to IRcgls

runs all 200 iterations, X1 is an array of size 1024× 200, but since the other two calls

only needed 5 iterations, X2 and X3 are arrays of size 1024× 5. This can be very useful

if one wants to view solutions at earlier iterations. For example, it would be very easy

to see how the solution at iteration 5 of the first call to IRcgls compares with second

two calls, e.g.,

PRshowx(X1(:,5), ProbInfo)

However, requesting all the solution iterates can lead to a large amount of storage,

especially when solving very large problems, so we caution users to use this capability

wisely. For example, K can be any set of integers, such as K = [1, 10:10:200], which

would return solutions at iterations 1, 10, 20, . . . , 200.

The code used to generate the test problem and results described in this example

is provided in our package in the script EXinvinterp2 cgls.m.

4.3 Solving the 2D Inverse Diffusion Problem with RRGMRES

Our implementation of the 2D inverse diffusion problem from §3.2 in PRdiffusion does

not provide a function for operations with the adjoint operator (the matrix transpose),

so we choose to solve the problem by means of IRrrgmes, which does not require the

matrix transpose. As with previous examples in this section, we begin by setting up

the test problem:

n = 64;

NoiseLevel = 0.005;

[A, b, x, ProbInfo] = PRdiffusion(n);

[bn, NoiseInfo] = PRnoise(b, NoiseLevel);

The true solution x and data bn are shown in Figure 9a and Figure 9d, respectively. We

now use RRGMRES to solve the problem, but first we set a few options by modifying

the appropriate fields in the option structure:

– First, we set options.x true to the true solution x which allows the method to

compute relative error norms.

– Next, we want to use the discrepancy principle as stopping rule, so we need to set

options.NoiseLevel. We also change the default safety parameter eta to be 1.01.

– Finally, we turn on the option NoStop so that the iteration will proceed to the

maximum number of iterations, even if a stopping criterion is satisfied.

As mentioned earlier, all these parameters can be set in a single call to IRset,

options = IRset(’x_true’, x, ’NoiseLevel’, NoiseLevel, ...

’eta’, 1.01,’NoStop’, ’on’);

We can then use RRGMRES as follows:

[X, IterInfo] = IRrrgmres(A, bn, K, options);

Once the iterations are completed, we can access several pieces of information from the

structure IterInfo. Specifically,

– IterInfo.Enrm contains the relative error norms, which are displayed in Figure 9b.
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Fig. 9 Illustration of the solution of the 2D inverse diffusion problem PRdiffusion with n =
64 by means of IRrrgmres. We set options.NoStop = ’on’ to force the iterations to continue
beyond the number of iterations selected by the discrepancy principle stopping rule. (a) true
solution x, (b) relative error history, (c) relative residual norm history, (d) noisy data bn, (e)
best reconstruction (k = 35), (f) reconstruction obtained when the discrepancy principle is
satisfied (k = 24).

– The “best regularized solution” is saved in IterInfo.BestReg.X, and the iteration

where the error is smallest can be found in IterInfo.BestReg.It. This solution is

shown in Figure 9e.

– IterInfo.Rnrm contains the relative residual norms at each iteration,

‖b−Ax(k)‖2/‖b‖2, which are displayed in Figure 9c, along with a line marking the

stopping point defined by the discrepancy principle. That is, once the residual norm

reaches the red dashed line, the convergence criterion defined by the discrepancy

principle is considered satisfied.

– The precise iteration satisfying the stopping criterion, along with its corresponding

solution, can be obtained from IterInfo.StopReg.It and

IterInfo.StopReg.X, respectively. This solution is shown in Figure 9f.

We again emphasize that all the iterative methods implemented in our package have a

similar input and output structure.

The code used to generate the test problem and results described in this example

is provided in our package in the script EXdiffusion rrgmres.m.

4.4 Solving the 2D NMR Relaxometry Problem with MRNSD

To demonstrate the advantage of imposing nonnegativity constraints we consider the

2D NRM relaxometry problem from §3.4 implemented in PRnmr, with n = 64. As done

for the other test problems, we begin by setting

n = 64;
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Fig. 10 Illustration of the solution of the 2D NMR relaxometry problem PRrmn with n =
64 by means of IRmrnsd. We use a color map that emphasizes the behavior of the large flat
region. We set options.NoStop = ’on’ to force the iterations to continue beyond the number
of iterations selected by the discrepancy principle stopping rule. (a) true solution x, (b) relative
error history, (c) relative residual norm history, (d) best reconstruction by CGLS (k = 94), (e)
best reconstruction by MRNSD (k = 19999), (f) reconstruction obtained by MRNSD when
the discrepancy principle is satisfied (k = 1950).

NoiseLevel = 0.05;

[A, b, x, ProbInfo] = PRnmr(n);

bn = PRnoise(b, NoiseLevel);

The true solution x is shown in Figure 10a. This test problem is extremely hard to

solve, and every iterative method available in our package requires a large amount

of iterations to compute a meaningful approximation of x. We allow 20000 iterations

at most, and we can store one approximate solution every 1000 iterations by setting

K = [1, 1000:1000:20000]. We assign the following options by calling the IRset func-

tion:

options = IRset(’x_true’, x, ’NoiseLevel’, NoiseLevel, ...

’eta’, 1.01, ’NoStop’, ’on’);

We now use CGLS as follows:

[X_cgls, IterInfo_cgls] = IRcgls(A, bn, K, options);

The solution computed by means of IRcgls is shown in Figure 10d; this solution

hardly resembles the exact one reported in Figure 10a and, more specifically, it has

large oscillations and negative values in the part that ideally should be zero.

To run IRmrnsd with the same test data and input options as the ones used for

IRcgls we simply type

[X_mrnsd, IterInfo_mrnsd] = IRmrnsd(A, bn, K, options);

We recall that nonnegativity constraints are automatically imposed within the IRmrnsd

iterations. IterInfo mrnsd stores various pieces of information about the behavior of
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this solver applied to this test problem. In particular, we can access the relative error

at each iteration in IterInfo.Enrm, which is displayed in Figure 10b. The relative

residual at each iteration is stored in IterInfo.Rnrm; this is displayed in Figure 10c,

together with a horizontal line marking the relative noise level (useful to visually inspect

when the discrepancy principle is satisfied). The “best regularized solution” is saved in

IterInfo mrnsd.BestReg.X, and the iteration where the error is smallest can be found

in IterInfo mrnsd.BestReg.It. This solution is shown in Figure 10e. The precise

iteration satisfying the discrepancy principle, along with its corresponding solution,

can be obtained from IterInfo mrnsd.StopReg.It and IterInfo mrnsd.StopReg.X,

respectively. This solution is shown in Figure 10f.

The code used to generate the test problem and results described in this example

is provided in our package in the script EXnmr cgls mrnsd.m.

4.5 Computing Sparse Reconstructions

This example illustrates how to use IRirn and IRell1 to compute approximately sparse

reconstructions – in the sense that the solution has many small values (that may

consecutively be truncated to zero).

The test problem is Gaussian image deblurring, and we choose one of our syn-

thetically generated images that is made up of randomly placed small “dots”, with

random intensities. This test mage may be used, for example, to simulate stars being

imaged from ground based telescopes. To generate the test problem, we use the options

structure to specify the ’dotk’ synthetic image,

PRoptions.trueImage = ’dotk’;

[A, b, x, ProbInfo] = PRblurgauss(PRoptions);

and add 10% white noise,

NoiseLevel = 0.1;

bn = PRnoise(b, NoiseLevel);

We then compute the best solutions by means of IRcgls, which cannot impose spar-

sity, as well as IRell1 and IRirn, which are simplified drivers for IRhybrid fgmres

and IRrestart, respectively. Both IRell1 and IRirn are designed to make it easy to

approximately enforce a 1-norm penalization on the solution, leading to a reconstruc-

tion with many small elements. To illustrate the effect of the parameter-choice rule

for the projected problem in the hybrid method IRhybrid fgmres, we use both GCV

(which is the default) and the discrepancy principle. If GCV is used, then the iterations

stop when the minimum of the iteration-dependent GCV function stabilizes or starts

increasing within a given window. If the discrepancy principle is used, the iterations

are stopped according to the strategy proposed in [17], and previously addressed in

Section 2.5. The regularization parameters for the inner iterations of IRirn are chosen

by the discrepancy principle that also acts as a stopping rule for the inner iterations;

the default stopping criterion for the outer iterations is the stabilization of the norm of

the solution at each restart. However, for all the solvers, we are interested in computing

the best solutions, which may be found after the stopping rules are satisfied. For this

reason we use the “no stop” feature in IRcgls and IRell1, and the “no stop out” fea-

ture in IRirn, so to ensure that the iterations are continued after the stopping criterion

(for IRcgls and IRell1) and the outer stopping criterion (for IRirn) are satisfied.
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Specifically, first run IRcgls for 80 iterations, using the true solution to compute

error norms, and turn NoStop on:

options = IRset(’MaxIter’, 80, ’x_true’, x, ’NoStop’, ’on’);

[Xcgls, info_cgls] = IRcgls(A, bn, options);

Now compute a sparse solution using the default GCV rule for choosing the regular-

ization parameter of the projected problem,

options.NoStop = ’on’;

[Xell1_GCV, info_ell1_GCV] = IRell1(A, bn, options);

To change the default regularization parameter-choice rule to the discrepancy principle,

using the true NoiseLevel with a safety value for eta, we use IRset as follows:

options = IRset(options, ’RegParam’, ’discrep’, ...

’NoiseLevel’, NoiseLevel, ’eta’, 1.1);

[Xell1_DP, info_ell1_DP] = IRell1(A, bn, options);

Finally, consider IRirn with the discrepancy principle used for the inner iterations,

with NoStopOut turned on, and with 80 total iterations. This can be simply achieved

as follows:

options.NoStopOut = ’on’;

K = 80;

[Xirn_DP,info_irn_DP] = IRirn(A, bn, K, options);

Because of the interplay between the inner iterations (whose number depends on the

discrepancy principle) and outer iterations, we need to explicitly specify K to ensure

that the maximum number of total iterations is 80.

Figures 11a and 11b show the true image and the noisy blurred image, respectively.

The CGLS reconstruction shown in 11c is clearly contaminated by oscillations (“ringing

effects”) around the reconstructed stars, and we also see other artifacts that appear

as “freckles” as discussed in [23]. For the reconstructions computed by IRell1 shown

in 11d-e, we see that the parameter-choice rule for the projected problem indeed has

an effect on the iterations – in this example we obtain the best reconstruction with

the discrepancy principle. Also the reconstruction computed by IRirn shown in 11f

is successful in computing a sparse solution though, for this test problem, IRell1

exhibits a better performance. This example demonstrates that the heuristic approach

to computing a sparse reconstruction in IRell1 works well – as long as one can accept

small elements rather than exact zeros in the reconstruction.

The code used to generate the test problem and results described in this example

is provided in our package in the script EXsparsity.m.

5 Conclusion

We gave an overview of a MATLAB software package IR Tools that provides large-

scale iterative regularization methods and new large-scale test problems. Our package

allows the user to easily experiment with a variety of well-documented iterative regular-

ization methods in a flexible and uniform framework, and at the same time our software

can be used efficiently for real-data problems. We also provide a set of realistic large-

scale 2D test problems that replace the outdated ones from Regularization Tools

and that are valid alternatives to the ones available within other popular MATLAB

toolboxes and packages.
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(a) (b) (c)

(c) (d) (e)

Fig. 11 Illustration of sparse solutions to an image deblurring problem generated with PRblur

and n = 256, and with a sparse test image with synthetic stars. (a) true solution x, (b) noisy
blurred image bn, (c) best CGLS reconstruction (k = 53), (d) best IRell1 solution with the
default GCV parameter-choice rule for the projected problem (k = 5), (e) best IRell1 solution
with the discrepancy principle parameter-choice rule for the projected problem (k = 12), (f)
best IRirn solution with the discrepancy principle parameter-choice and stopping rule for the
inner iterations (k = 4). All negative pixels are truncated to 0 and the inset figures zoom in
on the bottom right 30× 30 corner of the image.
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