	шәํ 우 ห ר
60:ع¢ः し てZ0Z/80/gz	әұер реојимоо
	ş46!y
	${ }_{\text {ıəus! }}$ qnd
	ио!ฺe!!
	s.outn
	әd χ_{\perp} шән

Visiting Astronomyer at the Infrared Telescope Facility, which is
operated by the University of Hawail under contrilt trom the
National Aeronautics and Space Administration.
6861 'st Kew 'Reunor lepishydonst ul deadde ol

and
Department of Physics
University of Missouri - St. Louis
so!skyd fo tuəwtaedəa

IRAS OBSERVATIONS OF THE ρ OPHIUCHI INFRARED CLUSTER:
$878 \cdot{ }^{\circ} \mathrm{N}$

We present an analysis of high sensitivity IRAS coadded survey data and Polnted Ohservations coward a $4.3 \mathrm{pc}^{2}$ area comprising, the central star-forming cloud of the Ophiluchus molecular complex. Using near-infrared and the surveys, we are able to assoclate 44 of the 64 IRAS 12μ polnt sources in this region with young stellar objects. As a result, a total of 78 YSOs are now established as members of this dust-embedded cluster. By synthesting the visible/near-infrared data with that from IRAS, we have constructed spectral energy distributions and estimated bolometric luminosities for the majority of embedded sources. We have classified each spectral energy distribution thto the classification scheme of Lata and Wilking by using the spectral index in the $2.2-25 \mu \mathrm{~m}$ wavelength interval. The shapes of the spectral energy distrihutions form a continuous sequence from heavily obscured objects (Class 1) to T Taurl stars (Class II); with the ald of the theoretical models of Adams, Lada, and Shu, we interpret this as an evolutionary sequence from accreting protostars (Class I) to pre-main-sequence objects with circumstellar disks (Class II). From the relative number of objects in each evolutionary state, we are able to estimate crudciy the difetime of the accretion phase, the mass accretion rate, and the duration of star formation in Ophiuchus. Our analysis suggests that the relatively high star formation efficiency in the core of the cloud (SFE > 22%) is the result of an efficient burst of star-forming activity which has occurred over the last few million years. The luminosity function of the embedded cluster is also constructed. A remarkable feature of the luminosity function is the segregation of source luminosities by the shapes of their spectral energy distributions. The dominance of Class I objects at intermediate luminosities suggests that either stars undergo luminosity evolution as they progress from Class ito Cl ass II objects or that stars in the cloud are being formed sequentially in mass. The observed luminosity function represents a direct measurement of the true
original luminosity function of the embedded cluster. The relationship between the observed luminosity function and that derived from the Initial Mass Function is discussed.
Subject headings: clusters: open - infrared: sources - luminosity function - spectrophotometry -stars: pre-main-sequence

- nebulae: Individual

I. introduction

In our galaxy, the formation and evolution of stars takes place within dense molecular clouds. Consequently, it is reasonable to expect young stellar objects (YSOs) to be physically associated with varying amounts of interstellar gas and dust which will affect their observed appearance. Indeed, the youngest objects (e.g., protostars) should be rendered completely invisible by the obscuration of opaque (at visual wavelengths) circumstellar dust. In such circumstances a significant fraction of the luminous energy of a YSO will be radiated in the infrared. Since the circumstellar material associated with YSOs is distributed throughout a volume of space considerably larger than that of the young star itself, the resulting emission will be likely radiated over a wavelength range larger than that expected from a single temperature blackbody or photosphere (e.g., Lada 1987). Therefore, to Investigate the nature of the youngest stellar sources requites observations over a wide range of infrared wavelengths (i.e., 1 to $100 \mu \mathrm{~m}$). Such observations have shown that the infrared energy distributions of YSO exhibit well-defined structure (i.e., Lada and Wilking 1984; Myers et al. 1987). The source to source variation in the shapes of their energy distributions can be used to classify YSOs into broad but distinct morphological groups, which appear to represent phases in an evolutionary
sequence from protostar to main sequence star (i.e., Lada 1987; Adams, Lada and Shu 1987). In addition, integration over the Infrared energy
distributions provides relatively accurate determinations of the holometric luminosities of young stellar objects (Lada and Wilking 1984, hereafter LW). Study of source energy distributions, therefore, may be a powerful probe for Investigating star formation and early stellar evolution.

It would be extremely useful to make a comparative study of source energy distributions for the entire embedded population of YSOs in an individual star-forming cloud. A systematic investigation of a reasonably complete sample of newly formed objects from the same formation site would be potentially capable of addressing some fundamental issues concerning star formation including: the overall duration of star formation activity in a cloun, the relative duration of the vartous phases of early stellar evolution, the luminosity evolution of young stellar objects, the role of energetic outflow activity in early stellar evolution, the nature of the Inftal Iuminosity function and the origin of the initial mass function.

The nearby ρ Ophiuchi molecular cloud is a prime site for the type of systematic investigation described above. Its centrally condensed core harbors an unusually high density of young stellar objects (Grasdalen, Strom and Strom 1973; Vrba et at. 1975; Ellas 1978; Wilking and Lada 1983) which are primarily of low luminosity and presumably low mass (Fazlo et al. 1976; Wilking and Lada 1983; LW; Cudifp et al. 1985; Young, Lada and Wilking 1986). Because of the relatively high star formation efficiency and the quiescent conditions in the cloud core, it has been suggested that a gravitationally bound claster simllar to the Pleaides will ultimately emerge from the cloud (Wliking and Lada 1983; Lada, Marruilis and Dearhorne 1984). An Initial study of the nature of the embedded population in the Ophiuchus clour was made hy

LW. They constructed energy distributions from $1-20 \mu \mathrm{~m}$ for more than 30 sources in the cloud and showed that the sources could be grouped into three distinct spectral classes depending on the shapes of their energy distributions. They also determined a luminosity function for the embedded sources which appeared to be deflcient in intermediate luminosity stars compared to that of the initial luminosity function for field stars. However, these observations and their analysis were limited by the lack of data at far-infrared wavelengths where a significant portion of the YSO fuminosities are radiated. Furthermore, since the sources studfed were selected from inhomogenous and incomplete near-infrared sarveys of the cloud, it was not clear how representative they were of the entire embedded population.

In principle, these 1 imitations can be overcome by analysis of the far-infrared observations of this region obtained by IRAS. The IRAS observations completely sample the entire extent of the cloud with relativety high sensitivity, providing a complete census of far-infrared emtssion from the repion. With these observations it ts possible to obtain a more complete and representative sample of the embedded population of the cloud as well as more complete energy distributions and more accurate bolometric luminosities for the embedded sources. An analysis of the IRAS high resolution Pointed Observations of a $1.5 \mathrm{pc}^{2}$ region which comprises most of the high extinction core of the cloud has been presented by Young, Lada and Wilking (1986; hereafter Paper I). In this paper, we use IRAS coadded survey data, coupled with new high sensitivity near-infrared observations, to investigate the nature of embedded objects over a much larger area ($4.3 \mathrm{pc}^{2}$) of the cloud. This larger area, shown In Figs. la and 1 b , encompasses the central cloud of the ρ Ophiuchi complex and includes the core region. The boundaries for the reglon of study correspond to the contour of ${ }^{13} \mathrm{C} 0$ emission where $\mathrm{T}_{\mathrm{R}}{ }^{*}\left({ }^{13} \mathrm{CO}, 1-0\right)=6 \mathrm{~K}$ (Loren 1988) and A_{v} ~ 4.5 mag (assuming an excitation temperature of 25 K , Dickman 1978).

Combining the lRAS and near-infrared data sets enables us to identify a total of 78 members of the embedfed cluster. Spectral energy distributions are constructed for 53 objects and are compared with theoretical models to gain insight into their evolutionary status. Bolometric luminosities can be estimated for nearly all of the association members leading to a revised luminasity function for this dust-embedded cluster.
II. Dbservational Procedure and Equipment
A. IRAS Data Analysis

The first step in the analysis of the IRAS data was the identification of point or smali extended sources in the $12 \mu \mathrm{~m}$ and $25 \mu \mathrm{~m}$ data bases. For this purpose, we examined three high sensitivity data sets: high resolution pointed Observations of the core (Paper 1), survey resolution Polnted Observations MC2169 (centered on $16^{\mathrm{h}} 23^{\mathrm{m}} 44^{\mathrm{s}} .0,-23^{\circ} 59^{\prime} 22^{\prime \prime}$) and MC0016 (centered on $16^{\mathrm{h}} 24^{\prime} \mathrm{m} 15.6$, $-24^{\circ} 35^{\prime} 42^{\prime \prime}$), and coadded survey data. The full-width at half power (FWHP) resolution of these later two data sets in the 12 and $25 \mu \mathrm{~m}$ bands was $45^{\prime \prime}$ in the in-scan direction (roughly north-south in decifnation) and $210^{\prime \prime}$ in the cross-scan direction.

Positions and flux densities of sources not already presented in Paper 1 were determined exclusively from in-scan slices through each source using coadded survey data. As an example, in-scan slices of IRAS 34 at 12 and $25 \mu \mathrm{~m}$ are shown In Fig. 2 and are typical of many sources in the cloud. The baseline chosen to subtract out the extended plateau of emission (usually present in all bands) is Indicated. From this slice, one can isolate the emission of IRAS 34 from surrounding sources. After baseline subtraction, the source ftux density was determined by comparing the width of the emission profile with that expected by a point source (45").

Photometric callbration was based upon the same absolute callbration as the IRAS Point Source Catalog (1985). We estimate the photometric uncertainties to be $\pm 15 \%$ in regions of low source density and increasing to as high as $\pm 50 \%$ in confused regions. These larger uncertainties are most prevalent in the $60 \mu \mathrm{~m}$ and $100 \mu \mathrm{~m}$ bands where the source confusion is most serious. No color corrections were made to the source flux densities; these corrections are less than 10% since the $12-100 \mu \mathrm{~m}$ energy distributions are generally flat or decreasing in λF_{λ}.

The completeness limit of the IRAS coadded survey data is difficuit to estimate due to the vartable source density across the field. In regions of low source density, the reliable ($4.5-5 \sigma$) detection limit at $12 \mu \mathrm{~m}$ is roughly 3 times more sensitive than the maln survey, i.e, $F_{v}(12 \mu \mathrm{~m})=0.15 \mathrm{Jy}$. Sources with flux densities at this level are unreliable in confused regions. A rellable detection 1 lmit in heavily confused areas at $12 \mu \mathrm{~m}$ is about 1.0 Jy .

In addition to the 18 IRAS sources identified in high resolution observations of the cloud core (Paper 1), 46 point or small extended sources were extracted from adjacent regions. The positions and fluxes estimated for these sources are given in Table lalong with the FWHP of the source in the in-scan direction. The positions are rellable to within roughly $15^{\prime \prime}$ in declination and $30^{\prime \prime}$ in right ascension for atrong, unconfused sources. Since we bin the flux from all detectors for a given source, this positional accuracy is slightly poorer than that of the Point Source Catalog. The positions of these 64 IRAS sources are shown in Fig. la superposed on the red POSS photograph and relative to the approximate boundary of the molecular cloud. Large crosses denote sources with $12 \mu \mathrm{~m}$ flux densities greater than 0.25 Jy and small crosses less than this value. For comparison, the IRAS $12 \mu \mathrm{~m}$ coadded intensity map of the same region is presented in Fig. lb, indicating the prevalence of low-level
extended emission across most of the entire cloud.
Only 24 of these 64 sources are 11 sted in the Point Source Catalog. The higher sensitivity of the Pointed Observations and coadded survey is primarily responsible for our larger sample. The high resolution Pointed Observations have enabled us to resolve 3 multiple sources confused in the Point Source Catalog.
B. The Identification of Candidate Optical/Near-Infrared Counterparts

High resolution near-infrared (typically 6-12" beam size) and the objective prism surveys can be used to identify YSOs which are associated with the IRAS emission. Two-micron sources and ho stars which lle within $20^{\prime \prime}$ and $45^{\prime \prime}$ of the IRAS $12 \mu \mathrm{~m}$ position in the in-scan and cross-scan directions were considered as candidates. Near-Infrared sources with slighty larger offsets in the in-scan direction were admitted as counterparts for IRAS sources extended by more than 45" (e.g., IRAS 9). For three of the weaker $12 \mu \mathrm{~m}$ point sources, $2 \mu \mathrm{~m}$ objects were located within $70-90^{\prime \prime}$ of the more uncertaln cross-scan position (but within 4" in declination) and had near-infrared energy distributions which joined smoothly with the IRAS data. We have assumed these objects are assoclated with IRAS emisston but confirmation of this association is needed (see col. 10 of Table 1). Published surveys of the ρ Oph cloud were used when possible to Identify possible optical/near-infrared counterparts (Vrba et al. 1975; Elias 978; Wilking and Lada 1983; Wilking, Schwartz and Blackwell 1987). However, since only select reyions of the cloud have been surveyed with sensitive $2 \mu \mathrm{~m}$ observations, we were obliged to obtain an extensive new set of near-infrared observations which are described in the next section
C. IRTF Observing Procedure

A11 ground-based infrared observations reported here were obtained using the 3 meter telescope and facility instruments of the Infrared Telescope

Facility (IRTF) located at Mauna Kea, Hawail. The data were collected in 1984 July, 1985 April, and 1986 June. A small subset of these data have been previously presenced in Paper I. The identification of the IRAS near-infrared counterparts involved several types of observations. First, $2 \mu \mathrm{~m}$ maps df a one square arcmin region centered on the IRAS $12 \mu \mathrm{~m}$ position were obtalned using a $7.5^{\prime \prime}$ beam with a $60^{\prime \prime}$ chopper throw and with beam-awitching disabled. The (30) detectable limit of the maps was always better than 14 mag at K . Recause of the larger FWHP of the IRAS beam in the cross-scan direction, it was sometimes necessary to map adjacent fields in right ascension to locate a candidate source. Forty-two fields were mapped toward 26 IRAS sources, revealing at least one $2 \mu \mathrm{~m}$ object for 23 IRAS sources. The IRAS sources mapped in this sturly and the $2 \mu \mathrm{~m}$ sources reveated are indicated in columns 9 and 10 of Table 1 . The positions of the $2 \mu \mathrm{~m}$ sources detected in these surveys (with IRS designations) are presented in Table 2, determined by offsets from nearby SAO stars through the broadband K filter. They are accurate to within 1.5 ".

The second step in the observations was to obtain near-infrared broadband photometry for the candidate $2 \mu \mathrm{~m}$ counterparts. Sources with steeply rising energy distributions and infrared excesses were selected for mid-infrared photometric observations. Photometry presented in Table 2 was obtained using both the $\mathrm{InSb}(1.25-3.4 \mu \mathrm{~m})$ and bolometer systems ($4.8-20 \mu \mathrm{~m}$) through either a 3mm (5.5") or $4 \mathrm{~mm}\left(7.5^{\prime \prime}\right)$ aperture. Photometric infrared magnitudes were determined relative to infrared standard stars including a secondary J through L standard, $4 D 147889$, established within the clond. Unless otherwise indicated in Table 2, statistical one sigma errors in the photometry were less than 0.03 mag at J through $K, 0.05$ at $L, 0.1$ at M and N, and 0.2 at Q.

Ill. Results
A. The Success of Identifying Optical/Near-Infrared Counterparts to IRAS Sources
We assumed inftally that the positional coinclifence of a $2 \mu \mathrm{~m}$ source or Hr star with an IRAS source was suffictent evidence to assoclate it with the IRAS emission. This assoctation was usually borne out by $10-20 \mu \mathrm{~m}$ photometry andor a match between the near-infrared and far-infrared energy distribution. However, for three IRAS sources $(20,21$, and 35) there is not a good match between the IRAS data and the colors of the corresponding near-infrared sources. These associations are regarded as uncertaln and these sources have not been included In subsequent discussions of the spectral energy distributions and luminosity function. About twenty-five percent of the IRAS sources with possible Hy or near-infrared counterparts had multiple candidates. In most of these cases, single counterpart could be identified which dominated at $10 \mu \mathrm{~m}$ and/or had a near-infrared energy distribution which joined most smoothly with the iras data. For only three IRAS sources (3,11 , and 17), the relative contrithotion of two near-infrared sourcies tis the IRAS emisston could not be disentangled. One would expect that a close agreement between the ground-based $10 \mu \mathrm{~m}$ flux of a near-infrared source with the IRAS $12 \mu \mathrm{~m}$ flux would best estahlish it as the near-infrared counterpart. However, as discussed in the following section, this criterion fails due to the prevalence of extended mid-infrared emission.

Among the 64 IRAS sources considered, 44 were successfulty tdentified with thetr YSO counterpirls, a success rate of $\sim 70 \%$. Of these 44,28 associations were made using published $2 \mu \mathrm{~m}$ or $\mathrm{H} \alpha$ surveys. Our new near-infrared observations led to the confirmation of 7 of these assoctations plus the dentification of 16 additional IRAS sources with their near-infrared counterparts. Of the remaining 20 sources, seventeen were not surveyed at $2 \mu \mathrm{~m}$ and had no previously known optical/near-infrared counterpart.

Our fallure to assoctate 20 of the IRAS sources with their Y Y O counterparts leaves us uncertain as to their nature. The dust emission toward these sources (e.g., IRAS 22) could arise from a clump externally heated by nelghboring early B stars, particularly the B2V star HD 147889 (Garrison 1967, Young and Greene 1988) Source counts at $12 \mu \mathrm{~m}$ for the galactic latitude of $\rho \mathrm{Oph}$ and extrapolated to the sensitivity of the coadded survey data suggest that as many as 10 sources in our sample could be background objects. Likewise, the absence of a $2 \mu \mathrm{~m}$ source could imply the YSO is too heavily obscured to be detected by near-infrared
observations. Sensitive images of these IRAS sources with the new generation of near-infrared cameras are needed to determine their true nature. The exclusion of these 20 sources, should they have intrinsic sources of iuminosity, should not seriously affect our study of the cluster luminosity function since most are nembers of a low-luminosity population incompletely-sampled by IRAS. Only six have $12 \mu \mathrm{~m}$ flux densities greater than 1 Jy and only one of these was detected in more than two of the IRAS bands.

A check was performed to insure that $2 \mu \mathrm{~m}$ sources found associated with ras emission were indeed $Y S O_{s}$ embedded in the cloud. As detailed in Appendix A, we have applied a set of criteria to each $2 \mu \mathrm{~m}$ source known to lie toward this region of the ρ Oph cloud in an effort to distinguish between YSOs and background field stars. The results of this classification scheme are presented in Tables 1-3 in Appendix A and in column 14 of Table 2 . One IrAS source in our study was found to be associated with a background field star (IRAS 27/ELI5). The vast majority of $2 \mu \mathrm{~m}$ sources associated with IRAS emission through positional coincidence were classified as YSOs in our scheme, primarily through the presence of an infrared excess in the $2.2-25 \mu \mathrm{~m}$ spectral region.
B. The Nature of Extended IRAS $12 \mu \mathrm{~m}$ Emission

In the course of our study, we have encountered extended emission in the

IRAS $12 \mu \mathrm{~m}$ data on three different size scales. In all cases, the extended emission cannot be explained by equilibrium heating of normal interstellar gralns. First, low-level $12 \mu \mathrm{~m}$ emission extended on a scale of tens of arcminutes is evident in the intensity map of the cloud (Fig. 1b). This component most likely arises from nonequilibrium heating of very small dust grains at the surface of the cloud by the B2V star H0147889 (Paper 1, Young and Greene 1988).

Second, in-scan slices have revealed that the FWHP of the $12 \mu \mathrm{~m}$ emission for eleven of the sources is extended relative to the $45^{\prime \prime}$ IRAS beam (e.g., see Fig. 2). As shown in column 8 of Table 1 , source profiles have FWHP's ranging from 60-210 arcsec. This extended component could be due to multiple $12 \mu \mathrm{~m}$ sources unresolved by the IRAS beam. Five of the 12 sources have not been surveyed with high sensitivity $2 \mu \mathrm{~m}$ surveys and multiplicity cannot be ruled out. However for six sources, sensitive $2 \mu \mathrm{~m}$ surveys have revealed only single sources and the presence of multiple candidates appears unlikely. It is plausible that for two of these objects, IRAS 36 (Source 1) and IRAS 28 (SR3), their associated stars ($B 3-B 5 V$ and $89-A O V$, LW) have created a dust-evacuated cavity and ultraviolet photons from these stars heat very small dust grains along the cavity walls. The presence of such cavities are consistent with the morphology of the spectral energy distributions of these objects (Sec. C4). For lower luminosity YSOs without known multiple candidates such as IRAS 6 (WL1) and IRAS 9 (WL9) (see Paper I), a similar explanation for the extended emission is more problematical. Deeper $2 \mu \mathrm{~m}$ surveys will be the first step in understanding the nature of the extended emission in these sources.

Finally, as noted in Paper I, there is indirect evidence for $12 \mu \mathrm{~m}$ emission toward YSOs which is extended on scales of 6-45 arcseconds. This is indicated by the fact that the ground-based $10 \mu \mathrm{~m}$ flux of a YSO (extrapolated to $12 \mu \mathrm{~m}$) usually falls short of the IRAS $12 \mu \mathrm{~m}$ flux by a factor of $2-3$. This
is demonstrated in column 11 of Table 1. As in the case of resolved IRAS $12 \mu \mathrm{~m}$ profiles, explanations involving, multiple sources or non-equilibrium heating of small dust grains are possible.
C. Spectral Energy Distributions

By synthesizing visible and near-infrared photometry of a YSO with its corresponding IRAS data, we can examine its spectral energy distribution (SED) covering a possible wavelength range from $.36 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$. However, due to extinction at short wavelengths and confusion at 60 and $100 \mu \mathrm{~m}$, a typlcal SED covers the $1.25-25 \mathrm{~km}$ spectral region. The λF_{λ} SEDs for 32 association members with IRAS emission are presented in Figure 3 (a-e). The SED for the field star ELLS is shown in Fig. A2 of Appendix A. $A \lambda F_{\lambda}$ plot was adopted to utilize the fact that a flat SED indicates equal luminosity radiated hy the source in each logarithmic wavelength interval (e.f., Disney and Sparks 1982; Lata 1988).

Sources in Fig. 3 are grouped according to the morphology of their SEDs which is described quantitatively by the spectral index "a" in the 2.2-25 $\mu \mathrm{m}$ spectral region (Lada 1987, see Appendix A). In addition to the sources in Fig. 3 and $A 2$, we have derived spectral indices for association members and field or unidentified stars which had existing $10 \mu \mathrm{~m}$ or $20 \mu \mathrm{~m}$ photometry but no measured IRAS emission due to confusion. Spectral indices for a total of 53 objects are presented in Table 3. The SEDs for many of these latter objects have heen presented by LW.

For our discussion of the SEDs, we will adopt the classification scheme devised by Lada (1987): Class I objects have a>0 (Fig. 3a and 3b), Class II objects have $-2<a<0$ (Fig. 3 c and 3 d), and Class III sources have $\mathrm{a}<-2$. As one can see by comparing these SEDs with those of blackbodies in Fig. 3c and 3e, the energy distributions for Class I and II objects are much broader than a single temperature blackbody. Class III SEDs resemble those of reddened
blackbodies. SEDs which exhibit two distinct peaks are ploted separately in Fig. Be. While these double-peaked distributions cannot be characterized by a single spectral index, we have expanded Lada's classification scheme to accommodate them (Section C4). We now consider each of these morphological groups separately,

1) Class I Objects - Sources with positive spectral indices are the coldest and most deeply embedded YSO displaying little or perhaps no emission from a stellar photosphere. The emergent flux arises primarily from dust at a wide range of temperatures. These SEDs are unique because of the large quantities of hot dust ($\mathrm{T} \sim 300-1000 \mathrm{~K}$) close to the star which radiate between 3.4 and $12 \mu \mathrm{~m}$. Consistent with the deeply embedded state of Cl ass I objects is the fact that only two of the 24 Class I objects in our sample (IRS 48 and DoAr 25) are visible on the red POSS photograph (m < 20.0 mag).
2) Class II Objects - The energy distributions for objects with spectral indices less than zero but greater than -2 are fominated by a stellar photospliere reddened by foreground extinction. There is usually some excess emission due to hot dust in the $3.4-12 \mu \mathrm{~m}$ spectral region but, as shown in Fig. 3c and 3 d , no evidence for a substantial cooler dust ($\sim 50-100 \mathrm{~K}$) component as is present in Class I objects. The 27 Class II objects include five of the six T Tauri stars which are observed to have mid-infrared emission. (The sixth, SR4, has a cool dust component and is classified as Class IID). The average value of " a " for the Class II stars in our sample is -0.65 with a sample standard deviation of 0.34 . Rucinski (1985) has analysed energy distributions for 35 T Tauri stars in the Taurus-Auriga complex with 12-100 $\mu \mathrm{m}$ IRAS emission. Most have Class II SED's with $a=-1$ or shallower. This suggests that most of the Class II objects in our sample are in a T Tauri phase of evolution.
3) Class ill Objects -Only one source in our sample has a spectral index <-2. VSSGl6 has been classified as a fleld star (Elias 1978, Appendix A) and has a SED resembling those in Fig. A2. The scarcity of Class III objects in our sample is perhaps surprising. However, it is probable that we have selected against their detection by considering sources identified with far-infrared emission. Further photometric observations may reveal Class III abjects among the forty-nine $2 \mu \mathrm{~m}$ sources which include YSOs not associated with IRAS emission and "unidentified" sources (see Appendix A).
4) Double-Peaked Energy Distributions - Four energy distributions are presented in Fig. 3e which have two distinct peaks, hence a single spectral index does not define the spectral shape. One peak occurs near $1.6 \mu \mathrm{~m}$ and arises from a reddened photosphere. The second peak occurs in the far-infrared and ts due to cooler dust. All four objects are visible stars. The star css23 has a similar SED. Several of the objects we have classiffed as Class I or II may fall into this category but due to the lack of UBVRI photometry, $4.8 \mu \mathrm{~m}$ photometry, or the presence of confusion at 60 and $100 \mu \mathrm{~m}$, both peaks are not well defined.

Two of the sources in Fig. 3e, Source 1 and SR3, are among the most luminous sources in the infrared cluster and have been classified as B3-B5V and B9-AOV, respectively (LW). Their energy distributions are reminiscent of stars assoctated with reflection nebulosity (e.g., Harvey, Wilking, and Joy 1984). These objects have dissipated their inner circumsteltar dust and now exclte emission from cool dust much further removed from the star. We classify these objects as Class IIID; because of the lack of hot dust, the first peak in their SED resembles that of a Class III object. The B2V star HDI 47889 which excites extensive optical reflection nebulosity in the western regions of the cloud and the x-ray star $\operatorname{CSS} 23$ are also classified as Class IIID objects (Young and Creene 1988, LW).

The remaining double-peaked SEDs are found for two lower-luminosity objects: SR4, a T Taurl star, and SR21. Their SEDs do not show the sharp Wrop in λF_{λ} from $1.6-4.8 \mu \mathrm{~m}$ present for Source I and $S R 3$. The larger amounts of hot circumsteltar dust present in these objects lead us to associate them with Class it rather than Class III objects. Hence the SEDs for SR4 and SR21 are classifled as Class IID.
D. Luminosity Estimates for Association Members

1. The Calorimetric Technique

We define the "observed luminosity" to be the total energy per second radiated by a YSO:

$$
\begin{equation*}
L(\text { obs })=\ln d^{2} \int_{0}^{\infty} F_{\lambda} d \lambda=(9.2) \pi d^{2} \int_{0}^{\infty} \lambda F_{\lambda} d\left(\log _{10} \lambda\right) \tag{1}
\end{equation*}
$$

where F_{λ} is the flux density per unit wavelength and d is the distance to the YSO. Equation 1 assumes that the luminosity is radiated isotropically by the source. By integrating the SED of an object over the observed range of wavelengths, we obtain an estimate for the observed luminosity:

$$
\begin{equation*}
L^{\prime}(o b s)=(9.2) \pi d^{2} \int_{\lambda_{1}}^{\lambda_{f}} \lambda F_{\lambda} d\left(\log _{10} \lambda\right) \tag{2}
\end{equation*}
$$

where λ_{i}, λ_{f} are the shortest and longest wavelength observed, respectively, and d is the distance to the ρ Oph complex (160 pc , Ellas 1978) .

The degree to which equation 2 accurately approximates L (obs) depends upon the ability of IRAS to recover most of the stellar luminosity which is absorbed by dust at shorter wavelengths and re-radiated in the far-inftared. A flattening or turnover in the λF_{λ} vs. $\log \lambda$ plot of the energy distribution at λ_{f} is a strong indication that the bulk of the somrce luminosity is radiated over the
wavelength interval observed. However, for many Class I objects (a > 1.0), the SED is often still rising at $60-100 \mu \mathrm{~m}$ (see Fig. 2a). In order to account for the luminosity radiated by cooler dust ($T_{d}<30 \mathrm{~K}$), we derive a second estimate for L (obs) which extrapolates the SED to $\lambda_{f}=\infty$:

$$
\begin{equation*}
L^{\prime \prime}(\text { obs })=(9.2) \pi d^{2} \int_{\lambda_{1}}^{\infty} \lambda F_{\lambda} d\left(\log _{10} \lambda\right) \tag{3}
\end{equation*}
$$

We assume that the flux density from λ_{f} to ∞ falls off with a spectral index of $a=-1$ which is similar to the long wavelength slope of the SED for T Tauri stars. This extrapolation is much shallower than the spectral index of the Rayleigh-Jeans portion of a corresponding blackbody curve (a $=-3$).

The values for $\mathrm{L}^{\prime}(\mathrm{obs})$ and $\mathrm{L}^{\prime \prime}$ (obs) for 74 association members are presented in Table 3 along the corresponding wavelength interval (λ_{i}, λ_{f}) for each estimate. Also presented in Table 3 is $\mathrm{L}(\mathrm{fir})$, the luminosity radiated across the 4 IRAS bands.
Iv. Implications
A. Spectral Energy Distributions

1) A Possible Evolutionary Sequence?

It has been suggested by Lada (1987) and Adams, Lada, and Shu (1987, hereafter ALS) that the different SED shapes represent a quasi-continuous evolut fonary sequence for low mass stars (where radiation pressure is minimal, M $\left\langle 7 M_{\theta}\right)$. This suggestion is based upon theoretical models which describe the emergent flux from YSOs (Adams and Shu 1986, ALS, Myers et al. 1987). Simply stated, these models decompose the SED of a YSO into contrihutions fram a reddened gas photosphere (visible to near-infrared emission), a dusty disk (mid-infrared), and a spherical dust envelope (far-infrared). In the als scenario, Class I objects represent the earliest evolutionary state of a pre-main sequence object and are modeled as a rotating protostar comprised of a gas
photosphere (the accrotion stlock), tusty disk, and infalling dust envelope. The emergent flux, dominated by the spherical dust envelope, is the result of infall accretion luminosity. The energy distributions for Cl_{l} ass I objects EL29, WL16 and WL22 from this study have been fit by alS using this model.

The accretion phase is intercupted by a strong stellar wind which reverses the infall and begins to clear away the surrounding dust envelope thas revealing the embedded star plus disk. At this point, the object begins Lt: PMS contraction along a convective track. The resulting SEDs are double-peaked, the far-infrared emission arising from this residual envelope. The energy distribution for the Class IID object SR21 (=vSSG23, see Fig. 2e) is well fit by this model (als).

As the strong stellar wind completes the clearing of the dust envelope, the energy distribution will be dominated by the stellar photosphere plus dust
 have been modeled by alS assuming a photosphere plus dusty passive disk which absorbs approximately 25% of the stellar luminosity (e.g., the T Taurl star SR9). However, the far-infrared spectral Index produced by a passive disk (and also an optically-thick accretion disk) is -1.33 and steeper than observed for most Class II objects (e.g., this study, Rucinski 1985). The shallower SED for Class II objects implies a smaller temperature gradient $\left(r^{-0.6}\right)$ than woposid for the model disks $\left(r^{-0.75}\right)$. Such a temperature gradient contd result from a flaired passive disk (Kenyon and Hartmann 1987) or from a disk with intrinsic luminosity arising from nonviscous accretion (Adams, Lada, and Shu 1988).

Finally, as the star approaches the main sequence, the clrcumstellar disk will be dissipated. The resulting SED resembles that of a blackbody reddened by foreground extinction. These Class III objects represent the post T Tauri
phase of evolution and can be identified through proper motion studies (Jones and Herbig 1979), x-ray emission (Walter 1986) or weak emission lines in the optical (e.g., Herbig, Vrba and Rydgren 1986).

The distribution of the SEDs presented in Fig. 4 is consistent with the 1dea of an evolutionary connection between Class I and Class II objects. Namely, there is a continuous distribution of spectral indices from deeply embedded objects ($a>1.0$) to T Tauri stars $(a *-0.65$) in the ρ Oph cluster. Myers et al. (1987) present a similar plot for stars found in the vicinity of dense molecular cores defining the spectral index as $s=a+1$. Their histogram is similar to that in Fig. 4 except for a pronounced dip in their data at $a=0.4$.

2) Duration of the Embedded State

If the dispersion in spectral indices represents a true variation in the evolutionary states between the cluster members, then we can crudely estimate the lifetime of the embedded state from the relative number of Class 1 to Class II objects. For $L>1 L_{\theta}$ there are $18 \mathrm{Cl}_{\mathrm{ass}} \mathrm{I}$ objects observed as compared to 15 Class II , the latter value needing to be corrected upward by 30% to account for the incomplete sampling by IRAS of $1 L_{0}$ Glass II objects. Therefore, the nearly equal numbers of Class I and II objects suggests that, given a constant birthrate, the average lifetime of stars in the embedded state is comparable to the average lifetime of the T Tauri (Class II) stars In the cloud. We have estimated the ages of eight T Tauri stars in the ρ Oph cloud in the $0.4-1.0 M_{G}$ range. We have used the data of Cohen and Kuhi (1979) to derive the Kelvin-Helmholtz contraction time for each star since the end of the accretion phase (e.g., Stahler 1983). The resulting ages for the T Tauri stars since their appearance at the "birthline" range from 0-1.5 $\times 10^{6}$ years; the average age is $3.9 \pm 1.7 \times 10^{5}$ years. If Class I objects are in
the accret bon dise of thetr evolution as suggested by the ALS models, this implies that the accretion phase lasts about 4×10^{5} years and that the mass accretion rate is $\sim 2.5 \times 10^{-6} \mathrm{Me} / \mathrm{yr}$ for a 1 Me star.

We view our estimate for the duration of the accretion phase as an uper 1imit and hence the mass accretion rate as a lower limit. First, as we will discuss in Section B3, many of the lower luminosity Class II objects (L~1
 Thus if we instead compare the number of intermediate luminosity Class I objects (nine) with the number of Class II objects with $L>1 L_{G}$ (twenty), we derive an estimate of 2×10^{5} years for the Class I phase and $5 \times 10^{-6} \mathrm{MB} / \mathrm{yr}$ for the mass accretion rate. Second, it has been suggested that some fraction (perhaps 50%) of the Class I objects evolve rapidly through the Class Il phase and become Class Ill objects whlle stilt in the convertive ,bin if ihat PMS evolution (e.f., the naked T Taurl stars, Walter 1986, Walter et al. 1988). Thus, accounting for the possibility that there is a population of naked T Tauri stars equal in size to the observed Class II population, our estimate for the duration of the Class I phase would decrease by a factor of 2 and the mass accretion rate would double. It is interesting to note that consideration of these two effects suggests a mass accretion rate slinflar to the value of $10^{-5} \mathrm{Mg}_{\mathrm{G}} / \mathrm{yr}$ derivel by als for the ρ Oph cloud considering the collapse of an isothermal sphere with a sound speed of $0.35 \mathrm{~km} \mathrm{~s}^{-1}$.
3) The Datation of Star Formation in the Central Cloud

One estimate for the age of the embedded cluster and the duration of star formation in the central cloud is obtained by determining the contraction time for the least massive star on the main sequence, l.e., the contraction age. The only stars in the cluster which appear to have reached the matn sequence are 11D147889, Source 1, and SR3 (LW). Analysis of the SED of SR3 by LH suggests it is a \quad g-A 0 star and the teast massive cluster member on the main
sequence. The contraction time for a 3 M object to the ZAMS (final point of minimum luminosity) is 1.46×10^{6} years (Iben, 1965). This is consistent with our estlmate for the age of the oldest T Tauri star, SR22, of 1.5×10^{6} years.

An upper limit to the duration of star formation can be determined by estimating the number of Cl ass III objects in the central cloud. While we have Identified only one Class III object in our study, there may be many other such objects in the cloud that have escaped detection because they are not strong mid and far-infrared emitters. However, we can use the $2 \mu \mathrm{~m}$ survey of a 105 sq . arcmin region of the core by Wilking and Lada (1983) to set an upper limit to the Class III population. There were four objects found in their survey which had little or no infrared excess and are candidates for Class III sources (although none are visible stars). Over the same region, the $2 \mu \mathrm{~m}$ survey revealed 3 Cl ass II objects. Thus assuming the stellar surface densities of Class II and candidate Class III objects are constant across the entire $4.3 \mathrm{pc}^{2}$ of the central cloud, we can infer that there are roughly equal numbers of Cl ass III and Class Il objects in the cloud.

If we assume that all the potential Class III sources are emberided in the cloud and are PMS stars, their estimated population suggests that the duration of the Class III phase of evolution is comparable to that of the Class II phase. If Class III stars are the products of Class II evolution (i.e., post T Tauri stars), then star formation has been active in the central cloud for a period of not longer than 3.5 million years. (This assumes that the duration of the Class II phase for sources in the cloud core has not been longer than the age of the oldest $\mathrm{Cl} a s s$ II source, l.e., about 1.5 million years and that the Class I phase lasts about 0.5 million years.) On the other hand, it is possible that the potential Class Ill sources are naked T Tauri stars. As
mentioned earlier, such obfects are thought to have evolved rapidiy from Class I to Class III objects while still in the early convective phase of their PMS evolution. Consequently, these stars could have similar ages to the typical Class II sources in the cloud (e.g., Walter et al. 1988). If this were the case in Ophluchus then the duration of star formation would be no longer than about 2.0 million years. In any event our estimate of the duration of star formation in the ρ Oph dark cloud, $1.5-3.5$ million years is relatively short compared to the expected lifetimes of molecular clouds (i.e., 10-50 million years).

Apparenty, the high star formation efficiency (22%; see Appendix B) in the core of the ρ Ophiuchi dark cloud must have been produced in an efficient burst of star formation activity characterized by a relatively high rate of star formation. Typically the star formation efficiency observed in a molecular cloud is low, on the order of a few percent (e.g., Cohen and Kuh 1979; Duerr, Imhoff and Lada 1982; Lada 1987). If it were any larger, the global rate of star formation in the galaxy would be much higher than currently observed. Since the oldest PMS stars observable in such clouds have ages of order 10^{7} years (e.g., Cohen and Kuhi 1979; Walter et al. 1988), the overall local rate of star formation in these clouds must be lower than that in the Ophiuchus cloud core. In other words, in order for an isolated molecular cloud to achieve a star formation efficiency of 20% or more at the typical rate of star formation, the duration of star formation in the cloud would have to be considerably in excess of 10^{7} years. This is certainly not the case for the ρ Oph cloud core. These considerations suggest that at some fundamental level the star formation process in the Ophiuchus cloud core is different from that which generally characterizes molecular clouds such as the Taurus dark clouds. The origin of this difference is most likely related to
the structure of the molecular gas core of the ρ Opl dark cloud which is unusually centrally condensed (Wilking and Lada 1983). Magnetic fields may have played a pivotal role in the development of such a cloud core and the resulting high yield of young stellar objects (Shu, Adams and Lizano 1987).
B. Luminosicy Function of the Embedded Cluster

1. Calculation of Bolometric Lumfnosities

In order to construct a meaningful luminostty function for the embedded clant.r we must relate $L^{\prime \prime}$ (obs) (as defined by equation 3) to the bolometric Luminosity, $L(b o l)$, of an embedded source. The observed luminosity $\mathrm{L}(\mathrm{obs}$) is equal to $L($ bol) to a very good approximation provided that: a) the source's luminosity is radiated isotropically and either b) there is no extinction toward the source or c) all the extinction toward the source is produced by circumstellar dust which completely surrounds the source and reradlates the absorbed light in the near to far-infrarei spectral region. LW derived a Luninosity function for this cluster by assuming the condttions a and c were met for all sources. The steeply rising nature of most Class 1 sources Indicates that they are surrounded by large quantitles of circumstellar dust and the best models of these objects (Adams and Shu 1986; ALS; and Myers et a1. 1987) suggest that conditions a and c are indeed satisfied. However, if a significant portion of the observed luminosity of Class II sources originates In disks, as suggested by many studles (e.g., ALS; Reall 1987; Ruclaski 1985; Kenyon and Hartmann 1987), then it is unlikely that these objects would meet any of the above condftions (a-c). In this case, a bolometric correction would have to be determined and be applted to $\mathrm{L}^{\prime \prime}$ (obs) to obtain their true bolometric luminosities. However, we will now argue that such corrections are expected to be relatively small and that $L^{\prime \prime}$ (obs) represents a relatively good estlmate of $\mathrm{L}(\mathrm{bol})$ even for Class it somes

The bolometric correction for a Class II source must consist of two parts. First, a correction to $L^{\prime \prime}$ (obs) must be made to account for extinction and second, for the fact that the source's luminosity is not radiated isotroplcally. Normally one would be able to de-redden a yso spectrum by using its observed $H-K$ color index since the intrinsic $H-K$ index is very nearly equal to zero for the temperature range charactectatic of most stellar photosplieres (e.g., Wilking and Lada 1983). This technique can produce accurate bolometric corrections for Class III somrces (e.g., LW), however, stars with circumstellar disks (Class II sources) are expected to have intrinsic $H-K$ indices which are apprectable and estmates of extinction from thelr infrared colors are not reliable. The effects of extinction can be approximately accounted for, however, if we assume that all Cl ass II sources have energy distributions that are similar lin shape and that extinction does not shafficantly affect their observed fluxes lompard of $2 \mu \mathrm{~m}$. We take the composite spectrum of 7 well studied T Taurl stars constructed by Adams, Lada and Shu (1988) as typical of a Class It energy distribution. By integrating this composite energy distribution first over all wavelengths and then between $2 \mu \mathrm{~m}$ and infinity, we find that L_{0}^{∞} (obs) $=2.2 \mathrm{~L}_{4 \mathrm{~m}}^{\infty}$ (obs). Since the luminosities listed in Table 3 have been determined over a wavelength range that includes data at wavelengths shorter than $2 \mu \mathrm{~m}$, these ustinates are likely to approxhate the actual source luminosithes to better than a factor of 2 , even in the absence of an explicit correction for extinction.

The component of the emergent intensity from a Class II source which orginates in the disk is not radiated isotropically and for a given source one must know its inclination to the line-of-sight to correct for this effect. For a star plus disk system the total luminosity is given by:

$$
\begin{equation*}
L(\text { ohs })=\left(L-f_{*}\right) L_{*}+2 L_{d} d s k \cos (t) \tag{4}
\end{equation*}
$$

where f_{k} is the fraction of the stellar hemisphere occulted by the disk and L_{k} and $L_{\text {disk }}$ are the intrinsic luminosities of the star and the disk, respectively (e.g., Kenyon and Hartmann 1987; Adams, Lada and Shu 1988; and Emerson 1988). For an infinitely extended, spatially thin and optically thick disk, $f *=\frac{1}{\pi}$ for $i \leqslant \frac{\pi}{2}$. As previously discussed, the Class II sources in the Ophiuchus cloud core have an average spectral index of -0.65 which is typical of T Tauri stars in general and their SEDS can be successfully (but not uniquely) modeled by a system which consista of a central star and a purely passive disk (ALS, Kenyon and Hartmann 1987; Strom et al. 1988). In such a circumstance, the luminosity radiated by the disk is directly related to the stellar luminosity and lies in the range 0.25 to $0.40 \mathrm{~L}_{*}$ depending upon whether the disk is spatially thin (am-1.33) or slightly flared (a~-0.6). For most viewing angles, $L_{\text {(obs }) ~ w i l l ~ e x c e e d ~} L_{*}$, the actual bolometric luminosity of the system. For a face-on disk $(1=0), L(o b s)=1.5-1.8 L_{*}$ and in the worst case overestimates the intrinsic luminosity by a factor of two. Typically, therefore, the correction for source inclination and its anisotropic radiation pattern is of similar magnitude but in the opposite direction as the correction for extinction and the two effects tend to cancel. Consequently, we can assume that $\mathrm{L}^{\prime \prime}$ (obs) ~ $\mathrm{L}(\mathrm{bol}$) and approximates the intrinsic luminosities of both Class 1 and II sources to a factor of 2 or better.

2) The Empirical Luminosity Function

The distribution of observed luminosities is shown in Figure 5 for the 58 members of the embedded cluster for which good luminosities could be obtained from integration of their energy distributions. Also included are 16 sources known to be associated with the cloud but which have only upper limits to their 12 and $25 \mu \mathrm{~m}$ emission and consequently to their calculated luminosities.

The luminosity function presented in figure 5 can be directly compared with that computed by LW for 37 embedded objects in the ρ Oph cloud. Their estimates for the bolometric luminosity were also based upon the calorimetric technique but relled largely upon ground-based data. While the area of the dark cloud considered by this study is 3 times larger than that considered by LW, only four of the 74 sources in Fig. 5 (including 2 with upper limits) lie outside the area considered by Lh. The major differences between the two luminosity functions are the larger number of sources with well determined luminosities (58 vs .37) and the greater number of intermediate luminosity objects present in the luminosity function resulting from this study. Both are a direct result of the inclusion of IRAS data; most of the new sources are colder, Class 1 objects of intermedtate luminosity. Additionally, the luminosity estimates for objects considered by the have been substantially improved, often increasing $50-100 \%$ as a result of the IRAS data.
3. Luminosity Segregation by SED Class

In Fig. 5 we have broken down the luminosity function by spectral index, indicating which sources are Cl ass I, Cl ass II or Cl ass III. There is a marked tendency for Class 1 objects to dominate the population of the intermedtate luminosity (i.e., $L>5.6 \mathrm{~L}_{母}$) bins. For example, of the thitry sources with luminosities in the range $0.5 \mathrm{~L}_{\Theta}<\mathrm{L}^{\prime \prime}($ obs $)<5.6 \mathrm{~L}_{\Theta}$, ten (or 33%) are Class I objects white twenty (67%) are Class II sources. When corrected for possible selection effects due to extinction, (see Section 4), we predict that only 26% (10) of the sources in this luminosity range are Cl ass I white 73\% (28) are Class II. In contrast, Cl ass I sources clearly dominate the population of sources in the adjacent, intermediate luminosity bins (i.e., $5.6 \mathrm{~L}_{\Theta}>\mathrm{L}^{\prime \prime}($ obs $)$ < $56 \mathrm{~L}_{\Theta}$), where 82% of the sources are Cl ass I (i.e., 9 Class I objects compared to 1 Class II source and 1 Class IIID source). Expressed
in another way, of the 30 Class II sources with well determined luminosities (including the Class IID objects) only (or 3% of the entire Class II population) has a luminosity in excess of 5.6 L . In contrast, 9 of the 24 Class I sources or 33% of the entire Class I population have luminosities in excess of $5.6 \mathrm{~L}_{\theta}$.

There are two plausible explanations for this luminosity segregation. First, the Class I intermediate luminosity sources may be of similar mass to the Class II sources in the cloud but possess an adifitional source of energy which makes them systematically more luminous. If this is the case, our observations may provide important evidence for the existence of luminosity evolution between the Class I and Class II phases. The most likely source for the excess luminosity in the Cl ass I phase would be accretion processes assoclated with protostellar evolution. Indeed, protostellar theory predicts that $\mathrm{YSO}_{\mathrm{s}}$ in the accretion (Class I) phase of their evolution will possess considerably higher luminosities than objecte with similar mass on convectiveradiative tracks on the HR diagram (i.e., Class II objects). Models by Stahler, Shu and Taam (1980) predict that a solar mass protostar wilt reach a peak luminosity of about 66 during the active accretion or infall phase of evolution. However, at the end of the accretion phase the luminosity will rapldy drop, falling to a value of about 6 the the the young star first appears on the stellar birthifne at the top of its convective track (Stahler 1983). Consequently, our observations may provide indirect but strong evidence of accretion around Cl ass I sources and thus more compeling support for the protostellar interpretation of their nature. A second explanation of the observed segregation of Class I and II luminosities is that the Class I intermediate luminosity objects are stars of systematically higher mass (e.g., 2-4 MGe the thass II sources currently observed in the cloud.

In this case their Class I SEDs suggest that they are products of the most recent eplsodes of star formation in the choud and lidit the ρ oph clati is furnting stars sequentially in mass. At the present time it ts not possible to distinguish between these two intriguing possiblitites.
4) Relation to the Initial Luminosity Function

Of fundamental importance to the development of a theory of star formation is understanding the origin of the Initial Mass Function (IMF). Salpeter (1955) showed that the observed luminosity function of field stars, upon correction for stellar evolution, could be used to derive the orlylnal friduency dtstribution of steltar masses protuced by the star formatlon process in Interstellar clouds. Salpeter's work as well as many subsequent studies (e.g., Miller and Scalo, 1979; Scalo, 1986) have fndicated that the IMF can be described by a power law with a negative spectral index. However, it has never been clear from existing observations whether or not the IMF is unlversal elther temporally or spatally in the galaxy. It is of great interest to know, for example, if the inftial mass functions of stellar
 from place to place within a given star forming cloud. In principle, constructits the luminosity function of the embedded population of an active star forming region is the most direct way to determine the original stellar mass function of a cloud and investigate the history of how the IMF is assembled.

The empirical luminosity function for the Ophiuchus cluster shown in Flg. 5 represents the first well determlned lunlnasity function of a young embedded population of $\mathrm{YSO}_{\mathrm{s}}$ to be producal for an ladivitual molectular chome. It is therefore useful to investigate trs retat homish to the fletd IMF. As a first step we compare the empirtcal luminosity function of the embedded cluster
with the Initial Luminosity function (ILF) corresponding to the IMF. To do this we have drawn the ILF for field stars in Figure 5. Here the ILF has been normalized to the number of Y YOs observed to be in the $-0.25<\log \mathrm{L}^{\prime \prime}$ (obs) > 0.75 luminosity range (16 sources with upper limits are not included in this normalization). Taken at face value there are no statistically significant departures between the two sets of data. However, this is not necessarily very meaningful since the empirical luminosity function is incompletely sampled at low luminosities and, more significantiy, a substantial adjustment to the observed luminosities must be made to account for luminosity evolution before direct comparison with the ILF can be appropriately made. This is because the LLF is derived from a mass-luminosity relation pertinent to hydrogen burning stars on the zern-age main sequence. The YSOs in Ophluchus, on the other hand, are efther pre-main sequence stars or protostars which derive their luminous energy from more exotic processes such as quasi-static pravitational contraction, deuterium burning, infall andor accretion. For such objects there exists no clear cut mass-luminosity relation and no straightforward way to use the llf to derive an initial mass function with any detail.

Nonetheless, it is possible to correct crudely the empirical luminosity function both for incomplete sampling and evolution. First we consider the incompleteness question. Based upon studfes of the infrared colors of $1 \mathrm{~L} T$ Taurl stars FN Tau, IQ Tau, HN Tau, DP Tau and OM Aur (Cohen and Kuhi 1979, Rydgren et al. 1984, Rucinski 1985), we have determined that a $1 \mathrm{~L}_{\mathrm{e}} \mathrm{T}$ Tauri star with no extinction at a distance of 160 pc will have an apparent K magnitude of ahout $8.2(0.33 \mathrm{Jy}$) and a $2-12 \mu \mathrm{~m}$ color temperature of 1000 K . Our typical T Tauri star has a spectral index of $\mathbf{- 0 . 6 5}$. Desplte the fact that the $12 \mu \mathrm{~m}$ extinctlon due to dust is about one-third that at $2 \mu \mathrm{~m}$ (Rieke and Lebofsky 1985), the depth of the cloud layer which is completely sampled by IRAS at 1211 m for Class II objects is similar to that for $2 \mu \mathrm{~m}$ surveys with $\mathrm{K}-12$ mar in
unconfused regions ($A_{V}=35-40$ mag). However, for regions of high source density, only the outer $\sim 5-10$ mag of the cloud is sampled by IRAS at $12 \mu \mathrm{~m}$. The confusion in the $12 \mu \mathrm{~m}$ data would not be a serious problem if combined with sensitive $2 \mu \mathrm{~m}$ observations but, at present, only about half of the high extinction core has been surveyed to $K=12$ mag (Wilking and Lada 1983). Hence, a conservative correction to the observed luminosity function would involve doubling the number of Class II objects in the high extinction core ($\mathrm{A}_{\mathrm{v}}>40$ mag) which lie in the $-0.25<10 \mathrm{~g} \mathrm{~L}^{\prime \prime}(\mathrm{obs})<0.75$ range (8 objects). No such correction Is necessary for $1 L_{\theta}$ Class I objects because the presence of hot circumstellar dust increases the visibility of these embedded stars. For example, an object with a spectral index of $a^{=1}$ which has an apparent magnitude of $k=8.2$ mag at the surface of the cloud would be detected in the coadded $12 \mu \mathrm{~m}$ data even if obscured by 90 mag of extinction.

Correcting for the number of Cl ass II objects hidden by extinction in the cloud core results in a luminosity function which deviates from an appropiately renormalized ILF at intermediate luminositites (i.e., $5.6 \mathrm{~L}_{\theta}<\mathrm{L}<100 \mathrm{~L}_{\theta}$) by 2.5 standard deviations from what would be expected by Polsson noise. This is probably not a statistically significant deviation. In earlier studies of the ρ Oph Iuminosity function, LW argued for a more significant deficit of intermedfate mass stars. However, our IRAS observations suggest that LW overestimated (by about 50%) the number of undetected stars at low luminosities. This was partly because they did not have enough long wavelength data to properly account for the variation in source detectability due to SED shape.

To make a crude estimate of the adjustment to the observed luminosity function likely to result from source evolution to the main sequence requires that we accept the connection between the morphology of the SED and an object's
evolutionary state (ALS, Section IVA). We also need to draw upon the results of protostar theory for the luminosity evolution of a PMS object. For example, Stahler, Shu, and Taam (1980) predict that as a $1 \mathrm{M}_{\theta}$ protostar approaches the ZAMS, it will experience a more dramatic drop in luminosity (by a factor of 10) relative to its more evolved T Taurl counterpart. Hence, we can stmulate PMS evolution in Fig. 5 if we assume Class i objects at intermediate luminosity are $1 M_{\theta}$ protostars and allow them to "evolve" two luminosity bins to the left (a drop of a factor of 10) relative to the Cl ass II objects.

The results of this simulation are not shown here but the luminosity function of the embedded cluster departs from the ILF (after appropriate renormalization to the larger low luminosity population) in what appears to be a statistically significant way at intermediate luminosities. Only seven objects with $\mathrm{L}>5.6 \mathrm{~L}_{\Theta}$ remain after the correction for source (PMS) evolution, where 24 would be expected from the ILF and this is 3.5 standard deviations from what is expected from Polsson noise. This deficiency arises hecause the luminosity segregation of SED classes discussed in Section 3. Both the corrections for evolution and incomplete sampling suggest that the mass function of stars already produced in the cloud coce deviates from the IMF at intermedfate luminosities. Because our knowledge of the true natures and evolutionary histories of the embedded sources is uncertain, it is difficult to know how much significance to attach to this result. it is interesting to note however, that if real, this result suggests that the cluster which ultimately emerges from the cloud will have a mass function similar to the IMF only if future eplsodes of star formation favor the production of intermediate mass stars. We note that the conclusion that stars in the ρ Oph cloud core are forming sequentially with mass also results if we assume that the intermediate luminosity Cl ass I sources are stars of fintermediate mass and no lumfosity
evolution occurs (see Section 3).
Our observations have produced the first direct measurement of the actual initial luminosity function of an embedded population of young stellar objects. Such obscrvations are potentially powerful for investigating the origin and development of the IMF. However, at the present time interpretation of the results is limited by uncertain knowledge of the nature and evolutionary histories of YSOs. It would be of great interest to assemble a calometric luminosity function for the embedded population of another nearby dark cloud for comparison with the results of this paper. Such a comparison would have distinct advantages over studies of the luminosity function of a single embedded population. For example, statistically significant differences between the luminosity functions of the embedded populations of different clouds would indicate that the question of the origin and development of the IMF is indeed accessible to observational fnvestigation.
V. Summary

We have analysed high sensitivity IRAS data over a $4.3 \mathrm{pc}^{2}$ area of the central cloud in the Ophfuchus complex. These data have been combined with near-infrared and ha surveys to investigate the nature of the dust-embedded cluster. The major results of this study are:

1) The IRAS data have enabled us to obtain a more complete and representative sample of the embedded population. We have associated 44 IRAS $12 \mu \mathrm{~m}$ sources with their optical/near-infrared counterparts. As a result, a total of 78 cluster members have now been firmly identified.
2) The IRAS observations show evidence for extended mid-infrared emission on size scales anywhere from 6 arcsec to tens of arcminutes. The extended emission most likely arises from either non-equilibrium heating of small dust grains or unresolved multiple sources.
efficlency. We rind that SF: 222% for the ρ oph core. Thls, coupled with our estimate for the duration of star formation in the cloud, suggests that star-forming activity has occurred in a relatively efficient burst rather than as a more grialual process.

ACKNOWLEDGFMENTS
We would like to thank Chris Walker for helplag with the IRTF observations and Jim Blackwell for assisting with the data analysis. This research was supported in part under NASA's IRAS Data Analysis Program funded through the Jet Propulsion Laboratory. B.A.W. gratufllity acknowledges partial support from a University of Missouri-St. Louls Summer Research Fellowship and Weldon Spring Award.

Appendix A

Classlfication of Stars and Infrared Sources Toward the ρ Oph Cloud

We have attempted to classify 122 stars and $2 \mu \mathrm{~m}$ sources observed toward the main molecular cloud of ρ Ophluchi complex. The boundarles of the cloud are defined by the contour of ${ }^{13} \mathrm{CO}$ emission where $\mathrm{T}_{\mathrm{R}}{ }^{*}\left({ }^{\left.13_{\mathrm{CO}}(), \mapsto 1\right)} \boldsymbol{H}\right)=6 \mathrm{~K}$ (Loren, 1987). Figure Al presonts a flow chart tracing the varlous selection criteria applied to each star or infrared source to determine its nature: association member (A), fleld star (F), or unclassified ohject (U). As shown in Fig. Al, a major discrimfinator is the stope of the spectral energy distribution between 2. $2 \mu \mathrm{~m}$ and $25 \mu \mathrm{~m}$. We have adopted the definition of the spectral index after Lada (1987) as

$$
a=\frac{d \log \left(\lambda F_{\lambda}\right)}{d \log \lambda}
$$

To compure "a", we have used the slope between $2.2 \mu \mathrm{~m}$ and the longest observed wavelensth :nat wan 10 and $25 \mu \mathrm{~m}$. By constderling a groap of ten fleld stars in the vicinity of the ρ Oph cloud, we have empirically determined that a spectral index of "a" >-1.2 is characteristic of an assaclation member. The ten fleld stars had been previously identified as K or M giants and observed in the infrared (Elias 1978). Most of these stars were found to be $12 \mu \mathrm{~m}$ or $25 \mu \mathrm{~m}$ sources in the IRAS Point Source Catalog (1985). Their energy dlstributions, shown in Fig. A2 (except for VSSGI6) along with that of an unreddened 2000 K blackbody, display little evidence for luminous circumstellar dust. The average value for the spectral Index of these stars is -2.0 with a sample standard deviation of 0.4 . For our study, we have conservatively chosen a threshold of value "a" for association members which is two sample standard deviations away from this mean.

Two final selection criterla were applied to stars which had no inld-infrared photometry and estimate of "a". First, we compared the maximum visual extinction toward each star, as determined from the ($H-K$) color, to the cotal cloud extinction in that direction as estimated from the $\mathrm{c}^{18} 0$ column density (Wilking and Lada 1983). The Av estimate for the star is an upper limit because tt assumes there is no infrared excess at K or K and that the intrinsic colors can be ignored relative to the much larger observed colors. The latter estimate of total cloud extinction presumes the cloud is not clumpy within the one arcmin $C 0$ beam (which is a reasonable assumptlon based upon the study of Frerking, Langer, and Wilson 1982) but may have a factor of two uncertainty. To be conservative, we allowed a source with a maximum extinction, $A_{v}=12(H-K)$, which is less than half that of the total cloud, $\left.A_{v}\left(C^{18}\right)\right)$, to be enbedded in the cloud. Those stars whteh fati this test and have no infraret excess, as measured by the ratio of the ($K-L$) to ($H-K$) colors, are either field stars or post T Tauri stars. Spectrophotometry of six of the brighter $2 \mu \mathrm{~m}$ sources has been obtained (Elfas 1978); the $2.3 \mu \mathrm{~m}$ CO absorption is ohserved in five ohjects indicating they are background K or M giants.

The results of this classification scheme are presented in Tahles AI, A2, and A3 for assoclation members, field stars and unidentifled objects, respectively. Three of the sources in Tahle Al (which also appear in Table 2) have been classified as association members solety on the basis of their coincidence with IRAS emission and are denoted by colons. Further photometric observations are necessary to confirm whether they are the actual luminosity source of the lRAS emission. Each table presents the alliases which have accumblated for each source over years of study. A key to the abhreviations used for cross-references is given in the footnote to Table Al. The distribution of the 78 assoctation members in the ρ Oph cloud is shown in Fig. A3.

The Star Formation Efficiency Revisited

We can use the completely-sampled IRAS coadded survey data of the ρ Oph cloud to re-evaluate the star formation efficiency in the core region. The star formation efficiency is defined as: \quad SFE $=M_{\text {stars }} /\left(M_{s t a r s}+M_{g a s}\right)$. Although our approach to estmate the SFE utilizing the IRAS results is somewhat different from $L W$, a similar value is obtained. We consider here onty the cluster members which lie within the $A_{v}=50$ mag contour which contains about $290 \mathrm{M}_{6}$ of molecular gas (Witking and Lada 1983).

To estimate the total mass of $Y S O_{s}$ with $M>1 M_{\theta}$, we distinguish between Class I and Class Il objects in our sample. Following the same lines of argument as those in Section IVB, we estlmate that for $L>1 L_{\theta}$, we are completrly sampled throughout the depth of the core with the coadded survey data for Class I objects. But for Class II objects, the IRAS survey has a similar senstivity as existing $2 \mu \mathrm{~m}$ surveys and only about one-half of the depth of the core ($\mathrm{A}_{\mathrm{v}}=35-40$ mag) has been fully sampled for $\mathrm{L}>1 \mathrm{~L} 0$ Assuming that the embedded objects are uniformly distributed throughout the cloud, we double the observed Class II population to obtaln a more representative sample over the entire depth of the core. Thus, our estimate of the cluster mass for $L>0.56 L_{G}$ is $39 M_{\Theta}$ and includes Source $1\left(\sim 9 M_{\Theta}\right)$, 14 observed Class 1 objects ($\sim 1 M_{\theta}$ each), and 8 observed Class II objects times 2 (~I Me each).

We rely on $2 \mu \mathrm{~m}$ surveys to estimate the total mass of objects <l Me since the IRAS data becomes confused for low luminosity sources. There are 9 Cl ass 1 or C_{l} ass 11 sources with $L<0.56 L_{G}$ and $K<12$ mag which lie in the area surveyed by wilking and lada (1983). Since this region includes only half of the area encompassed by the 50 mag contour, we anticipate that future $2 \mu \mathrm{~m}$
surveys of similar sensitivity will reveal an additional 9 low-luminosity sources. Based upon the study of T Taurl stars by Cohen and Kuhi (1979), we estimate that a 0.25 Lobject at the front surface of the cloud will have an apparent magnitude at K of 9.5 mag. Therefore, a $2 \mu \mathrm{~m}$ survey with a sensitivity of $\mathrm{K}=12$ mag completely samples the outer 25 mag layer for objects with $\mathrm{L}>0.25 \mathrm{~L}$. . Assuming these objects have an average mass of 0.5 M_{G}, we would expect about $27 M_{e}$ (54 objects) in the low-luminosity population for the entire core.

The final population of objects which must be accounted for in the cloud are the embedded Class III sources. A; we discuss in Sec. IVA, the IRAS observations are insensitive to these objects. Using the $2 \mu \mathrm{~m}$ survey of Wilking and Lada, we estimate there are roughly equal numbers of Class 11 and Class IIf objects embedded in the cloud. Thus a total of sixteen $1 \mathrm{M}_{0} \mathrm{Class}$ III objects are expected throughout the core.

As a result, the total stellar mass of the cluster for the core region is about $82 \mathrm{M}_{\Theta}$ and the star formation efficiency 22%. Within the uncertainties of the estimate, thls value 1 s consistent with that of 25% calculated by LW . One uncertainty is the mass of molecular gas computed from $\mathrm{c}^{18} 0$ column densities. But we have minimized this uncertalnty by correcting for the association members hidden by extinction; an increase in the computed hydrogen column densities would be compensated for by an increasimi correction for this unseen popilation. other major uncertainties which include cold sources missed due to confuston in the IRAS data and the presence of binaries (e.g., SR12, Simon et al. 1987), will serve to raise the SFE when properly accounted for. In this sense, we view the value of 22% as a lower limit.

Table 2
Observational Results for IRTF Sources

Table 2 (con't)
Observational Results for IRTF Sources

IRS	Other Names(a) (1)	R.A.(1950) (2)			DEC.(1950) (3)			$1.25 \mu \mathrm{~m}$ (4)	$\begin{aligned} & 1.6 \mu m \\ & (5) \end{aligned}$	$\begin{aligned} & C 1 u x \ln \\ & 2.2 \mu \mathrm{~m} \end{aligned}$ (6)	Magnitud $3.4 \mu \mathrm{~m}$ (7)	$\begin{aligned} & \text { es (b) } \\ & 4.8 \mu \mathrm{~m} \end{aligned}$ (8)	$\begin{aligned} & 10 \mu \mathrm{~m} \\ & (9) \end{aligned}$	$\begin{gathered} 20 \mu \mathrm{~m} \\ (10) \end{gathered}$	Vis.(c) Star? (11)	$\begin{aligned} & A(v)= \\ & 12(H-K)(d) \\ & (12) \end{aligned}$	$\begin{aligned} & A(v) \\ & (C 180)(e) \\ & (13) \end{aligned}$	A/F(f) (14)	Aperture J-L (") (15)	$\begin{aligned} & \text { Aperture } \\ & \text { M-Q (") } \\ & \text { (16) } \end{aligned}$	$\begin{aligned} & \text { Date } \\ & 7 / 84 \end{aligned}$	of Obs. 5/85 6/86 (17)	
27	WL22		${ }^{\text {h }} 23^{\text {m }}$	$3^{m 6} 57^{8} 3$	-24°		'15'		>16.7	14.47	7.8	5.4	3.77	1.8	no		84	A	5.5-7.5	7.5	X	X	
28	vSSG8	16	24	40.1	-24		54	$\begin{array}{r} 14.13 \\ 0.06 \end{array}$	10.81	9.3	8.34	$\begin{aligned} & 8.2 \\ & 0.3 \end{aligned}$	>5.8		no	18.1	23	U	7.5	5.5			X
29	WL1	16	24	42.4	-24		46	16.7 0.2	12.65	10.62	8.78		$\begin{aligned} & 6.2 \\ & 0.2 \end{aligned}$	>3. 3	no	24.4	46	A	5.5	5.5		x	x
30	ylhion	16	24	4.1	-24		37		13.21	10.87	9.44				no	28.1	44	U	5.5			X	
31	WL9	16	24	8.5	-24		39			11.97	10.72		>7.2		no	23.2	75	A	7.5	7.5	X		
32		16	24	10.1	-24		59	$\begin{array}{r} 14.37 \\ 0.05 \end{array}$	11.5	10.06	9.17	$\begin{aligned} & 7.9 \\ & 0.25 \end{aligned}$	>4. 1		no	17.3	24	U	7.5	5.5			X
32 b		16	24	411.8	-24		49			$\begin{array}{r} 10.1 \\ 0.2 \end{array}$					no		40	U					
33		16	24	12.8	-24	20	4		$\begin{array}{r} 15.3 \\ 0.1 \end{array}$	12.15	10.2	>8. 1	>6. 6		no	37.8	41	U	7.5	5.5			X
34	yLW10b	16	24	13.6	-24		58		13.08	10.43	8.4	$\begin{aligned} & 7.1 \\ & 0.15 \end{aligned}$	5.7	>2.7	no	31.8	41	A	5.5	5.5		X	X
35		16	24	13.8	-24		12		$\begin{array}{r} 16.6 \\ 0.2 \end{array}$	12.86	10.54		>7.0		no	44.9	64	U	7.5	7.5	x		
36	YLW 10 C	16	24	13.9	-24		33		$\begin{array}{r} 15.6 \\ 0.1 \end{array}$	12.95	11.12				no	31.8	39	U	5.5			X	
37	YLW12A	16	24	15.9	-24	22	14	>16.8	13.99	11.48	8.77		5.6	>2.6	no	30.1	55	A	5.5	7.5	x		
38	WL5	16	24	16.5	-24	22	9		14.26	10.38	7.92		>7.4		no	46.6	55	U	5.5	7.5	X		
39	WL. 4	16	24	16.8	-24	22	23		11.37	9.59	8.21				no	21.4	55	A	5.5		X		
40	SR12(TT), R0X21	16	24	17.5	-24	34	59	9.54	8.67	8.46	8.22	$\begin{aligned} & 8.5 \\ & 0.3 \end{aligned}$	>7.1		yes	2.5	60	A	5.5	5.5		X	X
41	WL3	16	24	17.6	-24	22	0		14.17	11.2	8.8		$\begin{aligned} & 6.8 \\ & 0.3 \end{aligned}$	>2.0	no	35.6	55	A	5.5	7.5	x		
42	YLH138, ROX21	16	24	19.3	-24	35	3	$\begin{aligned} & 15.7 \\ & 0.05 \end{aligned}$	11.26	8.39	5.88		3.91	>2.4	no	34.4	71	A	5.5	5.5		X	
43	YLhi5A	16	24	24.9	-24	34	9		13.61	9.96	6.85		3.34	0.27	по	43.8	80	A	7.5	7.5	X		
44	YLW16A	16	24	26.0	-24	32	52	>16.8	13.51	9.84	6.68		2.33	-1.23	no	44.0	68	A	7.5	7.5		X	X
45	VSSG18	16	24	26.7	-24	20	40						5.1	>2.7	no	28.8	48	A		5.5			X
46	YLW16B	16	24	27.4	-24	32	36	$\begin{gathered} 16.9 \\ 0.15 \end{gathered}$	12.95	10.17	7.63		4.2	1.7	no	33.4	68	A	5.5	7.5	X	X	
47	VSSG17	16	24	28.8	-24	21	4						3.53	1.87	no	31.1	48	A		5.5	x		
48		16	24	35.5	-24	23	55	10.78	8.6	7.4	5.91		2.2	-0.98	yes	14.4	34	A	5.5-7.5	7.5	X	X	
49	ROXC20	16	24	36.4	-24	30	18	11.62	9.43	8.37	7.24		4.63		no	12.7	35	A	7.5	7.5	X		
50		16	24	36.4	-24	24	1		10.57	9.67	9.07		>6.8		no	10.8	34	A	7.5	7.5	x		

Table 2 (con't)
Observational Results for IRTF Sources

Notes to Table 2 -
(a) References for source names are same as those in Table 1 with the addition of Young, Lada, and Wilking (YLW, 1986). T Taurl stars are denoted by 'TT'.
(b) Limits are 3σ upper IIfits.
(c) Optical counterparts as identified from the red POSS photograph (m< 20.0 mag)
(d) An upper limit to the visual extinction toward a YSO obtained assuming the intrinsic ($\mathrm{H}-\mathrm{K}$) $=0$.
(e) The total cloud extinction as estimated from the C^{180} column density (Wilking and Lada 1983).
(f) Classification of $2 \mu \mathrm{~m}$ source as association member (\boldsymbol{f}, field star (F) or unclassified (U) as determined from criteria described in Appendix A.
(g) Photometry by Hyland (unpublished observations).

TABLE AI

A Cross-Reference List of Rho Oph Cluster Members ${ }^{1}$

R.	A.	(1950)	Dec (1950)		SR	GSS	VSSG	VSS	Cl	EL	WL	ROX	H α	IRAS/YLW	IRS	other
		m2. ${ }^{5}$	-240	22'55'	22				5				23			
16	22	22.8	-24	217	1	9			4	9						HD147889
16	22	35.5	-24	852										19	2	
16	22	40.7	-24	$20 \quad 23$										20?	7	
16	22	46.3	-24	1143										21?	8	
16	22	47.4	-24	2450										23	9	
16	22	54.8	-24	141	4				7	13		6	25	25	12	
16	22	55.9	-24	2343		20						7		24	13	
16	23	1.7	-24	1650		23		93	10	14		8		26		
16	23	7.7	-24	$27 \quad 26$	3	25		92	12	16				28		
16	23	9.0	-24	1411		26										S26
16	23	14.8	-24	1521			12									
16	23	15.5	-24	1538		29			13	18						S28
16	23	15.8	-24	1337		28			14	19		10	27			
16	23	17.5	-24	2133			1		15	20				31		
16	23	19.9	-24	$16 \quad 18$		30				21						S29
16	23	21.7	-24	$36 \quad 29$				25				C3	29	34		DoAr 25
16	23	22.0	-24	$14 \quad 15$		31			16	22		10	30			
16	23	22.6	-24	184		32			17	23		C6				S2
16	23	22.9	-24	929						24		C5	31	32		
16	23	28.7	-24	1614			27							36		
16	23	29.3	-24	2420										35?	14	
16	23	30.1	-24	2456											15	
16	23	32.8	-24	1644		35		26	19	25		14		36		Sl
16	23	39.4	-24	3334									37			
16	23	40.5	-24	$24 \quad 18$							7			38	17	
16	23	41.5	-24	1347		37	2		20	26		15				
16	23	42.3	-24	948			11					C9		39	19	
16	23	42.5	-24	284							12			2		
16	23	43.3	-24	$16 \quad 24$		39				27						
16	23	45.1	-24	517				27				16	38	37?		
16	23	46.8	-24	2153							2					
16	23	47.0	-24	1324			3		21			17				
16	23	52.0	-24	1939			5					C1 1				
16	23	55.5	-24	2855							21			4	23	
16	23	56.4	-24	3848	24N					28		C1 3	41	3	24	
16	23	56.5	-24	3855	24 S					28		C1 3	42	3	25	

TABLE AI (CON'T)

	R.A. (1950)				Dec $($	(1950)	SR				css vssg vss Cl	EL	wL	ROX	Ho	IRAS/YLW	IRS	other	
	38		23^{m}	$\mathrm{m}_{57.2}^{\text {s }}$	-24°	29' 8"						14		4					
	39	16	23	57.3	-24	2815								22			4	27	
	40	16	24	0.3	-24	3044							16			5			
	41	16	24	2.4	-24	2146							1			6	29		
	42	16	24	4.8	-24	3133							17						
	43	16	24	7.3	-24	2735							10						
	44	16	24	7.8	-24	3033						29	15	C15		7			
	45	16	24	8.5	-24	2639							9			9	31		
	46	16	24	8.9	-24	1231	21		23	31	25	30		C14		8			
	47	16	24	9.5	-24	287							11						
	48	16	24	9.7	-24	3149							19			11			
	49	16	24	13.6	-24	1958										10	34		
	50	16	24	13.9	-24	3159							20			11			
	51	16	24	15.9	-24	2214			26							12	37		
	52	16	24	16.8	-24	2223			26				4			12	39		
	53	16	24	17.5	-24	3459	12A							21			40	binary	
	54	16	24	17.5	-24	3459	128							21			40		
	55	16	24	17.6	-24	220			26				3			12	41		
$\stackrel{\sim}{*}$	56	16	24	19.3	-24	$35 \quad 3$								21		13	42		
	57	16	24	19.8	-24	238							6			14			
	58	16	24	20.8	-24	1124			22					23					
	59	16	24	20.9	-24	4127									49				
	60	16	24	24.9	-24	$34 \quad 9$										15	43		
	61	16	24	25.4	-24	2434			25		27	31	13						
	62	16	24	26.0	-24	3252										16	44		
	63	16	24	26.7	-24	2040			18			32				17	45		
	64	16	24	27.4	-24	3236										16	46		
	65	16	24	28.8	-24	214			17			33				17	47		
	66	16	24	35.5	-24	2355										46	48		
	67	16	24	36.4	-24	$24 \quad 1$										46	50		
	68	16	24	36.4	-24	3018								C20		47	49		
	69	16	24	37.6	-24	3635										45	51		
	70	16	24	38.8	-24	1524	9				29	34		29	54	49	52		
	71	16	24	48.3	-24	192			14		31	36				53			
	72	16	24	50.0	-24	$25 \quad 5$										52	54		
	73	16	24	50.3	-24	3410								31			55	hinary	
	74	16	24	50.3	-24	3410								31			55		
	75	16	24	53.9	-24	1940	10				33				57	56?			
	76	16	25	14.6	-24	3021									60	58			
	77	16	25	31.1	-24	1610	20				38			33	61	60 ?			
	78	16	25	51.9	-24	4110									63				

${ }^{1}$ Notes to Table Al. Columns (2) and (3) give the Epoch 1950 positions determined from optical or near-infrared telescopes and have typical uncertainties of a few arcseconds. Columns (4) -(14) give source numbers from Struve and Rudkjobing (SR, 1949), Grasdalen, Strom, and Strom (GSS, 1973), Vrba et al. (VSSG, 1975), Vrba, Strom, and Strom (VSS, 1976), Chini (Cl, 1981), Elias (EL, 1978), Wilking and Lada (WL, 1983), Montmerle et al. (ROX, 1983), Wilkins, Schwartz, and Blackwell (Ho, 1987), Young, Lada, and Wilking (YLW, 1986) and this study for IRAS sources, and this study for and $2 \mu \mathrm{~m}$ sources (IRS, Table 2). Column 15 gives other names including "Source" designations by GSS and VS, and denotes binary star systems found during a lunar occultation (Simon et al. 1987).

A Cross Reference List of Field Stars

R.A. (1950)	Dec (1950)	GSS	VSSG	vSS	Cl	EL	IRAS	IRS	other
$16^{\mathrm{h}} 22^{\mathrm{m}} 34.0$	-24027'13'	15			6	11		1	S16
$1623 \quad 4.0$	-24 369					15	27		
162445.2	-241643		13		30	35			
$16 \quad 25 \quad 2.1$	-24 1954		16	34	34	37	$56 ?$	58	
$\begin{array}{llll}16 & 25 & 7.8\end{array}$	-24 1644		15		36	38			

A Cross Reference List of Unidentified Sources

R.A.	(19	50)	Dec $($	1950)	SR	GSS	VSSG	VSS	Cl	EL	WL	ROX	IRAS/YLW	IRS
	22^{m}	36.7	-240	6'56"						12				
16	22	38.0	-24	1946										3
16	22	38.7	-24	$10 \quad 17$										4
16	22	39.3	-24	1929										5
16	22	39.5	-24	958										6
16	22	54.5	-24	2328										11
16	22	56.8	-24	111			19		9					
16	23	6.8	-24	81			20		11					
16	23	36.7	-24	$16 \quad 22$			4							
16	23	39.1	-24	$24 \quad 6$										16
16	23	40.3	-24	2641							8			
16	23	41.2	-24	1744										18
16	23	44.7	-24	1624			28							
16	23	47.4	-24	3134							19			
16	23	49.7	-24	147									1	20
16	23	50.7	-24	84			10							
16	23	52.3	-24	1544		40	6					Cl 2		21
15	23	53.9	-24	1345		41	7						1	22
16	23	56.9	-24	1447									1	26
16	24	0.1	-24	1454			8							28
16	24	0.7	-24	$12 \quad 14$			9		22					
16	24	2.8	-24	1324			21		23					
16	24	4.1	-24	1937									10	30
16	24	8.3	-24	3850	25			30						
16	24	10.1	-24	1659										32
16	24	11.8	-24	3649										32 b
16	24	12.8	-24	1134			24		26					
16	24	12.8	-24	204										33
16	24	13.8	-24	$24 \quad 12$										35
16	24	13.9	-24	1833									10	36
16	24	16.5	-24	229			26				5		12	38
16	24	41.6	-24	$36 \quad 28$										53
16	24	50.8	-24	$41 \quad 16$									54	56
16	24	58.3	-24	1520										57
16	25	8.9	-24	923	15			35	37					
16	25	43.9	-24	4121				38						
16	25	57.2	-24	4235				39						
16	26	11.2	-24	1722				42						
16	26	43.6	-24	1320				41						

Herbig, G. H., Vrba, F. J., and Rydgren, A.E. 1986, A.J., 91, 575. Harvey, P. M., Wilking, B. A., and Joy, M. 1984, Ap. J., 278, 156.
Harris, D. H., Woolf, N, J., and Rieke, G. H. 1978, Ap. J., 226, 829. - \>
Grasdalen. G. L., Strom, K. M., and Strom, S.E. 1973, Ap. J. (Letters), 184,

Garrison, R. F. 1967, Ap. J., 147, 1003.
Frerking, M. A., Langer, W. D., and Wilson, R. W. 1982, Ap. J, 262, 590. 206, L165.

Fazio, G. G., Wright, E. L., Zielik, M., III, and Low, F. J. 1976, Ap. J. (Letters), Dupree and M.T.V.T. Lago (Boston: D. Reidel), in press.

Emerson, J. P. 1988, in Formation and Evolution of Low Mass Stars, ed. A.
Elias, J. H. 1978, Ap. J., 224, 453.
Dolidze, M. V., and Arakelyan, M. A. 1959, Soviet Astr.-AJ, 3, 434.
Duerr, R., Imhoff, C. L. and Lada, C. J. 1982, Ap.J., 261, 135.
Disney, M. J. and Sparks, W. B. 1982, Observatory, 102, 234.
Dickman, R.L. 1978, Ap. J. Suppl., 37, 407.

Cohen, M. and Kuhi, L. V. 1979, Ap. J. Suppl., 41, 743
Chini, R. 1981, Astr. Ap., 99, 346 Beall, J. H. 1987, Ap. J., 316, 227 Adams, F. C., Lada, C. J., and Shu, F. H. 1988, Ap. J., 326, 865

Adams, F. C., Lada, C. J., and Shu F. H. 1987, Ap. J., 312, 788.
Adams, F. C., and Shu, F. H. 1986, Ap. J., 308, 836.

รәวนәวјวบ

Shu, F. H., Adams, F. C., and Lizano, S. 1987, Ann. Rev. Astr. Ap., 25, 23.
Scalo, J. M. 1986, Fundamentals of Cosmic Physics, 11, 1.
Salpeter, E. E. 1955, Ap. J., 121, 161
Rydgren, A. E., Strom, S. E., and Strom, K.M. 1976, Ap. J. Suppl., 30, 307.

Rydgren, A. F., Schmelz, J. T., Zak, D. S., and Vrba, F. J. 1984, Publ. U.S.
 Rucinski, S.M. 1985, A. J., 90, 2321
Rieke, G. H. and Lebofsky, M. J. 1985, Ap. J., 288, 618. Schild, R. E., and Emerson, J. P 1987, Ap. J., 319, 340.
Myers, P. M., Fuller, G. A., Mathieu, R. D., Beichmann, C. A., Benson, P. J., Montmerle, T., Koch-Miramonde, L., Falgarone, E., and Grindlay, J. E. 1983, Ap. Miller, G. E. and Scalo, J. M. 1979, Ap. J. Suppl., 41, 513. Loren, R. B. 1988, in preparation,.
Lada, C. J., and Wilking, B. A. 1984, Ap. J., 287, 610.

$$
\text { Lada, C. J., Margulis, M., and Dearborn, D. 1984, Ap. J., 285, } 141 .
$$

Lada, C. J. 1988, in Formation and Evolution of Low Mass Stars, ed. A. Dupree
Lada, C. J. 1987, in Star Forming Regions, ed. M. Peimbert and J. Jugaku
Kenyon, S. J., and Hartmann, L. 1987, Ap. J., 323, 714.
Jones, B. F. and Herbig, G. H. 1979, A. J., 84, 1872.
ton D. C.: U.S. Government Printing Office).
IRAS Point Source Catalog 1985, Joint IRAS Science Working Group, (Washing-
Iben, I., Jr. 1965, Ap. J., 141, 993.
Young, E. T., Lada, C. J., and Wilking, B. A. 1986, Ap. J. (Letters), 304, L45.
Wilking, B. A., Schwartz, R. D., and Blackwell, J. H. 1987, A. J., 94, 106.
Young, E. T., and Greene, T. 1988, Ap. J., in press.
Wilking, B. A. and Lada, C. J. 1983, Ap. J., 274, 698.
Walter, F. M., Brown, A., Mathieu, R. D., Myers, P. C., and Vrba, F. J. 1988, A.
J., 96, 297.
Walter, F. M. 1986, Ap. J., 306, 573.

- 22
Vrba, F. J., Strom, K. M., Strom, S. E., and Grasdalen, G. L. 1975, Ap. J., 197,
Vrba, F. J., Strom, S. E., and Strom, K. M. 1976, A. J., 81, 958.
Struve, O. and Rudkjobing, M. 1949, Ap. J., 109, 92.

$$
\text { Strom, K. M., Strom, S. E., Kenyon, S. J., and Hartmann, L. 1988, A. J., } 95 \text {, }
$$

Stahler, S. W., Shu, F. H., and Taam, R. E. 1980, Ap. J., 241, 63 T.
Stahler, S. W. 1983, Ap. J., 274, 822.
Simon, M., Howell, R. R., Longmore, A. J., Wilking, B. A., Peterson, D. M., and

Strom, and St rom (1976), and Rydgren (1980). Figure 3a shows energy
was adopted from Chini (1981), Harris, Woolf, and Rieke (1978), Rydgren,

used to scale the spectral energy distribution is given in parantheses below
footnotes to Tables 1 and 2 for references to source names). The power of ten
spectrum are given for both the near-infrared and IRAS designations (see
index as defined by $a=d \log \left(\lambda F_{\lambda}\right) / d \log \lambda$. Source names accompanying each
Oph cluster displaying IRAS emission, grouped according to their spectral
Figure 3 - Spectral energy distributions for 32 association members of the ρ
Figure 2 - In-scan slices of IRAS 34 at 12 and $25 \mu \mathrm{~m}$.
delineates the molecular cloud.
$20,40,80,160,320,640,1280,2560$) in units of Jy/sr. The shaded area The contour levels for the $12 \mu \mathrm{~m}$ emission are $1.78 \mathrm{E} 5 *(-15,-10,-5,3,6,10$,
unfiltered intensity map of the $12 \mu \mathrm{~m}$ emission over the same area as above.
emission line strengths of $T_{R}{ }^{*} \geqslant 6 \mathrm{~K}$ (Loren 1988). Figure lb shows the are shown by a solid contour which encompasses a $4.3 \mathrm{pc}^{2}$ area where ${ }^{13} \mathrm{CO}(1-0)$ and small crosses less than this value. The boundaries of the molecular gas mark the positions of sources with $12 \mu \mathrm{~m}$ flux densities greater than 0.25 Jy positions with the red photograph from the Palomar Sky Survey. Large crosses cloud. Figure la is an overlay of the $12 \mu \mathrm{~m}$ point and small extended source
extinction and molecular gas in the central regions of the ρ Ophiuchi dark
Figure 1 - The distribution of IRAS $12 \mu \mathrm{~m}$ emission relative to visual
Figure Captions
sensitivity infrared surveys at $2.2 \mu \mathrm{~m}$.

Figure A3 - The distribution of association members in the ρ Oph cloud
blackbody shown at the bottom of the plot.
distributions are unreddened and resemble that of a single temperature
Elias (1978) and this study toward the ρ Oph cloud. Most of the energy
Figure A2 - Spectral energy distributions for background field stars found by
members and background field stars found toward the ρ Oph cloud.
Figure Al - A classification scheme to differentiate between association
ILF。
are upper limits are also shown but not included in the normalization of the

in the $-0.25<\log \mathrm{L}^{\prime \prime}(\mathrm{obs})<0.75$ range. The sources in each luminosity bin
shown, normalized to the number of objects with well-determined luminosities
cluster. For comparison, the luminosity function derived from the IMF is
Figure 5 - The luminosity function for 74 members of the ρ Oph embedded
5 field or unidentified objects toward the ρ Oph cloud.
Figure 4 - The distribution of spectral indices for 48 association members and

Distribution of Spectral Indices

