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Abstract

Designing compiler intermediate representations (IRs) is of-
ten a manual process that makes exploration and innovation
in this space costly. Developers typically use general-purpose
programming languages to design IRs. As a result, IR imple-
mentations are verbose, manual modifications are expensive,
and designing tooling for the inspection or generation of
IRs is impractical. While compilers relied historically on a
few slowly evolving IRs, domain-specific optimizations and
specialized hardware motivate compilers to use and evolve
many IRs. We facilitate the implementation of SSA-based IRs
by introducing IRDL, a domain-specific language to define
IRs. We analyze all 28 domain-specific IRs developed as part
of LLVM’s MLIR project over the last two years and demon-
strate how to express these IRs exclusively in IRDL while
only rarely falling back to IRDL’s support for generic C++
extensions. By enabling the concise and explicit specifica-
tion of IRs, we provide foundations for developing effective
tooling to automate the compiler construction process.
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Figure 1.The domain-specific IR Definition Language (IRDL)
combined with a small amount of generic C++ code (IRDL-
C++) enables the concise specification of compiler IRs for the
use within a multi-IR compilation flow. We expect IRDL to
serve as a foundation for a future ecosystem of productivity-
increasing tooling around IR design.

1 Introduction

Today, a production-quality compiler is typically devel-
oped in a manual process where (almost) all parts of it are
implemented in a general-purpose programming language,
making compiler construction slow and nearly impossible
to reason about. In particular, the different intermediate rep-
resentations (IRs) a compiler uses are hidden in internal data
structures. For instance, Open64 uses a 5-level WHIRL rep-
resentation [19]. Newer programming language frontends
often introduce their own language-specific IRs to represent
higher-level constructs. Swift [26], for instance, developed
the Swift Intermediate Language (SIL) on top of LLVM [13]
to implement high-level optimizations [17]. LLVM, as a com-
piler infrastructure, has not only its user-facing LLVM IR
but additionally uses various internal ones that are typi-
cally not visible to its users: SelectionDAG, MachineInst, and
MCInst [12]. All of these IRs are deeply embedded into their
respective compilers. Hence, modifications require detailed
compiler-specific knowledge, and even specialists are very
hesitant to evolve existing IRs. While there exist approaches
for generating parts of a compiler (e.g., parsers, backends,
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func @conorm(%p: !cmath.complex<!f32>,

%q: !cmath.complex<!f32>) -> !f32 {

%norm_p = cmath.norm(%p) : !f32

%norm_q = cmath.norm(%q) : !f32

%pq = std.mulf %norm_p, %norm_q : !f32

return %pq : !f32

}

(a) Before optimization

func @conorm(%p: !cmath.complex<!f32>,

%q: !cmath.complex<!f32>) -> !f32 {

%pq = cmath.mul(%p, %q) : !f32

%conorm = cmath.norm(%pq) : !f32

return %conorm : !f32

}

(b) After optimization

Listing 1. Optimizing conorm with an MLIR cmath dialect. High-level IRs enable simple peephole optimizations in MLIR.

code-generators), we lack a solution that streamlines the
design of IRs themselves and enables a strong library and
tooling ecosystem around them.
MLIR [14] took an important step towards facilitating

the implementation of IRs. As a new compiler framework
under the LLVM umbrella, MLIR reduces the cost of imple-
menting an SSA-based compiler IR by providing a shared
infrastructure for implementing new IRs, so-called łdialectsž.
Dialects provide a unified way to interact with IRs in C++
and a generic textual syntax that resembles LLVM-IR. While
MLIR IRs are always implemented in C++, MLIR’s initial
release also shipped a prototype of the so-called łOperator
Definition Specificationł (ODS). Using the TableGen generic
record format that LLVM relied on for defining some of its
backend components [11], the first variant of ODS allowed
developers to synthesize some of the C++ code needed to
implement individual MLIR operations. Over the last few
years, we gradually expanded ODS together with the MLIR
community until it became clear that we were building, hid-
den in a difficult-to-read record format, a tailor-made DSL
for designing and working with compiler IRs.
With IRDL, we present a dedicated domain-specific lan-

guage for concisely representing a diverse set of compiler
IRs. IRDL is the result of working with the MLIR community
with the objective to streamline the IR design process. In
an IRDL-based compilation flow (Figure 1), we compile a
program through multiple stages of abstraction while trans-
lating across various (combinations of) IR dialects. An IRDL
specification describes each IR dialect composed of opera-
tions, types, and attributes (static annotations to operations),
including special control-flow constructs such as termina-
tor operations or nested control flow regions (see Section 2
for details). We also provide with IRDL-C++ an extension
for representing IRs with complex properties and invariants
that are best expressed in a generic programming language.
Together, IRDL and IRDL-C++ are sufficient to define the IRs
that arise in a typical SSA-based compiler in a self-contained
IR definition file.

Together with the MLIR community, we have been work-
ing carefully towards decoupling the default set of MLIR IR
definitions from the actual compiler stack and, as a result,
have made these definitions inspectable. We can now analyze
the full set of IRs defined in MLIR and can provide detailed

data on the degree to which IRs can be specified in a self-
contained domain-specific language. Our new streamlined
IR design process enables a detailed analysis of the IRs in the
MLIR ecosystem, which overall demonstrates the power of
meta-tooling for IR design. We envision that the structured
and self-contained IR format IRDL provides a foundation
for a full suite of IR tooling, e.g. LSP (Language Server Pro-
tocol) [15] support, IR refactoring tools, and others, which
we expect to simplify the process of designing and working
with IRs.

Our contributions are:

• IRDL, a high-level language for defining arbitrary SSA
IRs as dialects composed of operations, types, attributes,
as well as expected invariants → Section 4;

• IRDL-C++, an extension of IRDL for using inline C++
in IR specifications that require Turing-complete lan-
guage support→ Section 5;

• An analysis of the suitability of IRDL to express 28
domain-specific IRs without a broad need for manually
written C++ code → Section 6.

2 SSA, Regions, and MLIR

Static Single Assignment (SSA) intermediate representations
(IRs) [2] are standard in compilers today. An SSA-based IR
uses program variables - called SSA values - with the partic-
ular property that each variable is assigned a value at exactly
one program location. As a result, each named SSA value
uniquely identifies the location and operation that computes
its value. Each operation takes as arguments a list of previ-
ously defined SSA values and returns zero or more (SSA) val-
ues. Values are typically associated with a type, which carries
compile-time information. Similarly, operations may have
attributes that describe static information. For example, we
express a program to compute the norm of the product of two
complex numbers (Listing 1) as a sequence of two MLIR op-
erations, cmath.mul for the multiplication, and cmath.norm
for the norm. Those operations use !cmath.complex<f32>
types, which model complex numbers composed of single-
precision floating-point values.
Basic blocks represent a sequence of operations and end

with a special terminator operation, which passes control
to one or multiple basic blocks. In addition, basic blocks
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accept optional block arguments (semantically equivalent
to 𝜙 nodes [14]) that enable terminator operations to pass
values across block boundaries or leave the current set of
basic blocks. A set of connected basic blocks with a single
entry block and zero or more exit blocks forms a control
flow graph (CFG). CFGs are contained in regions, which are
usually used to implement functions (Listing 1). However,
some extensions of SSA (e.g., MLIR [14]) allow operations to
contain nested regions, which makes it possible to represent
hierarchical control flow (e.g., if statements) and the resulting
nested control flow graphs.
MLIR does not provide a predefined set of operations

but relies on the concept of extensibility, with few built-in
constructs leaving most of the IR customizable. Operations,
types, and attributes are grouped into dialects, similar to
namespaces or modular libraries. Each dialect sits at a given
abstraction level. For example, the Linalg dialect in MLIR
models linear algebra operations on either tensor or buffer
operands. SCF represents structured control flow, and Arith,
at a lower abstraction level, consists of standard arithmetic
on integers and floating points. In our previous example (List-
ing 1), the cmath dialect represents computations on complex
numbers, which ease the writing of compiler optimizations
by providing the right abstraction level. For instance, we
can write a domain-specific transformation that converts the
multiplication of two norms into the norm of a complex mul-
tiplication (Listing 1a), an equivalent but faster computation.

In MLIR, operations can take by default an arbitrary num-
ber of operands, results, regions, or attributes. However, op-
erations can additionally define verifiers which constrain
the operands, results, regions, or attributes an operation
can have. For instance, cmath.mul defines a verifier (List-
ing 2, MulOp::verify) which constrains the operation to
have only two operands, one result, and no regions. It also
constrains the operands and results to have the same com-
plex type. Types and attributes may also define verifiers. For
instance, the cmath.complex type defines a verifier to en-
sure that the type parameter elementType is a floating-point
type. Verifiers are essential to define invariants on arbitrary
operations, types, and attributes.

3 Deriving a Dialect with IRDL

We introduce IRDL by developing a simple domain-specific
compiler IR for complex numbers as introduced in Listing 1.
A given IRDL specification has sufficient information to de-
rive: (1) parsers and printers for conversion to and from a
textual representation, (2) data structures for the internal
representation of the IRs, and (3) verifiers to assert IR invari-
ants. Section 4 will provide a specification of IRDL that is
sufficient to define the full feature set of the cmath IR.
To define the cmath IR used in our initial complex math

example (Listing 1), we use IRDL to define the dialect it-
self together with the complex type and the mul and norm

class CmathDialect : Dialect {

StringRef getNamespace() { return "cmath"; }

... // More C++ code

}

class ComplexType : Type<CmathDialect> {

Type elementType;

static bool verify() {

return elementType.isa<FloatType>();

}

... // More C++ code

}

class MulOp : Op<CmathDialect> {

Value lhs() { return operands()[0]; }

Value rhs() { return operands()[1]; }

Value res() { return results()[0]; }

bool verify() {

return numOperands() == 2 &&

numResults() == 1 &&

numRegions() == 0 &&

lhs().type().isa<ComplexType>() &&

lhs().type() == rhs().type() &&

rhs().type() == res().type();

}

... // More C++ code, e.g., constructors, parser,

// printer, ...

}

class NormOp : Op<CmathDialect> { ... // More C++ }

Listing 2. C++ code defining an SSA IR with MLIR.

operations (Listing 3). Types define parameters, as well as
constraints over them. For instance, complex defines a single
parameter named elementType, which is constrained to be
a floating-point type. These constraints are used to gener-
ate the corresponding C++ verifiers. Operations also define
constraints for operands, results, attributes, and regions. In
our example, mul constrains its operands and results to be
equal complex types and, additionally, defines a printing and
parsing format. While our simple example and many more
sophisticated ones can be expressed entirely in IRDL (Sec-
tion 4), other IRs may require specialized constraints that are
beyond the scope of IRDL. IRDL-C++ (Section 5) provides the
necessary directives to also express such use cases. Together,
IRDL and IRDL-C++ are capable of expressing a full compiler
IR in just a single self-contained text file.
We see IRDL as the means of defining and working with

IRs in MLIR and potentially other compilers. Compiler devel-
opers can simply register a new dialect (e.g., cmath) in MLIR
by providing an IRDL specification file instead of writing,
compiling, and linking several complex C++ or TableGen
files. The compiler then instantiates all necessary data struc-
tures at runtime (without recompilation) and is immediately
prepared to reason about such IRs. Together with the dy-
namic pattern rewriting support currently in construction
in MLIR [14], this provides the components needed to define
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Constraint constructor Description

𝑡𝑦𝑝𝑒 |𝑎𝑡𝑡𝑟 Match only the given type or attribute
𝑡𝑦𝑝𝑒𝑛𝑎𝑚𝑒 |𝑎𝑡𝑡𝑟𝑛𝑎𝑚𝑒 Match any type or attribute with the same base name
(𝑡𝑦𝑝𝑒𝑛𝑎𝑚𝑒 |𝑎𝑡𝑡𝑟𝑛𝑎𝑚𝑒)<𝑝𝑐1, ..., 𝑝𝑐𝑁> Match any type or attribute with same base name, with parameter 𝑖 satisfying 𝑝𝑐𝑖

(a) Type and attribute constraints

Constraint constructor Description

𝑡𝑐 |𝑎𝑐 Match the type or attribute satisfying the constraint
(int8_t|uint8_t|int16_t| ...) Match integers of a given bitwidth and signedness
𝑖𝑛𝑡_𝑙𝑖𝑡𝑒𝑟𝑎𝑙 : (𝑖𝑛𝑡8_𝑡 |...) Match exactly an integer literal with a given bitwidth and signedness
string Match any string
𝑠𝑡𝑟𝑖𝑛𝑔_𝑙𝑖𝑡𝑒𝑟𝑎𝑙 Match exactly a string literal
𝑒𝑛𝑢𝑚𝑛𝑎𝑚𝑒 Match any constructor of a particular enum
𝑒𝑛𝑢𝑚_𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 Match a particular enum constructor
array<𝑝𝑐> Match an array that has all elements satisfying 𝑝𝑐
[𝑝𝑐1, ..., 𝑝𝑐𝑁 ] Match an array of N elements, where the 𝑖-th element is constrained by 𝑝𝑐𝑖

(b) Parameter constraints

Constraint constructor Description

!AnyType | #AnyAttr | AnyParam Match any type, attribute, or parameter
AnyOf<𝑐1, ..., 𝑐𝑁> Match any type, attribute, or parameter satisfying at least one 𝑐𝑖
And<𝑐1, ..., 𝑐𝑁> Match any type, attribute, or parameter satisfying all 𝑐𝑖
Not<𝑐> Match any type, attribute, or parameter not satisfying 𝑐

(c) Generic constraint constructors

Figure 2. Only a few type of constraints are defined in IRDL. 𝑐 refers to a type, attribute, or parameter constraint. 𝑡𝑐 refers to a
type constraint, 𝑎𝑐 refers to an attribute constraint, and 𝑝𝑐 refers to a parameter constraint.

a simple pattern-based compilation flow (e.g., the optimiza-
tion in Listing 1) without the need for additional C++ code.
While more work is needed to define an entire transfor-
mation pipeline dynamically, the self-contained nature of
IRDL already provides concrete benefits. The most immedi-
ate benefit is the concise, well-defined, and well-documented
interface that IRDL provides, making it easy to understand
the IR concepts compiler designers have at their disposal.
IRDL also makes it easy to introspect and generate IRs, which
provides foundations for the development of tooling around
IR design, e.g. statistic and analysis tools or code completion
when writing IR files. The ability to dynamically instantiate
IRs could enable interesting research in programming lan-
guages, e.g. clang could generate IRs on the fly to represent
and optimize domain-specific user-defined concepts. We im-
plemented the majority of IRDL in close collaboration with
the MLIR community and are now upstreaming our changes
into the main MLIR repositories (details in Section 6.1). As a
result, IRDL will be easily accessible to a wide set of users.

4 Declarative IR Specification with IRDL

IRDL enables developers to define dialects using a high-level
description by providing a structured format to define types,
attributes, and operations. As a result, defining dialects with

IRDL is more efficient than defining them with a general-
purpose programming language, following the usual benefits
of a DSL [9]: definitions are concise, can be written faster,
and can be analyzed for correctness and tool support. In this
section, we will explore IRDL’s different language constructs.

4.1 Dialect Definitions

Dialect definitions in IRDL start with a top-level Dialect
statement whose body contains the type, attribute, alias, and
operation definitions (Listing 3). In our example, the cmath
dialect definition defines a parametric complex type, a mul
operation, and a norm operation in its Dialect body.

4.2 Symbol Names and Namespaces

IRDL identifies dialects and their components by their name.
References to types and type constraints are prefixed with !,
and references to attributes and attribute constraints with #.
Dialect definitions create a namespace, and thus references to
a dialect component from outside the dialect must be prefixed
with the dialect name. The prefix is optional when inside
the dialect or for the builtin and std dialects. For example,
mul uses abbreviated type names to refer to the complex

type instead of the full cmath.complex name. f32 is also
a shorthand for builtin.f32, even though it is referred
outside the builtin dialect.
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Dialect cmath {

Alias !FloatType = !AnyOf<!f32, !f64>

Type complex {

Parameters (elementType: !FloatType)

Summary "A complex number"

}

Operation mul {

ConstraintVar (!T: !complex<FloatType>)

Operands (lhs: !T, rhs: !T)

Results (res: !T)

Format "$lhs, $rhs : $T.elementType"

Summary "Multiply two complex numbers"

}

Operation norm {

ConstraintVar (!T: !FloatType)

Operands (c: !complex<!T>)

Results (res: !T)

Format "$c : $T"

Summary "Compute the norm of a complex number"

}

}

Listing 3. Self-contained IRDL specification of an IR dialect.

4.3 Constraints

Constraints define invariants on types, attributes, or type
and attribute parameters. Type constraints specify invari-
ants on operands and results in operation definitions. Fur-
thermore, they can be used to define invariants on region
arguments. Attribute constraints are used in operation defi-
nitions for specifying invariants on attributes, and parameter
constraints are used in type and attribute definitions to spec-
ify invariants over parameters. Constraints are essential to
represent operation, type, and attribute verifiers from a high-
level description. Thus, IRDL provides a rich interface for
defining and composing them (Figure 2).

Type and attribute constraints. The most general type
and attribute constraints are #AnyAttr and !AnyType and
are satisfied respectively by all types and all attributes. Any
type or attribute reference where a constraint is expected is
coerced into an equality constraint. For instance, !f32 rep-
resents a constraint that is only satisfied by the !f32 type.
Similarly, constraints can also be nested directly in parame-
terized types. For instance, !complex<!AnyType> represents
the constraint satisfied by any complex type. This can be
shortened by only referring to the type name, !complex.

Parameter constraints. IRDL also provides support to
define parameter constraints for built-ins, such as integers,

Alias !Complexf32 = !complex<!f32>

Alias !ComplexOr<T> = AnyOf<!complex<!AnyType>, T>

Listing 4. IRDL aliases are used to shorten definitions.

Operation create_constant {

Results (res: !complex<!f32>)

Attributes (re: #f32_attr, im: #f32_attr)

Summary "Create a constant complex number"

}

Listing 5. Attributes add static information to operations.

Operation log {

Operands (c: !complex<!f32>, base: Optional<!f32>>)

Results (res: !complex<!f32>)

}

Listing 6.Optional operands can encode a default parameter.

floats, arrays, strings, and enums. Some constraints are pro-
vided for parameters expecting a specific parameter type. For
instance, string corresponds to the constraint expecting a
string, int32_t for a 32-bit signed integer, and array for
any array. Furthermore, it is possible to constrain array con-
tents by providing constraints that need to be satisfied by the
elements. The constraint array<!AnyType> describes an ar-
ray of types, and [!AnyType] describes an array containing
exactly one element, which is a type. Constraints can also be
defined for values. For instance, "foo" defines a constraint
expecting the string literal "foo", and 3 : int32_t expects
the value 3 encoded in a 32-bit signed integer.

Combining constraints. IRDL also provides ways to
combine constraints. For instance, AnyOf<!i64, !f64> con-
strains a type to be either !i64 or !f64. Not and And are
used to express both the negation and the conjunction of con-
straints. For instance, And<int32_t, Not<0 : int32_t>>

represents a constraint satisfied by any non-null integer.

4.4 Type and Attribute Definitions

Besides the keyword, type and attribute definitions are iden-
tical in IRDL. The definitions are identified by a name and
optionally specify a named parameter list that allows the
type or attribute to carry static information. Each parameter
is associated with a parameter constraint, representing the
parameter invariants. For example, in our complex dialect,
the complex type defines a single parameter, elementType,
constrained to a floating-point type (Listing 3). Type and
attribute definitions may also define a Summary field, which
describes the operation for documentation purposes.

4.5 Aliases

IRDL allows the definition of aliases, which are shorthands
for existing types, attributes, parameters, and constraints
over them. We define two aliases in Listing 4. Complexf32 is
a shorthand for the !complex<!f32> type. ComplexOr is a
parametric alias representing the constraint satisfied either

203



PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Mathieu Fehr, Jeff Niu, River Riddle, Mehdi Amini, Zhendong Su, and Tobias Grosser

by a complex type with any parameter, or by the given type
T. For instance, !ComplexOr<f32> is satisfied by !f32, or
any other complex type.

4.6 Operation

Operations are defined using the Operation directive with
a name. In their simplest form, operation definitions specify
operands, results, and attributes, all defined with a named list
of constraints. For example, the create_constant operation
(Listing 5), which represents a constant complex number, ex-
pects no operands and one result of type !complex<!f32>.
The operation additionally defines two attributes, re and
im, representing the real and imaginary part of the complex
number. They are both expected to be #f32_attr, a built-in
attribute containing a single-precision floating-point value.
Note that, similar to types and attributes, operations can op-
tionally define a Summary field for documentation purposes.

Variadic operands and results. Having a non-fixed num-
ber of operands and results sometimes allows for more ob-
vious abstractions. In IRDL, it is possible to specify that an
operand or a result definition is variadic, meaning that the
operand or result definition refers to multiple consecutive
operands or results. This is done with the Variadic con-
straint, which can only be used as a top-level constraint
in operand, result, and region argument definitions. Addi-
tionally, the Optional constraint specifies that an operand
or a result is variadic and of size 0 or 1. For example, the
logarithm base operand is optional in the log operation
(Listing 6), meaning that the operation expects either 1 or 2
operands. Note that for the matching to be non-ambiguous,
an attribute containing the size of the variadic operands and
results is expected when Operands or Results contain more
than one variadic definition.

Constraint variables. Operations often require operands
or results to have the same type. The ConstraintVars di-
rective allows users to define constraint variables, which
are constraints that need to be satisfied by the same type at
each use. For instance, in our leading example (Listing 3), the
norm operation specifies a constraint variable, T, used in the
operand and result definitions. It constrains the operand type
parameter c to be equal to the result type, and constrains
them both to be floating-point types.

Regions. Operations may also define multiple regions
that are expected to be attached to the operation using the
Region directive. Region definitions need to specify the ar-
gument constraints of the entry basic block. Additionally,
region definitions may specify that a region should only be
composed of a single basic block by providing a terminator
instruction, which is expected to be the last instruction of the
single block. For example, the range_loop operation (List-
ing 7), representing a loop iterating over an integer range,
defines one region named body, which expects a single block,

Operation range_loop_terminator {}

Operation range_loop {

Operands (lower_bound: !i32, upper_bound: !i32,

step: !i32)

Region body {

Arguments (induction_variable: !i32)

Terminator range_loop_terminator

}

}

Listing 7. Regions can specify arguments and terminators.

Operation conditional_branch {

Operands (condition: !i1)

Successors (next_bb_true, next_bb_false)

}

Listing 8. Successors pass control to other basic blocks.

Enum signedness { Signless, Signed, Unsigned }

Type integer {

Parameters (bitwidth: uint32_t, signed: signedness)

}

Alias signed_integer =

!integer<uint32_t, signedness.Signed>

Listing 9. Enumerations are used in types or attributes.

with a single !i32 operand, and a range_loop_terminator
terminator instruction.

Successors. Operation declarations may also specify a
list of successor names using Successors, representing the
list of basic blocks that a terminator operation may give
control to. For example, the conditional_branch operation
(Listing 8) defines two successors corresponding to the blocks
that will get control depending on the value of condition.
Defining a Successors field (even empty) will define an
operation as a terminator, meaning that it can only be used
as last operation in a basic block.

4.7 IR Formatting

IRDL supports the specification of parsers and printers for
each defined Type, Attribute, and Operation, usingMLIR’s
generic IR syntax. However, operations and types can define
a custom declarative format to increase the readability and
conciseness of the generated IR. For instance, mul (Listing 3)
defines a format that will parse operations with the format
%res = cmath.mul %p, %q : f32, where %p, %q and %res
are of type !cmath.complex<f32> (Listing 3).

4.8 Enumerated Types

IRDL also provides basic support to define enums (enu-
merated types) that can be used as parameters of attributes
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Constraint BoundedInteger : uint32_t {

Summary "integer value between 0 and 32"

CppConstraint "$_self <= 32"

}

Type BoundedVector {

Parameters (typ: !AnyType, size: BoundedInteger)

}

Operation append_vector {

ConstraintVars (T: !AnyType)

Operands (lhs: Vector<T, BoundedInteger>,

rhs: Vector<T, BoundedInteger>)

Results (res: Vector<T, BoundedInteger>)

CppConstraint "$_self.lhs().size() +

$_self.rhs().size() ==

$_self.res().size()"

}

Listing 10. IRDL-C++ allows the definition of additional
invariants using inline C++.

and types. Enums are defined using the Enum directive, and
expect a list of names that will define the different enum
constructors. While enum names can be referred directly
(or prefixed with the dialect namespace), enum construc-
tors need to be prefixed by the enum’s name. For instance,
the integer type (Listing 9) has a signed parameter that
expects a signedness enum. We can also define an alias
for signed integers which constrains this parameter to be
a Signed constructor. In this case, the Signed constructor
needs to be referenced by signedness.Signed.

5 Augmenting Dialects with Generic C++

IRDL encourages a declarative specification of operations,
types, attributes, and dialects. However, these definitions
necessarily restrict the kind of operations IRDL can repre-
sent. To define more complex structures, IRDL is extended
with IRDL-C++, which additionally provides directives for
expressing invariants as generic C++ code.

5.1 Defining Constraints and Verifiers using C++

The Constraint directive can define arbitrary constraints
from a C++ specification. Constraint is expected to be used
when the declarative subset of IRDL is insufficient to ex-
press complex type, attribute, and parameter constraints.
Constraint is composed of a base constraint that must be
fulfilled and a CppConstraint directive that defines any ad-
ditional constraints using generic C++ expressions. For in-
stance, to define a bounded unsigned integer (Listing 10),
we create a new constraint, BoundedInteger, with the base
constraint uint32_t, and the C++ invariant checking that
the uint32_t value is in the correct bounds. Note that the

TypeOrAttrParam StringParam {

Summary "A string parameter"

CppClassName "char*"

CppParser "parseStringParam($self)"

CppPrinter "printStringParam($self)"

}

Type StringAttr {

Parameters (data: StringParam)

}

Listing 11. Declaration of types and attributes with C++

embedded C++ code refers to $_self, which refers to the ac-
tual parameter passed to the constraint. Finally, like Type or
Operation, the Summary directive can be used to document
the definition.
The CppConstraint directive can also be used in opera-

tion, type, and attribute definitions to define additional con-
straints specified in C++. Similar to constraint definitions,
$_self refers to the operation that is being checked, and
the embedded code can use accessors generated by IRDL-
C++ to easily access members of the operation. For instance,
we define an append_vector operation (Listing 10) which
concatenates two vectors of known length. We need to use
IRDL-C++ to represent the invariants of this operation since
we need to check that the sum of the two operand vector
sizes is equal to the result vector size. In the additional invari-
ant specified in C++, we can directly access the lhs and rhs
operand vectors using the generated accessors. Note that we
access the BoundedVector parameter size with a similarly
generated accessor.

5.2 Type and Attribute Parameters

InMLIR, type and attribute parameters are C++ classes and
primitives holding arbitrary data. However, IRDL does not
allow to define new parameters. IRDL-C++ allows the defini-
tion of new parameters with the TypeOrAttrParam directive
by defining wrappers around C++ types. The directive re-
quires a CppClassName field specifying the name of the C++
class to represent, as well as CppParser and CppPrinter

fields, which expect C++ code used to parse the correspond-
ing C++ type. The definition can also have a Summary field
for documentation purposes. For instance, the StringAttr
attribute (Listing 11) is defined with a single StringParam
parameter, which is defined using the TypeOrAttrParam di-
rective as a wrapper around a C++ char*.

6 Evaluation

To evaluate our work, we characterize SSA-based intermedi-
ate representations (IRs) across a wide range of application
domains and analyze how well IRDL can express these IRs.
As active participants in the MLIR community, we stream-
lined the design of IRs and their declarative nature in close
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Table 1.MLIR today contains 28 different dialects covering programming languages and models, state machines for pattern
matching, arithmetic over different mathematic domains, as well as instruction sets for CPUs and accelerators.

Affine Affine loops and memory operations
AMX Intel’s advanced matrix instruction set
Arith Arithmetic operations on integers and floats
ArmSVE ARM’s scalable vector instruction set
ArmNeon ARM’s SIMD architecture extension
Async Asynchronous execution
Builtin MLIR’s builtin intermediate representation
Complex Complex arithmetic
EmitC Printable C code
GPU GPU abstraction
LinAlg High-level linear algebra operations
LLVMIR LLVM’s intermediate representation in MLIR
Math Scalar arithmetic beyond simple operations
MemRef Multi-dimensional memory references

NVVM LLVM’s IR for GPU compute kernels
PDL Rewrite pattern description language
PDLInterp The IR for a PDL interpreter
Quant Quantization
ROCDL AMD’s IR for GPU compute kernels
SCF Structured control flow, e.g. ’forž and ’if’
Shape Shape inference
SparseTensor Sparse tensor computations
SPIRV Graphics shaders and compute kernels
Standard Non domain-specific operations
Tensor Dense tensors computations
Tosa Tensor operator set architecture
Vector A generic vector abstraction
X86Vector The Intel x86 vector instruction set

collaborationwith the community. After less than three years
of public development, MLIR today offers a diverse set of IRs,
which we will use as the foundation of our evaluation. We
evaluate our work by using IRDL to express the full set of
domain-specific IRs currently defined in MLIR’s code repos-
itory. Using this data, we will answer the following three
research questions:

1. Which IR designs have been developed in the context
of MLIR and how did their development evolve over
time? → Section 6.1

2. What characterizes the IRs in MLIR and are extensions
beyond classical SSA widely used? → Section 6.2

3. Which IR features can be expressed purely in IRDL and
how much general-purpose C++ code is still needed
when defining IRs? → Section 6.3 and Section 6.4

Our evaluationwill show that theMLIR ecosystem has grown
a very diverse set of IRs. We will see that while most opera-
tions across IRs indeed heavily rely on the features of clas-
sical SSA, extensions such as variadic operands and return
values as well as region statements are used across a vast
number of IR dialects. Our evaluation will also show that
only a limited number of types and attributes require the use
of IRDL-C++ for either parameter definitions or additional
C++ verifiers. Moreover, the majority of operations can de-
fine all of their operands, results, and attribute constraints
in IRDL, and only 30% of all operations require an additional
C++ verifier. Overall, our evaluation will provide evidence
that an IR definition language such as IRDL in combination
with a small amount of generic C++ code can facilitate the
design of real-world compiler IRs.

6.1 The Evolution of IR Design in MLIR

We ground our evaluation on a representative set of IR di-
alects by analyzing the full set of production-focused IR

dialects that the MLIR community has developed as part
of MLIR. Just in the last 20 months,1 the MLIR community
grew its abstractions from 18 dialects and 444 operations
defined in the public MLIR git repository to 28 dialects with
942 operations today (Figure 3), which more than doubled
the number of operations on offer. In addition to the dialects
developed in the main MLIR repository, IR dialects are in-
creasingly developed as part of independent projects such
as CIRCT [5], Flang, or Tensorflow [16]. Today, 2 MLIR de-
fines 28 different dialects (Table 1) covering programming
languages and models, state machines for pattern match-
ing, arithmetic over different mathematic domains, as well
as instruction sets for CPUs and accelerators. Across these
dialects, MLIR defines 942 operations, 62 types, and 30 at-
tributes. These dialects range from very small dialects with
just 3 operations, e.g., arm_neon and builtin, to large dialects,
e.g., LLVM and SPIR-V, with more than 100 operations each
(Figure 4). The diversity in size, abstraction level, and appli-
cation domain of these IRs exceeds the one of IRs in typical
compilers, like LLVM and GCC. Taking the collaborative
design process with a strong focus on production applica-
tions into account, we consider the resulting set of IRs as
representative of typical compiler IRs today.
IRs, operations, types, and attributes in the MLIR ecosys-

tem have traditionally been defined through various means.
MLIR always provided a C++ interface for defining anyMLIR
object. Early on, the MLIR community used TableGen, a
generic record format initially designed for the specification
of LLVM backends, to simplify the specification of opera-
tions definitions. We developed the ideas in the paper to-
gether with the MLIR community and implemented our first

1analysing even earlier data has been prohibitively difficult
2Our data is based on commit 666accf283311c5110ae4e2e5e4c4b99078eed15
in the LLVM Project (https://github.com/llvm/llvm-project/) repository.
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Figure 3. The number of operations defined in MLIR more
than doubled in the 20 months since April 2020. The number
of operations increased from initially 444 to 942 operations,
which are today defined across 28 dialects. Increasingly more
operations and dialects are nowadays defined in external
projects, e.g. CIRCT, Flang, or Tensorflow.

ideas by making the IR definitions in TableGen more declara-
tive using the Operation Definition Specifications (ODS). As
we reached the limitations of TableGen, we designed with
IRDL a specialized domain-specific language for defining
IRs. Thanks to this gradual development approach, the IR
definitions expressed by the community were sufficiently
structured for us to semi-automatically recover IRDL code
from the generic, often TableGen-derived, C++ code that
is today used in MLIR’s production repositories to define
IRs. We use the structured data obtained in the process of
generating IRDL as the foundation for the following analysis,
such that the data reported here is representative of the IR
definitions in MLIR’s production repositories.
We implemented the majority of IRDL and are currently

in the process of upstreaming this work to MLIR. The IRDL
language is implemented with the exception of optional, vari-
adic, and attribute constraints. Some minor syntax changes
have also not yet been incorporated. We support the regis-
tration of dialects at runtime and are currently upstreaming
the necessary support for dynamic dialects to MLIR. Sup-
port for generating C++ code has already been prototyped
through the existance of TableGen and ODS. While not yet
implemented, we expect that IRDL-C++ including support
for generating C++ code and the corresponding parameter
constraints will follow a similar software design and may
even use some of the existing code. Overall, we aspire to
contribute all IRDL into the public MLIR repositories.

When developing IRDL, we followed an open-source-first
research model. In particular, we developed and upstreamed
parts of our contributions into the public LLVM repositories
even before submitting this publication for review. While
researchers often perceive development activities that go
beyond initial prototyping as costly and slow, we favor an

1 10 100
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complex
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llvm
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Figure 4. The number of operations in a given IR dialect
ranges from 3 operations in the smallest dialects (arm_neon
and builtin) to over hundered operations in large dialects
such as LLVM and SPIR-V.

open-source-first research approach. Detailed code reviews
improve the quality and robustness of our implementation,
yield better designed software, and ensure that the final soft-
ware artifact satisfies community needs. We also believe
that an open-source-first approach saves significant time
as code is developed and adapted to community needs in a
single step, instead of the two-step approach of prototyp-
ing followed by delayed upstreaming that typically requires
complex and costly design updates. While the frontend parts
of IRDL still need to go through broader reviews and com-
munity discussions that may further evolve our ideas, we
expect that the code that is already available upstream will
facilitate these discussions. With a variant of IRDL hopefully
being available in MLIR in the near future, we hope for it to
serve as a foundation for new and exciting open-source-first
research projects.

6.2 Characteristics of IR Dialects

Our first objective is to understand the structure and char-
acteristics of our IR dialects and the features required to
express them. A detailed understanding of the requirements
IR designers have has been critical to ensure IRDL covers
the feature set required by a typical IR design.

Usage of operand definitions. We analyze the usage
of operand definitions in the operations defined in MLIR
(Figure 5). The majority of operations define between one to
two operands (Figure 5a). Around 12% of operations have no
operands, and 32% of operations have more than 3 operand
definitions (up until 9 operand definitions). Interestingly,
dialects defining a majority of operations with more than 3
operands, such as amx, arm_neon, arm_sve, and x86vector,
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Figure 5. Operations have typically zero (12%), one (41%), or
two (32%) operands and rarely three or more (16%). The ma-
jority of operations are non-variadic (83%), but most (79%) di-
alects have at least one operation that uses variadic operands.

are all dialects targeting specific hardware for SIMD and
matrix computations.
Furthermore, when looking at variadic definitions (Fig-

ure 5b), only 17% of operations define variadic operands.
However, 79% of dialects have at least one operation with
variadic operands, and almost half the dialects (46%) have
more than 25% of their operations defining a variadic operand.

Usage of result definitions. We analyze the usage of
result definitions in the operations defined in MLIR (Fig-
ure 6). Overall, 16% of operations define no results, and 84%
of operations define 1 result. The remaining operations that
define more than one result are defined by only 4 dialects:
gpu, x86vector, async, and shape.

The usage of variadic result definitions (Figure 6b) yields
that, contrary to variadic operands, no operations in MLIR
define multiple variadic results. Only 3% of operations define
a variadic result, though exactly half of the dialects define at
least one operation with a variadic result.

Overall, this data shows that MLIR design choice of allow-
ing multiple results, while not being used by many opera-
tions, is still used across multiple levels of abstractions.

Usage of attributes. We analyze the usage of attribute
definitions in the operations defined in MLIR (Figure 7a).
Around 73% of operation definitions do not define attributes,
though around half the dialects (46%) have at least 25% of
their operations defining an attribute.

Usage of regions. We also provide data on the usage of re-
gion definitions in the operations defined in MLIR (Figure 6).
Only 4% of operations define at least one region. However,
around half of the dialects (54%) define at least one operation
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(b) Variadic Results

Figure 6. Operations have either zero (16%) or one (84%)
result definitions, and rarely two (1%). The large majority
of operations are non-variadic (97%), but half of the dialects
have at least one variadic result.
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(a) Attributes
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Figure 7. Operations have either zero (73%), one (16%), or
more rarely more than two (11%) attributes. Most dialects
(76%) define at least one operation using an attribute. Most
operations define zero (96%), one (4%), or more rarely two
(1%) regions. However, more than half the dialects (54%) have
at least one operation that defines a region.

with a region definition. Note that the two dialects with more
than half the operation defining a region are the builtin
and scf dialects. In particular, scf represents structured con-
trol flow operations, explaining its high ratio of operation
with regions.
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Figure 8. Only a few type and attribute parameters are
domain-specific (3%). Domain-specific parameters (bold) are
either from the LLVM or polyhedral (affine) dialect.
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Figure 9. 97% of all type definitions exclusively use param-
eters defined in IRDL. Only a few types (16%) require an
additional C++ verifier.

6.3 Expressiveness of Types and Attributes in IRDL

We gather data on type and attribute definitions in MLIR
across all defined dialects, and summarise their expressive-
ness in IRDL. 14 out of the 28 dialects define either an at-
tribute or a type, and in total, 62 types and 30 attributes are
defined.

Type and attribute parameters. We first analyze the
type and attribute parameters used in MLIR. In practice, only
a limited set of parameters are used in types (Figure 9a)
and attributes (Figure 10a), such as attributes, types, strings,
integers, enums, locations representing a position in code,
type ids used to uniquely identify C++ types. The remain-
ing parameters are domain-specific and are only used in
the affine and llvm dialect. Besides the domain-specific
parameters, all these parameters are defined as builtins in
IRDL. Thus, IRDL can represent the parameters of 97% of all
types, respectively 77% of all attributes. Overall, all dialects,
besides llvm, builtin, and sparse_tensor, can define the
parameters of their types and attributes in IRDL, the afore-
mentioned 3 dialects requiring the use of IRDL-C++ to define
the parameters.

Verifiers. We provide data on the use of custom C++ veri-
fiers on types (Figure 9b) and attributes (Figure 10b) defined
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Figure 10. 77% of all attribute definitions exclusively use pa-
rameters defined in IRDL. Only a few atributes (20%) require
an additional C++ verifier.
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Figure 11. The vast majority of operations (97%) can define
their local constraints in IRDL, and only 30% of all operations
require C++ for the verification of non-local constraints.

in MLIR. Overall, 16% of types and 20% of attributes define a
C++ verifier, and over the 14 dialects defining a type or an
attribute, only 5 of them require the use of IRDL-C++ for at
least one type or attribute.

6.4 Expressiveness of Operations in IRDL

We inspect operations in MLIR and present data on the suit-
ability of IRDL to represent them. Currently, MLIR defines
in total 942 operations across its 28 dialects. Operation defi-
nitions in MLIR essentially consist of verifiers. Verifiers are
commonly separated into local constraints and global con-
straints. Local constraints represent constraints over single
operands, results, or attributes, e.g. restricting an operand
to be of a !IntegerType type. On the other hand, global
constraints represent constraints over multiple operands,
constraints, or attributes. For instance, an operation may
request that an attribute contains an integer with the same
bitwidth as an operand. We separate our analysis between
local constraints and global constraints.
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Figure 12.Only three kind of constraints used by operations
require IRDL-C++ to be defined.

Local constraints on operands, results, and attributes.

We provide data on local constraints in operation defini-
tions (Figure 11a). IDRL defines local constraints with the
Operands, Result, and Attribute directives. Overall, the
vast majority of operations (97%) can represent all their local
constraints in IRDL. If we look at the results per dialect, 20
out of the 28 dialects can represent all of their operation
local constraints in IRDL.
We also provide data on the kind of local constraints

present in MLIR operations that cannot be represented in
IRDL. These constraints fall into 3 different categories (Fig-
ure 12). The first group constrains integer attributes to have
values in a certain range, the second constrains memory ac-
cesses to be strided, and the third group constrains an LLVM
struct to be opaque. Overall, in order to define all MLIR oper-
ations, only a small number of constraints have to be defined
in IRDL-C++.

Global constraints. Finally, we analyze global constraints
inMLIR operation definitions (Figure 11b). Global constraints
are defined in IRDL-C++ with the CppConstraint directive,
as well as the ConstraintVars directive in IRDL. Overall,
30% of operations in MLIR require a global constraint using
IRDL-C++.

7 Related Work

Facilitating the design of compilers has long been recog-
nized as an important objective. Previous work addressed
this objective through several language-independent as well
as embedded DSLs that facilitate compiler design. In com-
parison to previous work, IRDL permits the definition of IRs
and their invariants using a language that is simultaneously
(a) expressive enough to cover IRs ranging from high-level
domain-specific concepts to machine-level instruction set
descriptions, (b) sufficiently concise to ease development,
and (c) structured enough to connect to external tools (Fig-
ure 13). In contrast, previous work either proposes DSLs
that lack expressiveness to cater to the diverse needs of
the MLIR community or have the required expressiveness
but relies on general-purpose programming languages. As
general-purpose languages are not tailored for IR and invari-
ant definition, they are overly verbose, hard to connect to
external tooling, and ś from a purely practical perspective ś
unlikely to be used in a production toolchain such as LLVM.

Language-independent DSLs. Previous work on inde-
pendent DSLs is compared to IRDL typically less expressive
in the IRs that can be defined and rarely integrates support
to define invariants on the defined IRs. Multiple projects
have been developed with a focus on AST-based languages.
For instance, Stratego/XT [1] provides a language to define
ASTs, as well as strategies for traversing them, taking ideas
from the ASF+SDF project [23]. JastAdd [8] follows similar
ideas while relying on SableCC [6] to generate Java classes
for each AST node, similarly to IRDL-C++. Nanopass [10],
embedded in Scheme, additionally can reuse operations from
other languages to define new languages. Finally, POET [27]
focuses on manipulating generic ASTs fragments of other
languages such as C. All those tools target an AST represen-
tation and have similar limitations in terms of expressiveness
of invariants over the ASTs. For instance, they do not sup-
port parameterized types, and do not have builtin support for
AnyOf, And, or Not constraints, or constraints with nested
parameters. Instead, these tools expect compiler experts to
write passes to define complex invariants, which is verbose
and prevents a self-contained definition of such IRs.
Jetbrains MPS [24] also explored the definition of non-

textual DSLs. MPS has similar expressiveness than the pre-
viously mentioned projects, but additionally can represent
references to other operations (like in an SSA representation).
MPS distinguishes itself by focusing on user experience in
the Jetbrains IDE, by providing DSLs to define non-textual
representations of programs, as well as DSLs to define actions
that can be triggered in the Jetbrains IDE.

Embedded DSLs. Previous work also explored the defini-
tion of intermediate representations using DSLs embedded in
other languages. Compared to language-independent DSLs,
those languages often provide Turing-complete feature sets.
While they provide a concise subset, their overall expressive-
ness comes from the use of a general-purpose programming
language, like IRDL-C++. However, the concise subset of
such DSLs is less expressive than IRDL.

Both Graal IR [4] and Delite [20] are extensible compilers
that use the type system of their host languages (Java and
Scala) to represent IR constraints. While Graal IR uses Java
annotations to define IRs, Delite is built on top of Lightweight
Modular Staging [18] and can be extendedwith Forge, ameta-
DSL for auto-generating Delite DSL implementations [21]
using a high-level specification. However, because of their
deep integration in their respective language, the expres-
siveness of their DSL is limited by the type system of the
host language, and thus have to rely more often on generic
code compared to IRDL and IRDL-C++. While the defined
IRs could be partially introspected via Java reflection, the
complexity of the host language and its type system, and the
lack of reflection support in Scala make introspection, from
our perspective, impractical.
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Framework Representation Embedding Types Builtin Constraints
IRDL SSA + Regions DSL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

IRDL-C++ SSA + Regions DSL and C++ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Graal IR Sea of nodes Java ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ?
Delite + Forge Scala program eDSL (Scala) ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ?
Stratego/XT AST DSL ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

JastAdd/SableCC AST DSL ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Jetbrains MPS AST + References DSL ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Nanopass Scheme IR (AST) eDSL (Scheme) ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Sham Racket IR (AST) eDSL (Racket) ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

POET AST DSL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Figure 13. IRDL, combined with IRDL-C++, has a better balance between expressiveness and conciseness than previous work.

Another approach to IR definition is explored by Racket [22].
Racket allows the extension of the host language syntax and
semantics through the use of its macro system. Racket can
be extended with Sham [25], which comes with a DSL to
simplify the boilerplate need to define AST-based IRs. How-
ever, Sham is less expressive than IRDL and require the use
of arbitrary Racket code to define complex invariants.

DSLs for compiler backends. Other related work also
includes the description of IRs tailored for compiler target
architectures. For example, GCC uses łMachine Descrip-
tionž [3], and LLVM uses TableGen [11] to specify multiple
assembly target architectures. Other tools, such as ISDL [7],
are not compiler-specific and aim at providing DSLs to de-
fine instruction sets, along with their timing information
and usage of resources, that can easily be targeted by any
compiler. Contrary to our work, these tools are tailored for
low-level IRs and cannot express arbitrary high-level IRs.
They are also deeply embedded into the respective tools and
lack the verification and introspection capabilities of a DSL.

8 Conclusion

We present IRDL, a language to define IRs for SSA compilers
with regions from a high-level description. We also present
an extension of IRDL, IRDL-C++, for the description of IRs
that require Turing-complete support. We demonstrate the
suitability of IRDL to represent IRs by representing in IRDL
and IRDL-C++ all dialects defined in the MLIR project and
analyze various characteristics of these dialects. We expect

that this work will fundamentally change compiler IR con-
struction by facilitating the work of compiler designers as
well as providing a well-defined interface on top of which
powerful automation and external tooling can be developed.
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