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Abstract 

Transposable elements (TEs) are mobile DNA repeats that contribute to the evolution of 

eukaryotic genomes. In complex organisms, TE expression is tissue specific. However, their 

contribution to cellular heterogeneity is still unknown and challenging to investigate in single-

cell RNA sequencing (scRNA-seq), due to the ubiquity and homology of TEs in the genome. 

We introduce IRescue (Interspersed Repeats single-cell quantifier), the first software that 

accurately estimates the expression of TE subfamilies at single-cell level, implementing a UMI 

deduplication algorithm to allocate reads ambiguously mapped on TEs, while correcting for 

UMI sequencing errors. Applying IRescue on simulated datasets and real scRNA-seq of 

colorectal cancers, we could precisely estimate TE subfamilies expression. We show that 

IRescue improves the definition of cellular heterogeneity, detecting TE expression signatures 

and specific TE-containing splicing isoforms.  
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Introduction 

Transposable elements (TEs) are mobile genetic elements found in the genome of most 

eukaryotes. The genomic prevalence of TEs largely varies between organisms (1), and make 

approximately 46% of the human genome (2). In most species, retrotransposons are by far 

the most abundant TEs, as they can mobilize and amplify themselves thanks to a “copy-and-

paste” replication mechanism (3). Based on their insertion age, TEs have been hierarchically 

organized into classes (e.g. LINE, SINE, LTR), superfamilies (e.g. LINE1, Alu, ERVL) and 

families or subfamilies (e.g. L1PA2, AluY, HERVL) (4). The LINE1 superfamily comprehends 

the last few autonomously active and mobile TEs in the human genome (5, 6). Indeed, the 

vast majority of TEs have lost the ability to generate new insertions; however, they can still be 

transcribed within surrounding transcriptional units and provide regulatory elements, affecting 

gene expression and RNA processing (7, 8). TEs are transcribed in a tissue specific fashion 

(9) and transcripts derived by TEs are involved in the epigenetic regulation of cell identity and 

differentiation (10, 11). However, the impact of TE expression in cellular heterogeneity at 

single cell level has yet to be investigated. 

Next Generation Sequencing (NGS) technologies were indispensable to discover and 

annotate TE insertions in reference genomes and to realize the impact of TEs in genome and 

transcriptional regulatory networks. Yet, the study of TEs with NGS is hampered by their 

repetitive nature and high degree of homology between elements (12). Some precautions 

during library design, such as choosing a paired-end layout, increasing read length (13) and 

using specific software (14, 15), can drastically improve both read mappability and expression 

estimate of TEs. While a plethora of software are available for bulk RNA-Seq, few attempts 

have been made for measuring the expression of TEs in single-cell RNA sequencing (scRNA-

seq) so far. The vast majority of scRNA-seq libraries in public repositories are derived from 

droplet-based technologies (e.g. most Chromium 10x, Drop-seq and inDrops kits) (16), and 

thus usually characterized by short reads with a strong 3’- or 5’-end positional bias. Moreover, 
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these reads are effectively single-end, since the cDNA insert is only represented by one mate, 

while the other carries the cell barcode and unique molecule identifier (UMI) sequences. This 

tag-based layout decreases read mappability and makes it difficult to determine the exact 

genomic origin of TE-containing RNA fragments. Current tools for the quantification of TE 

subfamilies only use one alignment per UMI, disregarding the signal from ambiguous 

alignments on different TE subfamilies and do not take into account sequencing errors in UMI 

sequences (17, 18), that are common and introduce an overestimation of the UMI count (19). 

Approaches to rescue ambiguously mapping UMIs and obtain better expression estimates 

only exist for gene expression quantification, and leverage on finding UMI-transcript 

equivalence classes (20, 21). Here we present IRescue (interspersed repeats single-cell 

quantifier), a command-line tool for the error-correction, deduplication and quantification of 

UMIs mapping on TEs in scRNA-seq using a UMI-TE equivalence class-based algorithm. 

IRescue is currently the only software that, in case of UMIs mapping multiple times on different 

TE subfamilies, takes into account all mapped features to estimate the correct one, rather than 

excluding multi-mapping UMIs or picking one random alignment per UMI. 

In this study, we demonstrate the precision of IRescue using simulated data and identify TE 

expression signatures associated with colorectal cancer (CRC) in real datasets. Moreover, we 

show that using IRescue it is possible to dissect the expression dynamics across distinct CRC 

cellular subsets of tumor-specific TEs previously identified in bulk RNA-seq data (22, 23). 

Finally, we suggest that the expression of these marker TEs is explained by the transcription 

of TE-containing tumor-specific alternative isoforms of human oncogenes. 
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Materials and Methods 

IRescue workflow 

Input data. IRescue requires as input a binary aligned map (BAM) file (24) containing read 

alignments on a reference genome, which must have the cell barcode and UMI sequences 

annotated as key-value tags. The keys for both the cell barcode and the UMI are by default 

the strings “CB” and “UR”, with the possibility to be overridden by the user. Additionally, it is 

mandatory to provide either the name of a genome assembly (e.g. “hg38” for the human 

genome) or a browser extensible data (BED) file (25) containing genomic TE coordinates. If a 

genome assembly name is provided, IRescue will automatically download and parse the 

Repeatmasker (26) coordinates from the UCSC servers at the beginning of the workflow, 

filtering out unwanted short tandem repeats and repetitive RNA classes (i.e. Low_complexity, 

Simple_repeat, rRNA, scRNA, srpRNA, tRNA). If a custom BED file is provided, it is advised 

to use the TE subfamily as the feature name in the fourth column. The BED file must at least 

have four columns, can be plain text or compressed and the chromosome names must follow 

the same nomenclature as the genome assembly used for alignment. Repeatmasker 

annotations automatically downloaded by IRescue follow the UCSC nomenclature, i.e. with 

reference names having the “chr” prefix. Optionally, a cell barcode whitelist file (either plain 

text or compressed) can be provided in order to filter the reads with valid cell barcodes only. 

We recommend mapping reads with a spliced aligner that reports the sequence-corrected cell 

barcodes, such as the “CB” tag added by CellRanger (27) or STARsolo (28, 29), and to provide 

the filtered barcode list (i.e. the “barcodes.tsv” file) as a whitelist to IRescue, in order to obtain 

a TE count matrix consistent with the gene count matrix provided by these tools 

(Supplementary Figure S1A). 

Mapping alignments on TEs. Read alignments and TE coordinates are processed in parallel 

by chromosome, according to the number of allocated CPUs. The intersection between read 
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and TE coordinates is performed by IRescue wrapping bedtools 2.30.0 (30), taking into 

account eventual read deletions and splitting events due to splice junctions (i.e. TE loci 

localized between donor and acceptor splicing coordinates are not considered mapped). In 

case of UMIs aligned on multiple TE loci, all the aligned TE features will be parsed and carried 

over for the UMI deduplication. 

UMI deduplication algorithm. After mapping, cell barcodes are evenly splitted up in batches 

for parallel processing of single cell TE counts, according to the number of allocated CPUs. 

For each cell, UMIs and TE features are indexed and stored in memory as key-value pairs. 

UMIs mapped on the same set of TE features (i.e. keys having the same value) are stored in 

the same equivalence class (EC), with the assumption that UMIs mapping on the same set of 

interspersed repetitive features carry an “equivalent” information regarding the TE-derived 

RNA molecule of origin. For each EC, the sequences of UMIs are compared in a pairwise 

manner to calculate the number of mismatches between them. Next, UMIs are arranged in an 

undirected graph where each node is a UMI and edges connect UMIs that differ for just one 

mismatch, as they are considered potential duplicates. To calculate the deduplicated number 

of UMIs explaining the EC, the algorithm finds the neighborhood of each node, i.e. a set 

containing the node itself and its adjacent nodes. We discern three basic configurations of 

UMI networks. i) If a node has no adjacent nodes, thus a neighborhood of size (i.e. cardinality) 

one, it is considered a non-duplicated UMI, and adds 1 to the final UMI count of the EC. ii) If 

two or more nodes adjacent to each other all have the same neighborhood, they are 

considered derived from the same UMI, and adds 1 to the final UMI count of the EC. iii) In 

case of ambiguous connections, e.g. when three or more nodes that aren’t all adjacent are 

connected through a path, the algorithm finds the hubs of the graph, i.e. the nodes whose 

neighborhood’s intersection with any other neighborhood always results in a set of size smaller 

than the hub’s neighborhood’s size (Supplementary Figure S1B). Formally, given a set of 𝑛 

nodes, with 𝑛 ≥ 3, a neighborhood 𝑁1 is a hub if the following comparison is always true: 
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|𝑁1  ∩  𝑁𝑛|  <  |𝑁1| 

For example, in the graph in figure 1, the nodes 1 to 4 are connected on the same path, with 

nodes 1 and 3 being the network’s hubs, thus adding 2 to the UMI count, whereas the nodes 

5 and 6 are a couple of adjacent nodes with the same neighborhood, hence derived from the 

same UMI. 

TE features count. Once the EC’s UMI count has been obtained, it is assigned to the TE 

feature showing the highest number of alignment events in the EC. Finally, the count of TE 

features obtained from every EC of a cell is summed up, to obtain the final TE counts of the 

cell: 

𝑇𝐸𝑐𝑜𝑢𝑛𝑡 =  ∑ 𝑇𝐸𝑐𝑜𝑢𝑛𝑡𝐸𝐶

𝐸𝐶

 

The counts of TE features across cells are written in a TE×Cell sparse matrix following the 

Market Exchange format (MEX), which is compliant with the gene matrix output of Cell Ranger 

or STARsolo to ensure compatibility with several toolkits for single cell downstream analysis. 

scRNA-seq alignment and gene quantification 

Read alignments and single cell gene counts matrix were obtained by mapping scRNA-seq 

reads to the reference human genome (UCSC hg38 primary assembly) using STARsolo 

2.7.9a (28, 29). As genes and splice junction database, we provided the Gencode 

comprehensive annotation v32 (31) with chromosome names converted to the UCSC 

nomenclature (passed to STAR through the “--sjdbGTFfile” parameter). We provided the 

10x Genomics cell barcodes whitelist for the v2 library kit (passed through the “--

soloCBwhitelist” parameter). Other non-default parameters were: “--

outSAMattributes NH HI AS nM NM MD jM jI XS MC ch cN CR CY UR UY GX 

GN CB UB sM sS sQ --outFilterMultimapNmax 100 --winAnchorMultimapNmax 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.09.16.508229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508229
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

100 --twopassMode Basic --soloType CB_UMI_Simple --soloCellFilter 

EmptyDrops_CR 10000 0.99 10 45000 90000 500 0.01 20000 0.01 10000”. 

Single cell TE expression quantification 

To estimate the expression of TEs at single cell level, read alignments were processed using 

IRescue, providing the filtered barcodes list produced by STARsolo as cell barcodes whitelist 

(passed through the “--whitelist” parameter), and other parameters “--genome hg38 -

-CBtag CB --UMItag UR --keeptmp”. To compute TE counts with scTE 1.0 (17), the 

same Repeatmasker and Gencode annotations were used to build an index, keeping other 

parameters as default, and read alignments were counted with parameters “-CB CB -UMI 

UR”. 

Data simulations and benchmarks 

Simulated scRNA-seq reads and TE subfamily counts were obtained adapting the method 

described by Kaminow et al. (28), which allows to reproduce the positioning bias of tag-based 

scRNA-seq on genes, introns and intergenic regions by using a real dataset as the basis for 

the simulation. For this purpose, we used a 10x Genomics v2 3’-end PBMC dataset 

(https://www.10xgenomics.com/resources/datasets/8-k-pbm-cs-from-a-healthy-donor-2-

standard-2-1-0) (32), which is a common scRNA-seq library layout. Briefly, cell barcodes are 

filtered according to the 10x Genomics whitelist and UMIs with uncalled bases are removed, 

reads are aligned on a reference that combined the human hg38 primary genome assembly 

and the Repeatmasker TE genomic sequences using BWA-MEM 0.7.17 (33). UMIs are 

counted based on the TE subfamily they map on; in case of alignments on multiple features, 

the top-scoring alignment is chosen. Finally, the aligned reference sequences were extracted 

and a mismatch error rate of 0.5% was added to simulate Illumina sequencing errors. Plots 

summarizing multimapping UMIs and equivalence classes were obtained from the UMI-TE 

mappings file generated by IRescue using the “--keeptmp” parameter. Spearman correlation 
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tests were done using R 4.1.0 (34) between IRescue and simulated TE counts or features per 

cell, or between IRescue and scTE total counts or counts by cell. The relative deviation (RD) 

between measured and simulated counts was calculated as: 

𝑅𝐷 =  
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −  𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑚𝑎𝑥(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)
 

and represented on a histogram with 0.001 bin size. Cell clustering according to TE counts 

was performed using the Louvain algorithm implemented in Seurat 4.0.5 (35). The comparison 

between IRescue or scTE and simulated clusters was performed with a chi squared test, and 

visualized by plotting the Pearson’s residuals using the R package corrplot 0.92 (36). Memory 

(RAM) usage and run time were measured by running IRescue and scTE in a Nextflow pipeline 

(37) and extracted from the pipeline’s report. 

Analysis of scRNA-seq cancer dataset 

Cancer and normal scRNA-seq raw data were obtained from ArrayExpress E-MTAB-8410 

(38), along with the annotation of cell identity based on gene expression. The epithelial cells 

from six paired tumor and normal samples were processed with IRescue for quantifying TE 

expression. TE counts normalization, Principal Component Analysis (PCA), Cell clustering 

(using the Louvain algorithm) and Uniform Manifold Approximation and Projection (UMAP) 

were performed using the Seurat 4.0.5 toolkit. Cell clusters based on TE expression profiling 

were annotated as tumoral (K) or normal (N) according to the most prevalent cell condition on 

each cluster. TE expression signatures were obtained by finding differentially expressed TEs 

between each cluster and the rest of the dataset, and TEs significatively enriched (Wilcoxon 

rank sum test’s p-value adjusted according to Bonferroni < 0.05; log2 fold change > 1) on K 

or N clusters only were selected, discarding TEs enriched in both conditions. The difference 

in enrichment of TE subfamilies by class between tumor and normal signatures was tested 

with a two-tailed two-proportions Z-test using the R 4.1.0 stat package. The average 
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expression of CRC marker TEs across conditions or clusters was visualized using Seurat 

4.0.5. Sashimi plots were obtained with the IGV genome browser (39). 

Results 

IRescue: an algorithm for TE expression quantification using ambiguously 

mapped UMIs in scRNA-seq 

Rescuing multimapping reads is well known to be a compulsory procedure in order to 

accurately quantify the expression of TEs (40) or other poorly mappable features, such as 

multigene families (41). Hence, one of the cornerstones that motivated the development of 

IRescue was to use the information of all mapped features to allocate ambiguously mapped 

UMIs with higher confidence. IRescue allows integrating TE and gene counts in a canonical 

scRNA-seq workflow analysis (Supplementary Figure S1A) and contains a novel UMI 

deduplication algorithm that takes into account mismatches between both uniquely and 

multimapping UMIs. IRescue takes as input reads aligned on a reference genome assembly 

with cell barcode and UMI annotated as tags of type string, and genomic TEs coordinates. 

While any spliced aligner generating an output with these features will be compatible with 

IRescue, as of today we recommend using STARsolo (28, 29) with custom parameters 

optimized for reads alignment on interspersed repetitive elements (see methods). IRescue is 

programmed to download and parse into a BED file the genomic Repeatmasker TE 

coordinates (26) of the genome assembly of choice directly from the UCSC server (25); 

alternatively, it is possible to use a custom BED file with TE coordinates. The output of IRescue 

is a sparse matrix written in a Market Exchange Format file (MEX), compliant with the 10x 

Genomics Cell Ranger’s output (27) to ensure compatibility with most toolkits for downstream 

analysis (35, 42) (Supplementary Figure S1A). IRescue extracts all the alignments on TEs 

and parses the cell barcode and UMI sequences, as well as the mapped TE features; then, 

computes the TE counts for each cell by running an algorithm for the correction of 
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multimapping reads and duplicated UMIs. Briefly, UMIs mapped within a cell on the same set 

of TE features are grouped into n equivalence classes (ECs); then, for each EC of a cell, 

duplicated UMIs are detected by inspecting their sequence similarity, admitting up to one 

mismatch in UMI sequence to find duplicates. After UMI deduplication, the final UMI count for 

an EC is assigned to the TE feature showing the highest number of alignments (in case of 

ties, the count gets evenly splitted among the features). The counts of TE features from all 

ECs within a cell are summed up to obtain the cell’s final TE counts. Finally, the TE counts of 

all the sample’s cells are collected and written into a TE×Cell matrix (Figure 1). To limit the TE 

expression quantification to valid cell barcodes, it is possible to give as an additional input to 

IRescue a cell barcode whitelist obtained using the whitelisting method implemented by the 

gene expression quantifier of choice (27, 28, 43–45). In this paper, we provided as a whitelist 

the filtered barcodes list obtained from STARsolo during the alignment pre-processing step 

using the EmptyDrops algorithm (45). IRescue is written in the Python programming language 

and leverages on essential open source libraries for efficient scientific computing and 

bioinformatics data wrangling (24, 30, 46–48). 

scRNA-seq simulations confirm that IRescue is accurate in quantifying TE 

expression 

To evaluate the precision of IRescue’s quantification strategy, we sought to generate 

simulated scRNA-seq reads carrying the same biases of real datasets, such as reads mapping 

to multiple genomic loci and to intronic and intergenic regions, including TE fragments spliced 

in unknown transcript isoforms or autonomously transcribed TEs. To achieve this, we 

implemented the method described by Kaminow et al. (28), in which they used a real dataset 

as a basis for the generation of simulated reads and counts, with custom modifications in order 

to obtain simulated counts at TE subfamily level, rather than gene-level (see methods). As the 

basis for the simulation, we used a typical 10x Genomics v2 protocol library of peripheral blood 

mononuclear cells, containing 8,341 cells with ~92,000 reads per cell, 16bp long cell barcodes, 
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10bp UMIs and 98bp 3’-end cDNA sequences (32). After aligning simulated reads on the 

reference genome, we assessed the mappability over TEs at UMI-level and found that, of the 

33% UMIs mapped on TEs, only 21% were uniquely mapped, while 39% mapped multiple 

times on the same TE subfamily and the remaining 40% on different TE subfamilies (Figure 

2A). We obtained TE counts from the aligned simulated reads using IRescue. To evaluate the 

distribution and composition of ECs across cells, we processed IRescue’s intermediate output 

and observed that most cells contains ~1000 ECs, each consisting of a unique set of UMIs 

mapping on the same set of TE subfamilies (Figure 2B), and that most ECs contains 10 or 

less different TE subfamilies (Figure 2C). Therefore, UMIs mapping on more than 10 distinct 

TE subfamilies are rare. To test the accuracy of estimating TE expression in single cells, we 

calculated the correlation between simulated and measured TE counts (Figure 2D) and 

number of TE subfamilies (Figure 2E) and found it very high in both measurements. We then 

compared the analysis on simulated data with scTE (17), and found a stronger correlation 

between measured and simulated counts using IRescue, compared to scTE (Supplementary 

Figure S2A), indicating a better accuracy for IRescue. Furthermore, TE counts measured 

across all cells showed a minimal deviation from the simulated counts in both IRescue and 

scTE (Supplementary Figure S2B), whereas cell’s total TE counts correlated better to 

simulated counts in more cells using IRescue, compared to scTE (Supplementary Figure 

S2C). To test the ability to infer the identity of cells in respect to their TE expression profile, 

we evaluated the performance of dimensionality reduction and cell clustering techniques on 

measured and simulated data. In order to group cells according to their TE expression profile, 

we applied a canonical workflow of scRNA-seq analysis using the Seurat toolkit (35, 49). We 

found that clusters of cells analysed with IRescue are equivalent to their simulated counterpart, 

with only a partial overlap observed between clusters 0 and 2 (Figure 2F). Performing the 

same analysis with scTE, we found that two of nine identified clusters completely failed to 

match a correspondent identity in simulated data, showing that IRescue performs better in 

identifying the cell’s state (Supplementary Figure S2D). Finally, we analysed the resource 
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usage of IRescue and scTE by the number of processing units (CPUs) utilized. While scTE 

had a shorter run time when using a low number of CPUs, IRescue’s run times scaled better 

with an increasing number of CPUs (Supplementary Figure S2E); on the other hand, IRescue 

showed a very low memory footprint compared to scTE (Supplementary Figure S2F). The 

higher run time on IRescue is expected, as it performs more tasks than scTE (including UMI 

mismatch correction and weighting of multi-mapped TEs). Because IRescue is programmed 

to evenly split up the cells according to the allocated CPUs for parallelizing the count process, 

the run time drastically decreases when using a higher number of CPUs. The low memory 

footprint of IRescue is achieved by an efficient use of Python data structures for the indexing 

of cell barcodes, UMIs and TE features, and by performing operations leveraging on Python 

generators with a first-in-first-out logic. 

IRescue enables the identification of tumor-specific TE signatures in colorectal 

cancer at single-cell resolution 

TEs are known to be dysregulated in cancer, where they can initiate oncogene expression 

(50) or cause genomic instability (51, 52). Several studies reported the overexpression of 

specific TE subfamilies in cancer cells with bulk-level NGS analyses (22, 23, 50); however, 

how TEs are expressed in cancer at single cell level and whether they contribute to the 

heterogeneity of cell subsets is still poorly characterized. Therefore, to demonstrate IRescue 

performance in real datasets, we analysed publicly available 10x Genomics 3’ scRNA-seq 

datasets from tumor and normal adjacent tissues of six colorectal cancer (CRC) patients (38). 

We performed an unsupervised clustering analysis on 32,276 tumor and normal epithelial cells 

based on TE counts computed by IRescue. Interestingly, we found that cell clustering based 

on TE expression infers 12 clusters (Figure 3A), of which half are populated exclusively or 

mostly by cancer cells (K clusters) and the other half by normal cells (N clusters, Figure 3B), 

showing that TE expression alone discerns cancer from normal cells. To identify the TEs 

specifically expressed in cancer or normal condition, we obtained the TE expression 
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signatures of tumor and normal cells clusters by performing a differential expression analysis 

and selecting the TEs overexpressed only in one of the two conditions. We found that 

expression of specific TE subfamilies is detectable in a larger fraction of cells belonging to 

cancer clusters, compared to the normal ones (Supplementary Figure S3A-B). Interestingly, 

we grouped the differentially expressed TE subfamilies by class and found that LINE 

subfamilies are significantly over-represented in the TE expression signature of cancer cells, 

compared to the normal one (Figure 3C), while the other TE classes are similarly distributed 

between conditions. By inspecting the differentially expressed LINE subfamilies, we observed 

that they all belong to the LINE1 superfamily; moreover, the most evolutionarily young ones 

(i.e. L1HS and L1PA*) are those overexpressed in cancer cells only (Figure 3D). Bulk RNA-

seq studies have identified 16 TE subfamilies known to be overexpressed in CRC (22, 23). 

We checked the expression of these TEs across the cell clusters identified in scRNA-seq, and 

confirmed the presence of 10 out of 16 CRC marker TEs among the TE subfamilies belonging 

to the cancer TE signature (Figure 3E). Furthermore, thanks to the single-cell resolution, we 

were able to reveal a previously uncharacterized heterogeneous distribution of CRC markers 

TEs (Figure 3F). For instance, L1PA2 and HERVH-int, both known to be associated with CRC 

(23), are enriched in different clusters of cancer cells (Supplementary Figure S3C). 

Next, we asked whether it was possible to infer the structure of specific TE-containing 

transcripts. Assembling the entire structure of unannotated transcripts is unfeasible in droplet-

based scRNA-seq, but it is still possible to inspect the usage of splice junctions (28). Since a 

specific L1PA2 insertion was reported to be spliced into an alternative isoform of the oncogene 

SYT1 in CRC (50), we inspected the read alignments over this particular locus, specifically 

looking for reads splitted across a splice junction mapped on both TEs and non-repetitive 

genomic regions that could support the existence of cryptic TE-containing exons. We found 

over 3-fold more reads splitted between the L1PA2 exon and the 3rd exon of SYT1 in tumor 

(Figure 3G), supporting the detection of the same previously reported L1PA2-derived tumor-
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specific cryptic exon (50). Likewise, we confirm the detection of a MER1B-PIWIL1 TE-

oncogene isoform reported in CRC (50) (Supplementary Figure S3D). These results describe 

the complex dynamics of TE expression in CRC, that involve specific TE subfamilies across 

groups of cells, with a resolution that was not possible to achieve by previous works based on 

bulk-level NGS strategies. This supports the possibility to use TE subfamilies as markers to 

assist the dissection of cell heterogeneity.  Moreover, these findings support the notion that 

the differential expression of TE subfamilies in cancer cells results from tumor-specific 

alternative splicing events of TE-containing transcripts. 

Discussion 

In this work, we developed IRescue, the first software for error-correction, deduplication and 

quantification of UMIs mapping on multiple interspersed genomic features, such as those 

derived from transposable elements. It is known that reads originating from repetitive elements 

align equally well on multiple genomic loci (40), and aligners usually report either one random 

alignment per read, or one arbitrarily designated primary alignment and a number of 

secondary alignments. Therefore, discarding secondary alignments could lead to an incorrect 

feature assignment for that read. Several tools for TE expression quantification in bulk RNA-

seq have been developed to take into account secondary alignments when assigning multi-

mapping reads to features (14, 40). Such strategies have not yet been implemented in scRNA-

seq, where only few methods for gene expression quantification are able to recover multi-

mapping reads (28, 43, 44). In this context, IRescue not only takes into account all the 

secondary alignments of multi-mapping reads for feature assignment, but also provides the 

first strategy for the deduplication of UMIs multi-mapping on a reference genome. As a solution 

to assign a unique feature to multi-mapping UMIs, we leveraged on equivalence classes 

(ECs), a well-known concept used to count reads compatible to multiple isoforms in bulk RNA-

seq (20, 21, 53), recently applied to gene expression quantification in scRNA-seq as well (43, 

44).  
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We generated simulated 10x Genomics reads and TE subfamily counts and showed that, 

despite the high amount of ambiguous alignments, IRescue is highly precise when quantifying 

TE expression at subfamily level. We showed that, in a common 10x Genomics scRNA-seq 

library layout, one third of UMIs are TE-associated, of which 40% aligns on multiple TE 

subfamilies. This observation indicates that alignments on multiple TE meta-features are 

frequent and should be considered in TE expression quantification, even when performing a 

count at subfamily level. We compared IRescue to scTE (17), finding that, while TE counts are 

overall similar to simulations for both tools, IRescue performs better when inferring the cell’s 

identity using a common scRNA-seq clustering algorithm. We deem that this result is a 

consequence of scTE discarding the information of UMIs mapping to multiple TE subfamilies, 

an event that we showed being frequent in tag-based scRNA-seq. 

In the context of TE overexpression in cancer, we analysed the single cell TE expression 

profiles of CRC and the tumor-adjacent tissue, and found an enrichment in evolutionarily 

young LINE subfamilies in the CRC TE signature. Furthermore, we showed that known CRC 

markers TEs, previously characterized in bulk RNA-seq, are heterogeneously expressed in 

different CRC cell clusters, and that the expression of such markers can be the result of the 

transcription of tumor-specific TE-containing alternative isoforms of human oncogenes (50). 

The transcription of RNA containing young LINE insertions in healthy somatic cells have been 

shown to be preferentially repressed during RNA processing, in contrast to old insertions that 

have been slowly co-opted by species throughout evolution (8). The transcription of TEs has 

been shown to be involved in several physiological scenarios, such as embryo development 

(11), aging (54), differentiation and cell identity (10), as well as pathological conditions, such 

as cancer (55) and neurodegenerative diseases (56); however, the expression dynamics and 

heterogeneity of the single cell TE transcriptome in most of these tissues is still unexplored. 

With the release of IRescue, we long to facilitate the single cell TE expression profiling from 
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canonical scRNA-seq experiments, enabling the possibility of extracting novel information 

from the high amount of publicly available datasets (16). 

Data Availability 

IRescue source code and documentation are available at 

https://github.com/bodegalab/irescue. Data used in this paper are available at 10x Genomics 

(https://www.10xgenomics.com/resources/datasets/8-k-pbm-cs-from-a-healthy-donor-2-

standard-2-1-0) and ArrayExpress (E-MTAB-8410). The code to reproduce the results 

depicted in this paper is available at https://github.com/bodegalab/irescue_paper_analysis. 
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Table and Figure Legends 

 

Figure 1. IRescue algorithm overview. scRNA-seq reads aligned on a reference genome, 

and the associated UMIs and cell barcodes, are parsed by IRescue and, for each cell, UMIs 

mapped on the same set of TEs are grouped into equivalence classes (ECs). For each EC, 

the final UMI count is inferred by deduplicating the UMIs based on their sequence similarity. 

The deduplicated UMI count is assigned on the TE feature showing the highest amount of 
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alignments (in case of ties, the count is splitted between features). The counts of all ECs of a 

cell are summed together to obtain the cell's final TE counts. The TE counts are written in a 

m×n matrix, with m and n being the number of TEs and cells, respectively. 

 

Figure 2. Performance evaluation of IRescue using simulated scRNA-seq data. (A) 

Count of TE-associated UMIs, divided into uniquely mapped (i.e. mapped only once in the 
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genome), multi-mapped across multiple loci of the same TE subfamily (intra-subfamily) or 

across different TE subfamilies (inter-subfamily). (B) Distribution of the number of detected 

equivalence classes per cell. (C) Distribution of equivalence classes according to the number 

of cells on which they are detected and the number of TEs they contain. (D-E) Relationship 

between IRescue and simulated TE counts (D) or TE subfamilies (E). R = Spearman 

correlation coefficient. *** p-value < 2.2×10−16 (Spearman’s rank correlation test). (F) 

Correlation matrix plot between cell clusters inferred from IRescue and simulated TE 

expression values, using the Louvain algorithm. Pearson's correlation residuals of all pairwise 

combinations are plotted as dots shaded blue or red depending on the correlation being 

positive or negative. Color intensity and dot size are proportional to the magnitude of the 

correlation. p-value < 2.2×10−16 (chi-squared contingency table test). 
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Figure 3. Identification of TE expression dynamics in colorectal cancer. (A) UMAP 

representation of CRC and normal cells according to TE expression. Clusters of normal and 

tumour cells (indicated in legend) are obtained on the basis of TE expression. (B) Barplot of 

the relative abundance of cells by condition across TE clusters. (C) Barplot of abundance (y-

axis) and enrichment (percentage on top of bars) of TE subfamilies by TE class in tumor and 

normal TE signatures. * p-value < 0.05 (two-sided two-proportions Z-test). (D) Representation 

of LINE1 subfamilies specific for cancer or normal cells, stratified by the phylogenetic clade in 

which the insertions originated. (E) Dot plot of the average expression of known CRC markers 

TEs in tumor and normal conditions. The dot size is indicative of the percentage of expressing 

cells. (F) Dot plot of the average expression of known TE CRC markers across TE clusters. 

The dot size is indicative of the percentage of expressing cells. (G) Sashimi plot representing 

the coverage of a L1PA2-derived CRC-specific cryptic exon of SYT1 oncogene and the 

splitted reads across the cryptic and canonical exon. 
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Supplementary Figure 1. Integration of IRescue in a scRNA-seq pre-processing and 

analysis workflow. (A) Diagram depicting a workflow for scRNA-seq data analysis of TE 

expression using IRescue, where boxes represent data flow (with the data format indicated in 

squared brackets), diamonds represent the software used and highlighted boxes represent 

the portion of the workflow concerning IRescue. (B) Three exemplary UMI deduplication 

networks, where the contribution of the count of the equivalence class (EC count) is indicated 
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at the bottom. From left to right: a UMI with no duplicates generates a graph of one node only; 

three duplicate UMIs with one-mismatch distance generate a graph with three nodes 

connected to each other; four UMIs with up to two-mismatch distance generate a complex 

graph whose contribution to the TE count is solved by identifying the graph’s hubs (yellow 

nodes). 

 

Supplementary Figure 2. Accuracy assessments and benchmarking. (A) Spearman 

correlation coefficients of TE counts measured with IRescue or scTE against simulated counts 
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(*** = Spearman's rank correlation test's p-value < 2.2×10−16). (B) Distance of TE counts 

measured with IRescue or scTE from simulated counts, expressed as relative deviation (see 

methods). Negative and positive values represent under- and over-estimated counts, 

respectively. (C) Reverse cumulative distribution of cells according to the Spearman 

correlation coefficient calculated between simulated and measured TE counts per cell. (D) 

Correlation matrix plot between cell clusters inferred from scTE and simulated data, using the 

Louvain algorithm implemented in Seurat v4. Pearson's correlation residuals are plotted. Each 

pairwise combination is shaded blue or red depending on the correlation having a positive or 

negative sign, respectively, and the color intensity and size of the circles are proportional to 

the magnitude of the correlation. p-value < 2.2×10−16 (chi-squared contingency table test). 

(E) Run time of IRescue and scTE as a function of number of CPUs. (F) Memory usage of 

IRescue and scTE as a function of number of CPUs. 
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Supplementary Figure 3. Identification of CRC cluster-specific TE subfamilies. (A-B) Dot 

plot representing the average expression of differentially expressed TEs in tumor (A) or normal 

(B) TE expression clusters (log2 fold change > 1 and adjusted p-value < 0.05, Wilcoxon rank 

sum test). The dot size is proportional to the percentage of expressing cells. (C) UMAP 

representation of CRC and normal cells according to TE expression. Color scale represent 

the scaled expression of representative CRC marker TEs. (D) Sashimi plot representing the 

coverage of a MER1B-derived CRC-specific cryptic exon of PIWIL1 oncogene and the reads 

splitted between the cryptic and canonical exons. 
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