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Abstract

The transcription factor IRF4 is required during an immune response for lymphocyte activation and

the generation of immunoglobulin-secreting plasma cells1-3. Multiple myeloma, a malignancy of

plasma cells, has a complex molecular etiology with several subgroups defined by gene expression

profiling and recurrent chromosomal translocations4,5. Moreover, the malignant clone can sustain

multiple oncogenic lesions, accumulating genetic damage as the disease progresses6,7. Current

therapies for myeloma can extend survival but are not curative8,9. Hence, new therapeutic strategies

are needed that target molecular pathways shared by all subtypes of myeloma. Using a loss-of-

function, RNA-interference-based genetic screen we show here that IRF4 inhibition was toxic to

myeloma cell lines, regardless of transforming oncogenic mechanism. Gene expression profiling and

genome-wide chromatin immunoprecipitation analysis uncovered an extensive network of IRF4

target genes and identified MYC as a direct target of IRF4 in activated B cells and myeloma.

Unexpectedly, IRF4 was itself a direct target of MYC transactivation, generating an autoregulatory

circuit in myeloma cells. Though IRF4 is not genetically altered in most myelomas, they are

nonetheless addicted to an aberrant IRF4 regulatory network that fuses the gene expression programs

of normal plasma cells and activated B cells.

Recently, we developed a genetic method to identify therapeutic targets in cancer in which

small hairpin RNAs (shRNAs) that mediate RNA interference are screened for their ability to

block cancer cell proliferation and/or survival10. Here we report the results of such an “Achilles

heel” screen in multiple myeloma (Supplementary Table 3). We used myeloma cell lines from

three molecular subtypes: KMS12 (CCND1 translocation), H929 (FGFR3/MMSET
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translocation), and SKMM1 (MAFB, IRF4 translocations). Myeloma cells that received an

shRNA targeting the coding region of IRF4 were depleted from cultures by 2-8 fold (Fig.1a).

Lymphoma cell lines were largely unaffected by IRF4 knockdown, with the exception of OCI-

Ly3, an activated B cell-like diffuse large B cell lymphoma line that expresses IRF4

highly11.

We next identified two additional shRNAs against IRF4 that were toxic to myeloma cell lines,

one directed against the IRF4 3' untranslated region (UTR, Supplementary Fig.1). The toxicity

of this shRNA was associated with a 50-75% decrease in IRF4 mRNA and protein

(Supplementary Fig. 2a, b, c). Cell death occurred within 3 days, as measured by an increase

in sub-G1 DNA content; there was, however, no effect on the cell cycle (Supplementary Fig.

2d, e, f, g). Expression of a cDNA containing only the coding region of IRF4 was able to rescue

myeloma cells from the toxicity of the 3'UTR-directed IRF4 shRNA, confirming that the

toxicity of this shRNA was specific (Fig.1b).

Strikingly, knockdown of IRF4 killed 10 myeloma cell lines, but had minimal effect on 5

lymphoma cell lines (Fig.1c). These myeloma lines bear many of the recurrent genetic

aberrations typical of this cancer, including translocations of CCND1, MYC, MAF, MAFB,

FGFR3: MMSET, NIK and IRF4, as well as RAS mutations, inactivation of TP53 and

CDKN2C, and genetic abnormalities that activate the NF-κB pathway (Supplementary Table

1). Resequencing of the IRF4 coding exons in these lines revealed that 9 had a wild type

sequence and one had a heterozygous mutation in exon 8 resulting in a missense substitution

whose functional significance is unknown. Moreover, no amplification of the IRF4 locus was

detected by array-based comparative genomic hybridization and no translocations involving

IRF4 were detected by cytogenetics, with the exception of the previously documented IRF4
translocation in SKMM1 cells (data not shown). Thus, IRF4 dependency spans many myeloma

subtypes and does not require genetic abnormalities in the IRF4 locus.

To understand the molecular basis for this dependency, we identified downstream targets of

IRF4 by profiling gene expression changes in myeloma lines following induction of IRF4

shRNAs (Supplementary Fig. 3). A total of 308 genes were consistently downregulated

following IRF4 knockdown (Supplementary Table 2). This list was significantly enriched for

genes that are more highly expressed in primary myeloma samples than in normal mature B

cells, based on gene set enrichment analysis12 of published gene expression profiling data

(p=0.002 ; Fig. 2a)13 . Thus, IRF4 directs a broad gene expression program that is characteristic

of primary myeloma cells.

We next investigated whether the IRF4 target genes in myeloma are also upregulated in other

normal hematopoietic cells that require high IRF4 expression, including plasma cells3,

mitogenically activated mature B cells1, and dendritic cells14. Human bone marrow-derived

plasma cells expressed 22% of the IRF4 target genes at higher levels than mature blood B cells

(Fig. 2a)13. Likewise, 25% of the IRF4 targets were more highly expressed in plasmacytoid

dendritic cells than in monocytes (Supplementary Fig. 4)15. Blood B cells activated by anti-

IgM crosslinking expressed one third of the IRF4 target genes more highly than resting B cells

(Fig. 2a).

However, IRF4 regulates a broader set of genes in myeloma than in individual hematopoietic

subsets. Roughly one quarter of the IRF4 target genes in myeloma were upregulated in activated

B cells but not plasma cells, including genes known to be important in cellular growth and

proliferation, such as MYC (Fig. 2a). Conversely, one sixth of the myeloma IRF4 target genes

were highly expressed in plasma cells but not activated B cells.
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To identify direct IRF4 targets, we performed genome-wide chromatin immunoprecipitation

(ChIP-CHIP), using DNA microarrays with probes spanning ∼10kb at the 5' end of 17,574

human genes. Specific IRF4 binding to 558 genes was detected in a myeloma cell line (KMS12)

but not a lymphoma cell line (OCI-Ly19). Of these, 35 were also IRF4 targets by gene

expression profiling, a highly significant overlap (p=1.0 × 10−16, Chi-square; Fig. 2b,

Supplementary Fig. 5), and were considered presumptive direct IRF4 targets (Supplementary

Table 2). Direct binding of IRF4 was confirmed by conventional chromatin

immunoprecipitation (ChIP) for 22 genes, leading us to conclude that all 35 genes are likely

IRF4 direct targets (Fig. 2b, and data not shown). This list of IRF4 direct targets is a

conservative estimate since the ChIP-CHIP arrays interrogate limited regions around each

gene. Indeed, direct ChIP experiments demonstrated that two other IRF4 target genes,

PRDM1 and SQLE, were directly bound by IRF4 in regions not covered by our ChIP-CHIP

analyses (Supplementary Fig. 5). IRF4 bound to the promoter and fourth intron of PRDM1,

which encodes Blimp-1, another key regulator of plasmacytic differentiation (Supplementary

Fig. 5). These observations support the proposal that IRF4 lies genetically upstream of

PRDM1 in the regulatory hierarchy of terminal B cell differentiation3. Notably, IRF4 bound

to its own promoter, supporting a positive feedback mechanism by which plasma cells can

maintain high IRF4 expression3 (Supplementary Fig. 5).

A direct IRF4 target of particular interest is MYC, given its prominent role in the pathogenesis

of myeloma16. Knockdown of IRF4 reduced MYC mRNA levels by more than 2-fold in

myeloma cell lines and caused MYC DNA binding activity to decrease in nuclear extracts of

myeloma cells. Conversely, ectopic expression of IRF4 in a lymphoma cell line increased

MYC mRNA levels (Fig. 3a, Supplementary Fig. 6). By ChIP, we surveyed regions of the

MYC locus for binding by IRF4 in myeloma cells and detected a peak of binding around −1.6

kb upstream of the MYC start site, coinciding with a region detected by ChIP-CHIP (Fig. 3b,

Supplementary Fig.7). Knockdown of IRF4 expression diminished the amount of IRF4 bound

to this region of the MYC promoter (Fig. 3c). In human B cells, phorbol myristate acetate

(PMA) and ionomycin (P/I) treatment induces transcription of IRF4 and MYC (data not shown).

Correspondingly, a sharp increase in IRF4 binding to the MYC promoter was detected after 3

and 20 hours of P/I activation (Fig. 3d). Genetic evidence that Myc is an IRF4 target was

provided by analysis of mitogenically-stimulated wild-type and IRF4-deficient mouse B cells

(Fig. 3e). In IRF4-deficient cells, both Myc and Prdm1 failed to be fully induced by P/I

treatment whereas the immediate early gene fos was normally induced, and a housekeeping

gene, Usf2, did not change in expression. Finally, ectopic expression of IRF4 in a lymphoma

cell line was able to transactivate a reporter construct in which GFP is under the control of the

MYC promoter (Fig. 3f).

These data provide strong evidence implicating MYC as a direct target gene of IRF4.

Accordingly, the list of IRF4 targets was highly enriched for genes that are directly

transactivated by MYC17-19 (n=23; p=1 × 10−8, Chi-square; Supplementary Table 2 and

Supplementary Fig. 9). These genes encode key components of glycolysis (LDHA, HK2,

PDK1) and mitochondrial respiration (ATP5D, CYCS), as well as important regulators of

cellular senescence (BMI1, TERT). Since MYC is a key coordinator of cellular growth,

metabolism and proliferation20, we examined whether knockdown of MYC expression was

toxic to myeloma cells. An shRNA targeting the MYC 3'UTR knocked down MYC expression

and DNA binding by ∼2-fold (Supplementary Fig. 6). This shRNA was toxic to both myeloma

and lymphoma cell lines but had little effect on the myeloma cell line U266, consistent with

its high expression of MYCL1 instead of MYC (Fig. 4a)21. Expression of the MYC coding

region was able to rescue cells from the toxicity of the MYC shRNA, confirming its specificity

(Fig. 4b). Thus, loss of MYC expression may contribute to the toxicity of IRF4 shRNAs for

myeloma cells.
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Using two independent MYC shRNAs, we identified the targets of MYC in myeloma cells.

Following MYC shRNA induction, the expression levels of many direct MYC targets

decreased (Fig. 4c). Unexpectedly, the expression of IRF4 also decreased, as did the expression

of many IRF4 target genes (Fig. 4c, d). ChIP demonstrated binding of MYC to a region of the

IRF4 first intron in two myeloma cell lines expressing MYC (KMS12, H929) but not in a cell

line with very low MYC expression (U266, Fig. 4e). Further, we detected MYC binding to

IRF4 in mitogenically activated B cells, which express MYC, but not resting B cells, which

do not (Fig. 4f).

These data reveal a positive regulatory loop in myeloma cells in which IRF4 and MYC mutually

reinforce each other's expression (Fig. 5a). In keeping with this model, myeloma patient

samples express both MYC and IRF4 mRNA more highly than normal plasma cells (p=5.1 ×

10−7 for IRF4; Fig. 4g). Moreover, MYC and IRF4 mRNA levels showed significant positive

correlation across 451 primary myeloma samples4 (r= 0.24, p=2.5×10−7, Supplementary Fig.

7). This moderate correlation was remarkable since IRF4 is likely to be only one of many

factors regulating MYC transcription in myelomas22. Although the MYC locus in myeloma is

often amplified and inserted at ectopic genomic locations, especially within and near the

immunoglobulin loci16, the MYC breakpoints in these chromosomal rearrangements are many

kilobases from the MYC transcriptional start site and thus preserve the IRF4 binding region.

Our data suggest that the oncogenic activation of MYC in myeloma upregulates IRF4, which

in turn drives expression of MYC and other IRF4 target genes (Fig. 5a).

In some respects, the dependency of myeloma cells on IRF4 is reminiscent of the function of

“lineage-survival” oncogenes23. These genes are primarily transcription factors that provide

essential functions in a particular cellular lineage but are also dysregulated in cancers derived

from that lineage. IRF4 differs from lineage survival oncogenes in two respects. First, many

lineage survival oncogenes are altered by mutations or chromosomal structural alterations

whereas the IRF4 locus appears to be unaltered in most myelomas. Second, the regulatory

network that IRF4 controls in myeloma is decidedly abnormal, not merely reflecting the genetic

program of normal plasma cells but also borrowing from the genetic program of antigen-

stimulated mature B cells (Figs. 2a, 5b). This transcriptional promiscuity is exemplified by the

direct IRF4 targets MYC, SCD, SQLE, CCNC, and CDK6, which are not highly expressed in

normal plasma cells but are upregulated in mature B cells upon antigen receptor signaling (Figs.

2a, 5b). Thus, myelomas have broadened the genetic repertoire of IRF4, perhaps due to

epigenetic alterations that allow IRF4 access to loci that are normally silenced in plasma cells.

Hence, the dependency of myeloma on IRF4 may be best described as “nononcogene

addiction” i.e. the aberrant function of a normal cellular protein that is required for cancer cell

proliferation or survival24.

The direct targets of IRF4 reveal it to be a master regulator influencing metabolic control,

membrane biogenesis, cell cycle progression, cell death, transcriptional regulation and

plasmacytic differentiation (Fig. 5b). Given this pleiotropic program, we believe that loss of

IRF4 in a myeloma cell results in “death by a thousand cuts”. For example, several key cell

cycle regulators are IRF4 targets, in keeping with its role in lymphocyte activation1, including

STAG2, CDK6, and MYC. STAG2 encodes a component of the cohesin complex crucially

involved in the segregation of chromosomes during mitosis25. Two different shRNAs targeting

STAG2 were toxic for both a myeloma and a lymphoma cell line (Supplementary Fig. 8), as

were shRNAs targeting MYC (Fig. 4a). Likewise, myeloma cells were specifically killed by 2

different shRNAs targeting SUB1, an IRF4 direct target that encodes a transcriptional

coactivator26. It seems likely, therefore, that decreased expression of each of these IRF4 direct

targets contributes to IRF4 shRNA toxicity. A prominent role for IRF4 in regulating membrane

biogenesis was indicated by the many enzymes and regulators of sterol and lipid synthesis

under its control (Supplementary Fig. 9), including SQLE and SCD, which encode rate-limiting
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enzymes in these pathways. Further, the IRF4 target gene set was strikingly enriched for genes

encoding components of glucose metabolism and ATP production, many of which are targets

of MYC (Supplementary Fig. 9). It is therefore plausible that metabolic collapse also

contributes to cell death caused by IRF4 deprivation.

Our data demonstrate that myelomas are addicted to an abnormal regulatory network controlled

by IRF4, irrespective of their molecular subtype and underlying oncogenic abnormalities.

Hence, IRF4 emerges as a master regulator of an aberrant and malignancy-specific gene

expression program relevant to all molecular subtypes of this cancer. Since mice lacking one

allele of irf4 are phenotypically normal1 and since a ∼50% knockdown of IRF4 mRNA and

protein was sufficient to kill myeloma cell lines, a therapeutic window may exist in which

IRF4-directed therapy might kill myeloma cells while sparing normal cells. Though

transcription factors have been considered intractable therapeutic targets, recent successful

targeting of p5327 and BCL-628 provides hope that IRF4 can be exploited as an Achilles heel

of multiple myeloma.

METHODS SUMMARY

Lines were engineered to express the ecotropic retroviral receptor and the bacterial tetracycline

repressor as described10. The retroviral constructs for shRNA expression and the design of

shRNA library sequences have been described10; in some vectors, the puromycin selectable

marker (puro) was replaced by a fusion between puro and green fluorescent protein (GFP) for

tracking by flow cytometry. Doxycyline (20 ng/ml) was used for shRNA induction. IRF4 and

MYC were expressed using retroviral vectors as described3. Primary human resting blood B

cells were purified by magnetic separation (CD19+ beads Miltenyi) and grown at 2 million

cells/ml in IMDM+10%FBS; primary mouse splenic, resting B cells were purified by magnetic

separation (B cell kit, Miltenyi) and grown at 2 million cells/ml in RPMI+10%FBS.

Lymphocytes were activated with PMA (40 ng/ml) and ionomycin (2μM). Gene expression

profiling was performed using Agilent 4×44k or Lymphochip29 microarrays. ChiP-CHIP

experiments were performed using Agilent Human Promoter Set microarrays.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IRF4 is required for myeloma cell survival

a, Cell lines were screened using a retrovirally-delivered, doxycycline-inducible, shRNA

library to identify genes required for cell growth or survival, as described10. Depletion of cells

bearing an IRF4-targeted shRNA in shRNA-induced versus uninduced cells is plotted; error

bars represent the s.d. of triplicate measurements. b, Expression of the IRF4 coding region

rescues myeloma cells from lethality of an shRNA targeting the IRF4 3'UTR (see text for

details). c, An IRF4 shRNA is toxic to myeloma but not lymphoma cell lines. A vector for

constitutive expression of IRF4 shRNA was transduced into cell lines, and viability of shRNA

+ cells was monitored. In (b) and (c), cells expressing shRNA were monitored by flow

cytometry for a co-expressed GFP marker and data were normalized to the % of GFP+ cells

at day 2 post infection.
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Figure 2. IRF4 target genes in multiple myeloma

a, Venn diagram depicting IRF4 target genes and the overlap between the myeloma, plasma

cell, and activated B cell gene expression programs. Of the 308 IRF4 target genes

(Supplemental Fig. 3), 262 were well-measured on Affymetrix gene expression arrays. 101

were more highly expressed in primary myeloma samples than primary mature B cells (>1.4-

fold, red circle), 67 were more highly expressed in primary plasma cells than mature B cells

(>1.4-fold, green circle), and 81 are induced between 1 hr and 24 hr following activation of

primary human B cells by anti-IgM crosslinking (>2-fold, yellow circle). red: direct IRF4

targets by ChIP, *: direct MYC targets. b, Representative conventional ChIP assays for genes

identified as IRF4 targets by both gene expression profiling and ChIP-CHIP. Individual ChIP

assays were performed on chromatin from the KMS12 myeloma line and the OCI-Ly19

lymphoma line using either anti-IRF4 or control antibodies. The ChIP signal is given in

arbitrary relative units calculated from quantitative PCR data, based on the relative abundance

of the indicated gene in the immunoprecipitated DNA versus input DNA. Error bars are s.d.

from triplicate measurements.
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Figure 3. MYC is a direct IRF4 target gene in myeloma and activated B cells

a, Knockdown of IRF4 decreases MYC mRNA expression. The SKMM1 myeloma line was

transduced with IRF4 or MYC shRNAs, and gene expression was measured by quantitative

RT-PCR after 4 days of shRNA induction, normalized to the signal from uninduced cells. b,

Binding of IRF4 to the MYC promoter. ChIP was performed as in Figure 2, comparing the

myeloma line KMS12 to the lymphoma line OCI-LY19, for regions of the MYC promoter (as

indicated relative to the transcriptional start site) or a control locus, CYP2E1. c, IRF4

knockdown decreases IRF4 binding to the MYC promoter. ChIP was performed using KMS12

cells with or without shRNA induction for 4 days. d, Activation of human blood B cells leads

to IRF4 binding to the MYC promoter. ChIP assays were performed using purified peripheral

human blood B cells, either unstimulated or activated with P/I for the indicated times. e, Genetic

deficiency of IRF4 impairs MYC induction during lymphocyte activation. Quantitative RT-

PCR was performed on RNA from resting splenic B cells of IRF4-deficient or wild type mice,

either unstimulated or activated with P/I for the indicated times. Values were normalized to

B2M expression. f, IRF4 transactivates the MYC promoter. The OCI-Ly7 lymphoma line was

transiently transfected with a GFP expression vector driven by the human MYC promoter, either

alone, with an IRF4 expression vector, or with an empty vector control. Flow cytometry for

GFP fluorescence is shown, with error bars indicating s.d. of triplicate measurements.
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Figure 4. IRF4 is a direct MYC target gene in myeloma and activated B cells

a, Lethality of a MYC shRNA for cell lines expressing MYC. Cell lines were transduced with

a MYC shRNA vector and the fraction of shRNA+ (GFP+) cells was monitored over time. All

lines express MYC, except U266, which expresses MYCL1. b, Expression of the MYC coding

region rescues H929 myeloma cells from lethality of an shRNA targeting the MYC 3'UTR. c,

MYC knockdown downregulates MYC direct target genes and IRF4 target genes. KMS12

myeloma cells were induced for MYC shRNA expression for 4 days and profiled for gene

expression changes. Each experiment utilized a different MYC shRNA. Exemplar array

elements are shown (reduced by >1.3-fold in both experiments), for known MYC direct

targets17 and IRF4 targets (this work). d, MYC knockdown decreases IRF4 mRNA expression.

Shown are quantitative RT-PCR measurements of MYC and IRF4 mRNA levels in KMS12

myeloma cells, with or without induction of MYC shRNA. Error bars indicate s.d. of triplicate

measurements. e, MYC binds to the IRF4 locus. ChIP of MYC binding to the IRF4 first intron

in myeloma cells expressing MYC (KMS12, H929), but not in the myeloma line U266 that

lacks MYC expression. f, MYC binding to the IRF4 locus is induced in activated human B

cells. ChIP of MYC binding to the IRF4 first intron in human blood B cells, either unstimulated

or activated with P/I for 6 hr. g, MYC and IRF4 are more highly expressed in primary myeloma

patient samples than in normal human bone marrow plasma cells. Previously published gene

expression profiling data4 was analyzed for mRNA expression of MYC, IRF4, and a control

gene, UBC.
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Figure 5. Model of IRF4 control over B cell development and multiple myeloma oncogenesis

a, IRF4 and MYC form a positive autoregulatory loop during normal B cell activation and in

multiple myeloma. Genetic abnormalities of MYC upregulate its expression in myeloma,

thereby augmenting IRF4 expression. In normal plasma cells, Blimp-1 represses MYC, but this

control circuit may be abrogated in myeloma. b, IRF4 as a master regulator of the myeloma

phenotype. IRF4 controls a myeloma-specific gene expression program that fuses the IRF4

regulatory programs from activated B cells and plasma cells. IRF4 direct targets regulate many

essential cellular processes, causing myeloma cells to be addicted to IRF4.
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