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ABSTRACT Interferon gamma (IFN-�) restricts the intracellular replication of many

pathogens, but the mechanism by which IFN-� confers cell-intrinsic pathogen resis-

tance remains unclear. For example, intracellular replication of the bacterial patho-

gen Legionella pneumophila in macrophages is potently curtailed by IFN-�. However,

consistent with prior studies, no individual genetic deficiency that we tested com-

pletely abolished IFN-�-mediated control. Intriguingly, we observed that the glycoly-

sis inhibitor 2-deoxyglucose (2DG) partially rescued L. pneumophila replication in

IFN-�-treated macrophages. 2DG inhibits glycolysis and triggers the unfolded protein

response, but unexpectedly, it appears these effects are not responsible for perturb-

ing the antimicrobial activity of IFN-�. Instead, we found that 2DG rescues bacterial

replication by inhibiting the expression of two key antimicrobial factors, inducible ni-

tric oxide synthase (iNOS) and immune-responsive gene 1 (IRG1). Using immortalized

and primary macrophages deficient in iNOS and IRG1, we confirmed that loss of

both iNOS and IRG1, but not individual deficiency in either gene, partially reduced

IFN-�-mediated restriction of L. pneumophila. Further, using a combinatorial CRISPR/

Cas9 mutagenesis approach, we found that mutation of iNOS and IRG1 in combina-

tion with four other genes (CASP11, IRGM1, IRGM3, and NOX2) resulted in a total

loss of L. pneumophila restriction by IFN-� in primary bone marrow macrophages.

Our study defines a complete set of cell-intrinsic factors required for IFN-�-mediated

restriction of an intracellular bacterial pathogen and highlights the combinatorial

strategy used by hosts to block bacterial replication in macrophages.

IMPORTANCE Legionella pneumophila is one example among many species of

pathogenic bacteria that replicate within mammalian macrophages during infection.

The immune signaling factor interferon gamma (IFN-�) blocks L. pneumophila repli-

cation in macrophages and is an essential component of the immune response to L.

pneumophila and other intracellular pathogens. However, to date, no study has iden-

tified the exact molecular factors induced by IFN-� that are required for its activity.

We generated macrophages lacking different combinations of IFN-�-induced genes

in an attempt to find a genetic background in which there is a complete loss of IFN-

�-mediated restriction of L. pneumophila. We identified six genes that comprise the

totality of the IFN-�-dependent restriction of L. pneumophila replication in macro-

phages. Our results clarify the molecular basis underlying the potent effects of IFN-�

and highlight how redundancy downstream of IFN-� is key to prevent exploitation

of macrophages by pathogens.
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Macrophages are preferred host cells for many species of intracellular bacterial

pathogen. Bona fide pathogens of mammals, such as Mycobacterium tuberculosis,

Listeria monocytogenes, and Salmonella enterica, as well as environmental microorgan-

isms that are “accidental” pathogens of mammals, such as Legionella pneumophila,

display the ability to replicate efficiently in macrophages, demonstrating that these

cells can provide a plastic niche suitable to the metabolic needs of distinct bacterial

species (1). To defend against potential exploitation by diverse pathogens, including

environmental microorganisms with which they have not coevolved, macrophages

require potent mechanisms to restrict intracellular bacterial replication. A cornerstone

of the immune response to many intracellular pathogens is the cytokine interferon

gamma (IFN-�). The importance of IFN-� is highlighted by the observation that genetic

deficiencies in the IFN-� signaling pathway render humans highly susceptible to

infections by intracellular pathogens, most notably M. tuberculosis and even normally

benign environmental bacteria (2). Mice with deficiencies in the IFN-� pathway are also

highly susceptible to intracellular bacterial pathogens, including M. tuberculosis, L.

monocytogenes, S. enterica, Brucella abortus, and L. pneumophila, among others (3–9).

L. pneumophila normally replicates in protozoan host amoebae but can cause a

severe pneumonia in humans, known as Legionnaires’ disease, through infection of

lung macrophages. L. pneumophila employs a type IV secretion system to translocate

bacterial effector proteins into the host cytosol, allowing the bacteria to establish an

intracellular replicative compartment (10). Flagellin produced by wild-type L. pneumo-

phila can trigger host cell pyroptosis via the NAIP/NLRC4 inflammasome; however, L.

pneumophila bacteria that lack flagellin (ΔflaA) are able to replicate to high levels in

macrophages (11–17). Brown et al. demonstrated that failure of IFN-�-deficient mice to

control L. pneumophila likely occurs at the level of cell-intrinsic restriction of bacteria in

monocyte-derived macrophages that infiltrate the lung following infection (18). Ac-

cordingly, in vitro infection models using bone marrow-derived macrophages (BMMs)

have enabled meaningful study of the cell-intrinsic immune response to L. pneumophila

coordinated by IFN-�. However, despite several decades of evidence supporting an

essential role for IFN-� in the antimicrobial immune response, the precise mechanisms

by which IFN-� acts to mediate cell-intrinsic control of L. pneumophila and other

pathogens remain obscure.

Inducible nitric oxide synthase (iNOS, encoded by the gene Nos2 in mice) plays a key

role in the IFN-�-dependent response to M. tuberculosis and several other pathogens

(19–21). iNOS facilitates the production of nitric oxide (NO), a toxic metabolite with

direct antimicrobial activity. NO also acts as a regulator of host responses and coordi-

nates metabolic changes in IFN-�-stimulated macrophages (22–24). While Nos2�/�

mice display increased susceptibility to infection by M. tuberculosis, evidence suggests

this is not simply due to direct cell-intrinsic antimicrobial effects of NO (25). In addition,

the activity of iNOS is not absolutely required to control infection by many pathogens,

suggesting that there are redundant iNOS-independent mechanisms that underlie the

potency of IFN-� (26). Strikingly, while L. pneumophila does not display resistance to the

effects of NO when cultured in broth, Nos2�/� macrophages are not impaired in

IFN-�-dependent restriction of L. pneumophila (27–29). This indicates either that L.

pneumophila is resistant to the effects of iNOS/NO during infection or, more likely, that

there are redundant factors induced by IFN-� that can restrict L. pneumophila in the

absence of iNOS.

Previous work has attempted to address the possibility of redundancy in the

IFN-�-dependent immune response to L. pneumophila. Pilla et al. generated quadruple

knockout (QKO) mice deficient in Nos2, Cybb (cytochrome b558 subunit beta, encoding

NADPH oxidase 2, also known as NOX2), Irgm1 (immunity-related GTPase family M

member 1), and Irgm3 (immunity-related GTPase family M member 3), all induced by
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IFN-� (28). NOX2 partners with phagosomal oxidase components to generate reactive

oxygen species, which, like NO, can cause direct toxicity to phagocytized pathogens in

neutrophils and macrophages (30, 31). IRGM1 and IRGM3 are antimicrobial GTPases

that participate in the disruption of membrane-bound, pathogen-containing compart-

ments within phagocytes in the case of Toxoplasma (32, 33) and Chlamydia (34). To

date, however, a nonredundant role for IRGM1 and IRGM3 in disruption of the L.

pneumophila-containing vacuole has not been established. Remarkably, Pilla et al.

observed that macrophages derived from QKO mice retained restriction of L. pneumo-

phila replication when stimulated with IFN-� (28). This study implicated the bacterial

lipopolysaccharide (LPS) detector caspase 11 (CASP11), encoded by the gene Casp4, in

some of the residual IFN-�-dependent restriction of L. pneumophila replication in

macrophages (28). Upon binding of bacterial lipopolysaccharide in the cytoplasm,

CASP11 can trigger host macrophage pyroptosis, an inflammatory form of cell death

(35, 36).

Recently, Naujoks et al. implicated immune-responsive gene 1 (IRG1), encoded by

the gene Acod1, in the IFN-�-dependent immune response to L. pneumophila, demon-

strating that driving Acod1 expression in macrophages was sufficient to suppress L.

pneumophila replication (29). However, this study did not address whether macro-

phages deficient in IRG1 were impaired in the ability to restrict L. pneumophila when

stimulated with IFN-�. Like iNOS, IRG1 generates a potentially toxic metabolite (itac-

onate) and contributes to metabolic changes that occur in inflamed macrophages

(37–39).

We recently described a mutant strain of L. pneumophila (ΔflaA ΔuhpC) that is able

to replicate in macrophages treated with 2-deoxyglucose (2DG), an inhibitor of mam-

malian glycolysis (40). This strain allows us to probe the role that host cell metabolism

plays in the immune response to L. pneumophila. In the present study, we use a

combination of preexisting knockout mouse models, pharmacological treatment with

2DG and other drugs, CRISPR/Cas9 genetic manipulation of immortalized mouse

macrophages, and primary BMMs from novel strains of CRISPR/Cas9-engineered mice

to survey the factors required for IFN-�-dependent restriction of L. pneumophila in

macrophages. Ultimately, we demonstrate that iNOS and IRG1 are redundant in terms

of IFN-�-dependent restriction of L. pneumophila. Further, we identify six IFN-�-

inducible factors, iNOS, IRG1, CASP11, NOX2, IRGM1, and IRGM3, which are responsible

for the entirety of the IFN-�-dependent restriction of L. pneumophila in macrophages.

RESULTS

IFN-� restricts L. pneumophila replication across a spectrum of immune gene-

deficient macrophages. In an attempt to identify specific genetic factors that explain

the ability of IFN-� to restrict L. pneumophila replication in macrophages, we tested the

ability of IFN-� to restrict L. pneumophila in BMMs derived from various knockout mice.

Using an extensively validated strain of ΔflaA L. pneumophila that expresses lumines-

cence (lux) genes from Photorhabdus luminescens (28, 40–42), we confirmed that ΔflaA

L. pneumophila replicates in unstimulated BMMs but does not replicate in BMMs

stimulated with IFN-� (Fig. 1A). As expected, BMMs lacking the IFN-� receptor (If-

ngr1�/�) did not restrict L. pneumophila replication in the presence of IFN-� (Fig. 1B).

We confirmed that BMMs lacking functional iNOS (Nos2�/�) retained IFN-�-dependent

restriction of L. pneumophila (Fig. 1B) (27–29). BMMs lacking MYD88 (Myd88�/�), a key

adaptor in the innate inflammatory immune response triggered by bacterial pattern

recognition, and BMMs lacking MYD88, NOD1, and NOD2 (Myd88�/� Nod1�/�

Nod2�/�), which do not activate inflammatory NF-�B signaling in response to L.

pneumophila (43), still largely restricted bacterial replication when stimulated with

IFN-� (Fig. 1C). Consistent with previous results (28), BMMs deficient in ATG5 (LysMCre�

Atg5fl/fl), a factor essential for autophagy (44), also mediated IFN-�-dependent restric-

tion of L. pneumophila replication (Fig. 1D). Pilla et al. reported that guanylate binding

proteins (GBPs) in conjunction with CASP11 partially mediated IFN-�-mediated restric-

tion of L. pneumophila in BMMs (28). We observed similar partial restriction in BMMs
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from mice that lack a region of chromosome 3 containing five GBPs (GBP1, -2, -3, -5, and

-7, Gbpchr3�/�) and also in BMMs that that lack functional caspase-1 and CASP11

(Casp1/11�/�) (Fig. 1E). Additionally, we observed that BMMs derived from mice lacking

functional MYD88 and TRIF (Myd88�/� Trif�/�), STING (Goldenticket) (45), IFNAR

(Ifnar1�/�), and tumor necrosis factor (TNF) receptor (Tnfr1�/�) all largely retained

IFN-�-dependent restriction of L. pneumophila replication (data not shown). These data

do not rule out the possibility that any single genetic factor surveyed here might

contribute in part to the restriction of L. pneumophila in IFN-�-stimulated macrophages.

However, our results confirm that no single genetic factor fully accounts for the

profound restriction of L. pneumophila observed in IFN-�-stimulated macrophages.

2-Deoxyglucose partially reverses IFN-�-dependent restriction of L. pneumo-

phila in BMMs. We next investigated the possibility that IFN-� may act to restrict L.

pneumophila not through induction of any single antimicrobial factor but by changing

the metabolic landscape of the host macrophage to be unsuitable for the metabolic
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FIG 1 IFN-� restricts L. pneumophila replication in many different immune gene-deficient macrophages. (A) Luminescence measured

in relative light units (log10 RLU, left) and recovery of CFU (log10 CFU, right) of LP02 ΔflaA lux L. pneumophila from infected wild-type

C57BL/6 BMMs either not stimulated (no stim) or stimulated with 6.0 ng/ml IFN-�. (B) Log10 RLU from LP02 ΔflaA lux L. pneumophila

from infected Ifngr1�/� and Nos2�/� BMMs either not stimulated or stimulated with 6.0 ng/ml IFN-�. (C) Log10 RLU from LP02 ΔflaA

lux L. pneumophila from infected Myd88�/� and Myd88�/� Nod1�/� Nod2�/� BMMs either not stimulated or stimulated with 6.0 ng/ml

IFN-�. (D) Log10 RLU from LP02 ΔflaA lux L. pneumophila from infected LysMCre� Atg5fl/fl and LysMCre� BMMs either not stimulated

or stimulated with 6.0 ng/ml IFN-�. (E) Log10 RLU from LP02 ΔflaA lux L. pneumophila from infected Gbpchr3�/� BMMs, wild-type

C57BL/6 control BMMs derived in parallel with Gbpchr3�/� BMMs, and Casp1/11�/� BMMs either not stimulated or stimulated with

6.0 ng/ml IFN-�. Data reflect individual experiments that represent at least two independent experiments. Error bars in all graphs

represent standard deviation of the mean from at least three technical replicates. P � 0.001, comparing no stim versus IFN-� curves

in all genotypes of BMMs (except Ifngr1�/�) by 2-way analysis of variance (ANOVA). No-stim and IFN-� curves do not differ significantly

in Ifngr1�/� BMMs.
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needs of L. pneumophila. Specifically, we hypothesized that disruption of host macro-

phage glycolysis with 2-deoxyglucose (2DG) would interfere with IFN-�-dependent

restriction observed in BMMs. Macrophages infected with L. pneumophila and IFN-�-

stimulated macrophages increase rates of aerobic glycolysis, which can be measured by

increased consumption of glucose and increased secretion of lactate (1, 40, 46). First,

we confirmed that 2DG blocked the increased glycolysis observed in L. pneumophila-

infected BMMs stimulated with IFN-� (Fig. 2A). We next tested the implication of

glycolysis inhibition in IFN-�-stimulated BMMs in terms of L. pneumophila replication.

2DG is metabolized to 2DG-phosphate (2DGP) in mammalian cells, which is directly

antimicrobial (40). However, by taking advantage of a newly identified strain of L.

pneumophila resistant to the direct antimicrobial effect of 2DG(P) in BMMs (ΔflaA ΔuhpC

L. pneumophila) (40), we observed that addition of 2DG to BMMs rescued L. pneumo-

phila replication in IFN-�-treated macrophages by 100- to 200-fold (Fig. 2B).

This result initially suggested that increased macrophage glycolysis plays a direct

role in bacterial restriction. However, previous studies have demonstrated that while L.

pneumophila has the capacity to metabolize glucose, it does not rely on glucose or

glucose derivatives to fuel its replication in broth and is largely indifferent to pertur-

bations in BMM glycolysis during infection (40, 47–49). To further probe the role that

host macrophage glycolysis plays in terms of IFN-� restriction of L. pneumophila, we

tested other conditions under which host macrophage glycolysis is impaired. BMMs

lacking hypoxia-inducible factor 1� (HIF1�) fail to upregulate glycolysis in response to

inflammatory stimuli and have a defect in IFN-�-mediated control of M. tuberculosis

(22). We observed that HIF1�-deficient BMMs resembled wild-type BMMs in terms of

IFN-�-dependent restriction and 2DG rescue of L. pneumophila replication (Fig. 2C).

Replacement of glucose with galactose, which inhibits increased glycolysis in IFN-�-

stimulated BMMs (22, 50), also did not alter the ability of IFN-� to restrict or of 2DG to
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FIG 2 2DG rescues L. pneumophila replication in IFN-�-stimulated macrophages. (A) Lactate secretion (left) and glucose consumption (right) measured in cell

culture medium following infection of wild-type C57BL/6 BMMs with LP02 ΔflaA ΔuhpC lux L. pneumophila and stimulated with 6.0 ng/ml IFN-� and 1.0 mM

2DG as indicated. **, P � 0.01; *, P � 0.05; ns, not significant, comparing indicated curves by 2-way ANOVA. (B) Log10 RLU (left) and log10 CFU (right) of LP02

ΔflaA ΔuhpC lux L. pneumophila from infected wild-type C57BL/6 BMMs either not stimulated (no stim), stimulated with 6.0 ng/ml IFN-� (IFN-�), or stimulated

with 6.0 ng/ml IFN-� plus 2.0 mM 2DG (IFN-�/2DG). P � 0.001, comparing all curves to each other in each graph by 2-way ANOVA. (C) Log10 RLU from LP02 ΔflaA

ΔuhpC lux L. pneumophila from infected LysMCre� Hif1afl/fl and LysMCre� BMMs not stimulated or stimulated with 6.0 ng/ml IFN-� and 2.0 mM 2DG as indicated.

P � 0.01, comparing all curves to each other in each graph by 2-way ANOVA. (D) Log10 RLU from LP02 ΔflaA ΔuhpC lux L. pneumophila from infected wild-type

C57BL/6 BMMs stimulated with 6.0 ng/ml IFN-� and 2.0 mM 2DG as indicated and cultured in infection medium containing 11.11 mM glucose (left) or 11.11 mM

galactose in the absence of glucose (center) and in glucose-free medium with no additional source of sugar (right). P � 0.001, comparing all curves to each

other in each graph by 2-way ANOVA. Data reflect results of individual experiments that represent at least three independent experiments. Error bars in all

graphs represent standard deviation of the mean from at least three technical replicates.
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rescue L. pneumophila replication (Fig. 2D). Further, IFN-� was able to mediate bacterial

restriction, and 2DG was able to reverse this restriction, in BMMs cultured in glucose-

free medium lacking any added sugar (Fig. 2D). Finally, we tested whether other

inhibitors of glycolysis, 3-bromopyruvate (3BP) and sodium oxamate (NaO), recapitu-

lated the effects of 2DG. Neither 3BP nor NaO reversed IFN-�-dependent restriction of

ΔflaA ΔuhpC L. pneumophila (the 2DG-resistant strain) or ΔflaA L. pneumophila (see

Fig. S1 in the supplemental material). Together, these data indicate that glycolysis

induction is not required for IFN-�-mediated restriction of L. pneumophila replication in

BMMs. This result suggests that effects of 2DG other than glycolysis inhibition are

responsible for its interference with the cell-intrinsic IFN-�-dependent immune re-

sponse to L. pneumophila in BMMs.

Some, but not all, unfolded protein response stimuli reverse IFN-�-dependent

inhibition of L. pneumophila. To determine potential “off-target” effects of 2DG that

could be responsible for reversal of IFN-�-mediated restriction of L. pneumophila, we

performed a transcript profiling experiment. We measured global transcript abundance

in BMMs exposed to TLR2 agonist Pam3CSK4 or infected with L. pneumophila and then

stimulated with IFN-� � 2DG. Pathway analysis of transcripts upregulated under 2DG

conditions indicated induction of endoplasmic reticulum stress, also known as the

unfolded protein response (UPR) (Fig. S2 and Table S1). 2DG is thought to trigger the

UPR due to interference with protein glycosylation pathways in the endoplasmic

reticulum (51). This led us to hypothesize that induction of the UPR perturbs IFN-�-

dependent restriction of L. pneumophila replication in BMMs. In fact, we observed that

other drugs that trigger UPR stress, including geldanamycin, brefeldin A, and dithio-

threitol, also rescued L. pneumophila replication in IFN-�-stimulated BMMs by �10- to

50-fold (Fig. 3A). However, not all drugs that trigger the UPR rescued L. pneumophila

replication in IFN-�-treated BMMs. For example, treatment of BMMs with the potent
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UPR inducers tunicamycin or thapsigargin did not reverse IFN-�-mediated restriction of

L. pneumophila replication (Fig. 3B).

One effect of UPR stress is arrest of protein translation via the PERK/EIF2� pathway,

which can be reversed by the drug ISRIB (52). Importantly, ISRIB treatment did not

interfere with 2DG- or geldanamycin-mediated rescue of L. pneumophila replication in

IFN-�-stimulated BMMs (Fig. 3C). This result indicates that reversal of IFN-�-mediated

restriction does not result from a global block in translation. We confirmed that UPR

stimuli and ISRIB induced UPR-associated transcripts and inhibited ATF4-associated

transcripts, respectively, via global transcript profiling (Fig. S3) (53). Taken together,

these results suggest that while some UPR-triggering drugs can partially reverse

IFN-�-dependent restriction of L. pneumophila replication in BMMs, induction of the

UPR is not sufficient to interfere with IFN-�-mediated restriction. Additionally, the

rescue of bacterial replication in IFN-�-stimulated BMMs by UPR-triggering drugs does

not act exclusively through general inhibition of protein translation.

IFN-� fully restricts L. pneumophila in BMMs lacking IRG1 but is only partially

restrictive in BMMs lacking both IRG1 and iNOS. Our analysis above revealed that

certain drugs that trigger the UPR rescue L. pneumophila replication in IFN-�-stimulated

BMMs, while others do not. We speculated that we could use these stimuli as a filter to

look for transcripts associated with a restrictive versus permissive macrophage state.

Using this logic to filter results from RNA sequencing (RNAseq) analysis of BMMs

stimulated with Pam3CSK4 � IFN-� � UPR stimuli, we identified two genes, Nos2

(encoding iNOS) and Acod1 (encoding IRG1), whose transcript levels were elevated

under restrictive conditions and lowered under permissive conditions (Fig. S4A). Since

iNOS deficiency has no effect on IFN-�-mediated control of L. pneumophila replication

(e.g., Fig. 1B), we speculated that IRG1 may restrict L. pneumophila replication in

IFN-�-stimulated BMMs, as suggested (but not directly tested) previously (29). Using

immortalized BMMs derived from C57BL/6 mice that inducibly express Cas9 (iCas9), we

targeted Acod1 and Ifngr1 with guide RNAs to generate BMMs that lack expression of

IRG1 and IFN-� receptor, respectively (Table 1 and Fig. S5). In comparison with

Ifngr1-targeted BMMs, which failed to restrict L. pneumophila when stimulated with

IFN-�, we observed that Acod1-targeted immortalized BMMs retained the ability to

restrict L. pneumophila replication upon stimulation with IFN-� (Fig. 4A). We next

generated primary BMMs from Acod1�/� mice derived on the C57BL/6NJ background

(38). Similarly to immortalized BMMs, primary Acod1�/� BMMs displayed intact IFN-�-

dependent restriction of L. pneumophila (Fig. 4B). These results suggest that IRG1

activity alone is not required for restriction of L. pneumophila in IFN-�-stimulated

macrophages.

We next tested the hypothesis that iNOS and IRG1 activities are redundant in terms

of restricting L. pneumophila in IFN-�-stimulated BMMs. In line with this hypothesis, we

observed a partial (�10-fold) loss of restriction in Acod1�/� BMMs treated with the

TABLE 1 Guide RNAs used in this study for CRISPR

Guide RNA target gRNA sequence PAMb Genotype(s) to which contributing

iCas9 BMMsa

Ifngr1 GGTATTCCCAGCATACGACA GGG iCas9::Ifngr1

Irg1 (Acod1) exon 2 GGACAGATGGTATCATTCGG AGG iCas9::Acod1, iCas9::Nos2Acod1

Irg1 (Acod1) exon 3 GAAAAGCAGCATATGTCGGT GGG iCas9::Acod1, iCas9::Nos2Acod1

Nos2 exon 2 GTCTTTCAGGTCACTTTGGT AGG iCas9::Nos2, iCas9::Nos2Acod1

Nos2 intron 2-3 GTCAGTAGTGACGTCCTGAT TGG iCas9::Nos2, iCas9::Nos2Acod1

QKO mouse embryos

Irg1 (Acod1) exon 2 TGACAGATGGTATCATTCGG AGG QKO/IRG1, 6KO

Irg1 (Acod1) exon 3 CAAAAGCAGCATATGTCGGT GGG QKO/IRG1, 6KO

Caspase-11 (Casp4) exon 5 GTATCATACTGTAGCACATC TGG QKO/C11, 6KO

Caspase-11 (Casp4) intron 4-5 ATGTTGATTTTACCGAAATG AGG QKO/C11, 6KO

aRequires gRNA sequence prepended with G.
bPAM, protospacer-adjacent motif.
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iNOS inhibitor 1400W, indicating that in the absence of IRG1, iNOS function is required

to mediate full restriction of L. pneumophila in IFN-�-stimulated BMMs (Fig. 4C).

Reinforcing the idea that the activities of iNOS and IRG1 are redundant in terms of the

IFN-�-coordinated response to L. pneumophila, we observed that targeting of both

Nos2 and Acod1, but not each factor independently, in iCas9 BMMs resulted in an

�20-fold loss of IFN-�-dependent restriction of L. pneumophila (comparing iCas9::

Nos2Acod1 � IFN-� to iCas9::Nos2 � IFN-�) (Fig. 4D). We next crossed Nos2�/� and

Acod1�/� mice to derive littermate Nos2�/� Acod1�/� and Nos2�/� Acod1�/� mice.

We observed 10- to 17-fold-greater loss of IFN-�-dependent L. pneumophila restriction

in Nos2�/� Acod1�/� than in Nos2�/� Acod1�/� BMMs (Fig. 4E and F). In sum, these

results indicate that the function of either iNOS or IRG1 must be intact to mediate

robust restriction of L. pneumophila replication in IFN-�-stimulated macrophages.

BMMs deficient in six genes are fully defective in restriction of L. pneumophila

upon stimulation by IFN-�. While it appears that iNOS and IRG1 are redundant in

coordinating a large proportion of L. pneumophila restriction in IFN-�-stimulated BMMs,

we observed that BMMs deficient in both iNOS and IRG1 retain partial restriction of L.
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three technical replicates.
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pneumophila replication (Fig. 4D to F). In an effort to pinpoint the additional genetic

factors that mediate IFN-�-dependent restriction of L. pneumophila in BMMs, we made

use of existing QKO mice (28). We designed an experiment to test the hypothesis that

the six factors implicated across our observations (iNOS and IRG1) and the studies by

Pilla et al. (28) (QKO and CASP11) and Naujoks et al. (29) (IRG1) comprise the entirety

of the IFN-�-coordinated response to L. pneumophila in macrophages. We employed

CRISPR/Cas9 to target Casp4 and Acod1 (Table 1) in QKO mouse embryos to generate

three novel mouse strains: QKO mice that also lack functional CASP11 (QKO/C11), QKO

mice that also lack functional IRG1 (QKO/IRG1), and QKO mice that additionally lack

both CASP11 and IRG1 (6KO). As previously reported, and in line with our observations

in Nos2 single-knockout BMMs, we observed that IFN-�-dependent restriction of L.

pneumophila in QKO BMMs was largely intact, indicating that no gene disrupted in

these cells is absolutely required for restriction of L. pneumophila (Fig. 5A and B) (28).

QKO/C11 BMMs did not lose IFN-�-mediated restriction relative to QKO BMMs (Fig. 5A
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independent experiments.
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and B). In contrast, we observed a striking (�100-fold) loss of restriction in QKO/IRG1

BMMs and a total loss of L. pneumophila restriction in 6KO BMMs stimulated with IFN-�

(Fig. 5A and B). We verified that QKO/IRG1 and 6KO BMMs do not display general

defects in phagocytosis and endosome acidification (Fig. S6A). Additionally, we ob-

served a significant reduction of nonpathogenic ΔdotA L. pneumophila (54, 55) CFU

following phagocytosis by QKO/IRG1 and 6KO BMMs, indicating that early, IFN-�-

independent antimicrobial responses are intact in these macrophages (Fig. S6B).

If the ability of 2DG to rescue L. pneumophila in IFN-�-treated BMMs acts through

inhibition of iNOS and IRG1, we would expect 2DG to have no effect in BMMs lacking

expression of these factors. However, we observed that 2DG retained the ability to

partially rescue L. pneumophila replication (by slightly less than 10-fold) in Nos2�/�

Acod1�/� BMMs stimulated with IFN-� (Fig. 5C). Intriguingly, the rescue effect of 2DG

was absent in QKO/IRG1 BMMs (Fig. 5C). Transcript profiling did not reveal an inhibitory

effect of 2DG on expression of the other genes disrupted in the QKO/IRG1 background

(Fig. S4B). This result indicates that 2DG may mediate some beneficial metabolic effect

for L. pneumophila independently of regulating activity of iNOS and IRG1; however,

these effects may require the other factors disrupted in the QKO background.

In sum, these results further underscore our previous observation that iNOS and

IRG1 are redundant in terms of mediating a large proportion of the IFN-�-dependent

restriction of L. pneumophila in BMMs, as the addition of IRG1 deficiency to the QKO

background profoundly disabled IFN-�-mediated restriction. Further, our data reveal a

partial role for CASP11 in control of L. pneumophila restriction in IFN-�-stimulated

BMMs, given the differences observed between QKO/IRG1 and 6KO BMMs. Finally, our

results demonstrate that the six factors disrupted in 6KO BMMs, or a subset of those six

that includes iNOS, IRG1, and CASP11, coordinate the entirety of the IFN-�-dependent,

cell-intrinsic control of L. pneumophila observed in BMMs.

DISCUSSION

Our results support a model in which IFN-� restricts L. pneumophila replication in

mammalian macrophages through activation of multiple redundant factors, including

iNOS and IRG1. To date, no study has identified any single IFN-�-stimulated gene that

fully accounts for the ability of macrophages to restrict L. pneumophila replication when

stimulated with IFN-�. Even QKO macrophages, which lack three other potentially

antimicrobial factors in addition to iNOS, largely maintain the ability to restrict L.

pneumophila, reinforcing the notion that redundant mechanisms contribute to IFN-�-

mediated bacterial control in macrophages.

Our recent identification of a strain of L. pneumophila resistant to the direct

antimicrobial effect of 2DG when growing in BMMs (40) allowed us to test the

hypothesis that global disruption of macrophage metabolism interferes with the

antimicrobial effects of IFN-�. Indeed, 2DG partially reversed the restriction of L.

pneumophila replication by IFN-� in BMMs. However, neither the glycolysis inhibition

activity nor the UPR induction activity of 2DG, per se, appears to underlie the ability of

this drug to subvert the antimicrobial effect of IFN-�. Instead, 2DG appears to regulate

the IFN-�-dependent induction of iNOS and IRG1 via some as-yet-unidentified mech-

anism. In addition, there appears to be some effect of 2DG independent of iNOS and

IRG1 regulation, suggesting that the drug interferes with the antimicrobial activities of

IRGM1, IRGM3, and/or NOX2 in IFN-�-stimulated macrophages. Ultimately, experimen-

tation with 2DG and other stimuli that reversed IFN-�-mediated restriction of L.

pneumophila led us to the hypothesis that both iNOS and IRG1 are sufficient, and

therefore redundant, in terms of mediating IFN-�-coordinated immune response to L.

pneumophila in macrophages.

A complex picture is emerging in terms of the role of IRG1 and the metabolite it

produces, itaconate, during inflammation and infection. A direct antimicrobial role for

itaconate via poisoning the bacterial glyoxylate pathway has been suggested for M.

tuberculosis and L. pneumophila (29, 37). IRG1 was shown to be an essential component

of the immune response to M. tuberculosis, as Acod1�/� mice succumbed more rapidly
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than wild-type mice to infection (56). However, IRG1 appeared to be required for

regulation of non-cell-autonomous pathological inflammation, and there was no evi-

dence for cell-intrinsic antimicrobial effects of itaconate (56). IRG1 has also been

demonstrated to be protective in a model of Zika virus infection in neurons (57).

Interestingly, other studies have demonstrated anti-inflammatory effects of itaconate

on myeloid cells, suggesting it may act as part of a negative feedback loop to control

inflammation (39, 58). Beyond production of itaconate, the disruption of oxidative

metabolic pathways caused by IRG1 activity may promote antimicrobial metabolic

shifts in macrophages. Ultimately, diverse cell-intrinsic and intercellular roles for IRG1

and itaconate likely contribute to the immune response to a broad array of pathogens.

Our data demonstrate that IRG1 is not essential for the cell-intrinsic immune response

to L. pneumophila in macrophages treated with IFN-�. However, our data are consistent

with the observation that IRG1 activity may be sufficient to restrict L. pneumophila

replication, as previously reported (29). Both NO generated by iNOS and itaconate

generated by IRG1 may be directly antimicrobial to L. pneumophila in macrophages

stimulated with IFN-�. Alternately or additionally, iNOS and IRG1 may act to restrict L.

pneumophila replication via coordinating global changes in macrophage metabolism

that restrict access to key bacterial metabolites or otherwise render the host macro-

phage inhospitable for bacterial growth.

Adding IRG1 and CASP11 deficiency to the QKO background revealed further layers

of redundancy in the immune response to L. pneumophila coordinated by IFN-�. While

QKO/C11 macrophages did not differ significantly from QKO macrophages in terms of

IFN-�-mediated bacterial restriction, we observed a profound loss of restriction in

QKO/IRG1 macrophages, beyond what we observed in primary Nos2�/� Acod1�/�

macrophages. This result indicates that factors other than iNOS disrupted in the QKO

background may play a role in limiting L. pneumophila in IFN-�-stimulated macro-

phages. For example, IRGM1-deficient macrophages displayed a partial loss of IFN-�-

dependent restriction of L. pneumophila (59). In agreement with the results of Pilla et

al. (28), our data suggest that a role exists for CASP11 in the IFN-�-mediated immune

response to L. pneumophila, given the complete inability of IFN-� to restrict L. pneu-

mophila replication in 6KO macrophages versus QKO/IRG1 macrophages (which retain

CASP11). In combination with the data showing that Casp1/11�/� and QKO/C11 BMMs

retain IFN-�-mediated bacterial restriction, this result demonstrates that the activity of

CASP11 is also redundant, at least with the activities of iNOS and IRG1. A role for

CASP11 may be less apparent in our experiments using immortalized macrophages,

which may be impaired in cell death pathways in addition to other major physiological

differences from primary cells.

In sum, our study reveals a more comprehensive picture of the factors that are

required to coordinate the IFN-�-dependent immune response to L. pneumophila. We

have not determined whether all six of the genes disrupted in 6KO BMMs cells are

required to fully exert IFN-�-dependent cell-intrinsic restriction of L. pneumophila or a

subset of the six that includes iNOS, IRG1, and CASP11. Nonetheless, we are encouraged

that among the numerous genes transcribed in IFN-�-stimulated macrophages, we

have narrowed the field that mediate cell-intrinsic control of L. pneumophila to six

candidates. While all of the gene products disrupted in the 6KO background could

function directly as antimicrobial effectors, we also note the possibility that some or all

may function as upstream regulators and thus affect L. pneumophila indirectly.

IFN-� is an essential component of the immune response to bacterial pathogens

beyond L. pneumophila. Thus, the implications of this study extend beyond furthering

our understanding of the immune response to L. pneumophila, an accidental pathogen

of mammals that did not evolve to evade the human immune response. Our work

reveals fundamental redundancy in the IFN-�-dependent immune response to poten-

tially pathogenic environmental microbes. Dissecting these overlapping innate immune

strategies reveals the complexity and comprehensiveness of the innate immune barrier

posed to novel environmental microorganisms by mammalian macrophages and IFN-�.

Further, a more detailed understanding of how IFN-� can mediate bacterial restriction
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in host cells may inform studies of how “professional” pathogens, such as M. tubercu-

losis, S. enterica, and L. monocytogenes, have evolved to avoid or subvert these effects

of IFN-�.

MATERIALS AND METHODS

Ethics statement. We conducted experiments in this study according to guidelines established by

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (60) under a

protocol approved by the Animal Care and Use Committee at the University of California, Berkeley

(AUP-2014-09-6665).

Bone marrow-derived macrophages. We purchased wild-type C57BL/6 (strain 000664), Ifngr1�/�

(strain 003288), Ifnar1�/� (strain 028288), Myd88�/� (strain 009088), Nos2�/� (strain 002609), Acod1�/�

(strain 029340), and C57BL/6N (strain 005304) mice from Jackson Laboratory as a source of bone marrow

from which to derive macrophages. Casp1/11�/� mice were provided by A. Van der Velden and M.

Starnbach (61). Myd88�/� Nod1–/– Nod2–/– mice were generated at UC Berkeley as described previously

(43). Nos2�/� Irg1�/� and Nos2�/� Irg1�/� mice were generated by crossing in-house at UC Berkeley.

QKO mice (Nos2�/�, Cybb�/�, Irgm1�/�, and Irgm3�/�), generously provided by the lab of Christopher

Sassetti at the University of Massachusetts, and mice lacking a section of chromosome 3 containing GBPs

1, 2, 3, 5, and 7 (Gbpchr3�/�), all on the C57BL/6 background, were generated as described previously (28).

We generated bone marrow-derived macrophages (BMMs) in RPMI supplemented with 10% fetal bovine

serum, 2.0 mM L-glutamine, and 100 �M streptomycin (all from Life Technologies) and 5% supernatant

from 3T3 cells expressing macrophage colony-stimulating factor (generated in-house). Macrophages

derived from LysMCre�/� and LysMCre�/� Atg5fl/fl mice on the C57BL/6 background were provided by

Daniel Portnoy and Jeffery Cox at UC Berkeley. Macrophages derived from LysMCre�/� and LysMCre�/�

Hif1afl/fl mice on the C57BL/6 background were provided by Sarah Stanley at UC Berkeley.

Mouse CRISPR. We generated QKO/C11 and QKO/IRG1 mice by pronuclear injection of Cas9 mRNA

and guide RNAs into fertilized embryos of QKO mice as described previously (62). Founder male mice

heterozygous for mutation in either Casp4 or Acod1 were backcrossed once onto the QKO background,

and offspring were intercrossed to generate QKO/C11, QKO/IRG1, and 6KO mice. The Acod1 mutation

was determined by amplifying a fragment of genomic DNA surrounding the cut site targeted in Acod1

exon 2 (forward primer AACTCTGGGAATGCCAGCTC and reverse primer GGAGCCACAACAGGGATCAA,

yielding an �440-bp PCR product) and Sanger sequencing, which revealed a three-nucleotide deletion

(TTC) and a one-nucleotide insertion (A) at the cut site in mutant DNA, resulting in a frameshift

mutation and premature stop codon. The Casp4 (encoding CASP11) mutation was determined by

amplifying genomic DNA surrounding the cut sites indicated by both guide RNAs (forward primer

GGGGCTCTGAAAAGGTGTGA and reverse primer TCTAGACACAAAGCCCATGT, revealing an �520-bp

band in wild-type DNA and an �290-bp band in mutant DNA, indicating a missing �230-bp

fragment in mutant genomic DNA.

iCas9 CRISPR. We cloned template DNA for the indicated guide RNAs into a pLX-sgRNA construct

additionally containing blasticidin resistance (Addgene plasmid 50662). We transfected constructs into

HEK293T cells along with lentivirus packaging vector pSPAX2 (Addgene plasmid 12260) and lentivirus

envelope vector VSV-G (Addgene plasmid 8454). We used the resulting virus particles to transduce

immortalized wild-type C57BL/6 cells that express doxycycline-inducible SpCas9 enzyme (generated

using Addgene plasmid 50661). We cultured transduced cells in 3.0 �g/ml blasticidin (InvivoGen) and

5.0 �g/ml doxycycline (Sigma) for at least 2 weeks prior to use in experiments.

Bacterial strains, infection, and stimulation of BMMs. LP02 is a thymidine auxotroph derived from

LP01, a clinical isolate of L. pneumophila (63). Generation of ΔflaA, ΔflaA ΔuhpC, ΔdotA, and luminescent

strains of L. pneumophila has been described previously (40, 41). We cultured all strains of L. pneumophila

in AYE {ACES [N-(2-acetamido)-2-aminoethanesulfonic acid]-buffered yeast extract broth} or on ACES-

buffered charcoal-yeast extract (BCYE) agar plates at 37°C. For measurement of intracellular L. pneumo-

phila growth by luminescence or by CFU, we plated 1.0� 105 BMMs/well in opaque white TC-treated 96-well

microtiter plates and infected them with L. pneumophila at a multiplicity of infection of 0.05. One hour

postinfection by centrifugation at 287� g, we replaced the medium of infected BMMs with medium �

stimulation at indicated concentrations. At the indicated times following infection, we measured bacterial

growth by detection of luminescence at � � 470 using a SpectraMax L luminometer (Bio-Rad) or by

dilution of infected cultures on BYCE agar plates for enumeration of CFU. Pam3CSK4 and E. coli-derived

lipopolysaccharide (LPS) were purchased from InvivoGen. We used 2-deoxyglucose (Abcam), brefeldin A

(BD), 1400W (Cayman Chemical), 3-bromopyruvate, sodium oxamate, galactose, geldanamycin, dithio-

threitol, tunicamycin, thapsigargin, and ISRIB (all from Sigma) as indicated. Recombinant mouse IFN-�

(ThermoFisher) was used at 6.0 ng/ml (60 U/ml) unless otherwise indicated. We performed lactate and

glucose measurement with kits purchased from Sigma according to the manufacturer’s instructions.

Western blotting. Following stimulation (as indicated) for 24 h, we mixed lysates derived from

1.0 � 106 BMMs per stimulation condition with SDS sample buffer (40% glycerol, 8% SDS, 2%

2-mercaptoethanol, 40 mM EDTA, 0.05% bromophenol blue, and 250 mM Tris-HCl, pH 6.8), boiled them

for 5 min, and then separated them by SDS-PAGE. Rabbit anti-IRG1 antibody was from Abcam

(ab222417), and mouse anti-�-actin antibody was from Santa Cruz (47778).

Phagocytosis and endosome acidification assay. We plated BMMs at a density of 1.0 � 105

cells/well in opaque white TC-treated 96-well microtiter plates. Following pretreatment with 1.0 �M

cytochalasin D (Sigma) or dimethyl sulfoxide (DMSO), we exposed BMMs to pHrodo red zymosan

bioparticles (ThermoFisher) according to the manufacturer’s instructions. We measured fluorescence
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(530/590 excitation/emission �) over the course of 90 min using a Synergy HT multimode microplate

reader (BioTek).

Gentamicin protection assay. We plated BMMs at a density of 1.0 � 105 cells per well in TC-treated

96-well microtiter plates and infected them with LP02 ΔdotA L. pneumophila at a multiplicity of infection

of 10. After 1 h, we replaced the medium on infected cells and added 100 �g/ml gentamicin (Sigma).

Fifteen minutes (0 h) and 6 h following gentamicin treatment, we washed BMMs three times with warm

phosphate-buffered saline (PBS) and then lysed BMMs with pure water to enumerate CFU by dilution on

BYCE agar plates.

RNAseq. We submitted RNA purified from the indicated cell culture conditions using an RNeasy kit

(Qiagen) to the QB3-Berkeley Functional Genomics Laboratory, where single-read 100-bp-read-length

(SR100) sequencing libraries were generated. Libraries were sequenced using either a HiSeq2500 system

(Illumina) at the New York Genome Center (New York, NY) or a HiSeq4000 System (Illumina) at the

Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley. We performed alignment, differential

expression analysis, and gene set enrichment as described previously (64–66).

Data availability. We deposited the RNAseq data associated with this study in the NCBI Gene

Expression Omnibus, available at https://www.ncbi.nlm.nih.gov/geo/, under accession numbers

GSE135385 and GSE135386.
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