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IRGAN: A Minimax Game for Unifying Generative and
Discriminative Information Retrieval Models

Anonymous Authors

ABSTRACT

�is paper provides a unified account of two schools of thinking in
information retrieval modelling: the generative retrieval focusing
on predicting relevant documents given a query, while discrimi-
native retrieval focusing on predicting relevancy given a query-
document pair. We propose a game theoretical minimax game to
iteratively optimise both models. On one hand, the discriminative
model, aiming to mine signals from labelled and unlabelled data,
provides guidance to train the generative model towards fi�ing the
underlying relevance distribution over documents given the query.
On the other hand, the generative model, acting as an a�acker
to the current discriminative model, generates difficult examples
for the discriminative model in an adversarial way by minimising
its discrimination objective. With the competition between these
two models, we show that the unified framework takes advantage
of both schools of thinking: (i) the generative model learns to fit
the relevance distribution over documents via the signal from the
discriminative model, and (ii) the discriminative model is able to
exploit the unlabelled data selected by the generative model to
achieve a be�er estimation for document ranking. Our experimen-
tal results have demonstrated significant improvement gains as
much as 23.96% on Precision@5 and 15.50% on MAP over strong
baselines in a variety of applications including web search, item
recommendation, and question answering.
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1 INTRODUCTION

A typical formulation of information retrieval (IR) is to provide
a (rank) list of documents given a query. It has a wide range of
applications from text retrieval [1] and web search [3, 19] to recom-
mender systems [21, 35], question answering [9], and personalised
ads [27], to name just a few.

�ere are, arguably, two major schools of thinking when coming
to IR theory and modelling [1]. �e classic school of thinking is to
assume that there is an underlying stochastic generative process
between documents and information needs (clued by a query) [22].
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In text retrieval, the classic relevance model of information retrieval
is focused on answering how a (relevant) document is generated
from a given information need: q → d , where q is a query (e.g.,
keywords, user profiles, questions, depending on specific IR applica-
tions) and d is its corresponding document (e.g., a textual document,
an information item, an answer) and the arrow indicates the direc-
tion of generation. Notable examples include Robertson and Sparck
Jones’s Binary Independence Model, of which each word token is
independently generated to form a relevant document [36]. Lan-
guage models of text retrieval consider a reverse generative process
from a document to a query: d → q, typically generating query
terms from a document (i.e, the query likelihood function) [32, 47].
In related work of word embedding, word tokens are generated
from their context words [28]. In the application of recommender
systems, we also see a recommended target item (in the original
document identifier space) can be generated/selected from known
context items [2].

�e modern school of thinking in IR recognises the strength of
machine learning and shi�s to a discriminative (classification)
solution learned from labelled relevant judgements or their proxy
such as clicks or ratings. It considers documents and queries jointly
as features and predicts their relevancy or rank order labels from a
large amount of training data: q+d → r , where r denotes relevance
and symbol + denotes the combining of features. A significant
development in web search is learning to rank (LTR) [3, 19], a family
of machine learning problems where the training objective is to
provide the right ranking order of a list of documents (or items) for
a given query (or context) [24]. �ree major paradigms for learning
to rank techniques are pointwise, pairwise and listwise methods.
Pointwise methods learn to approximate the relevance estimation of
each document to the human rating [23, 31]. Pairwise methods aim
to distinguish the more-relevant document from a document pair
[3]. Listwise methods learn to optimise the (smoothed) loss function
defined over the whole ranking list for each query [4, 6]. Similarly,
a recent advance in recommender systems is matrix factorisation
where learned user features and item features are dot-producted
together to make the prediction of the relevancy [21, 35, 45].

While the generative models of information retrieval are theo-
retically sound and are very successful in modelling features (e.g.,
text statistics, distribution over document identifier space), they
suffer from the difficulty of leveraging relevancy signals from other
channels such as links, clicks etc., which are largely observable in
Internet-based applications. While the discriminative models of
IR such as learning to rank are able to learn a retrieval ranking
function implicitly from a large amount of labelled/unlabelled data,
they lack a proper way of generating useful features or gathering
helpful signals from large amount of unlabelled data, in particular,
from text statistics derived from both documents and queries, or
the distribution of the relevant documents from the data.

In this paper, we consider the generative and discriminative re-
trieval models as two sides of the same coin. Inspired by Generative
Adversarial Nets (GANs) in machine learning [13], we propose a
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game theoretical minimax game to combine the two schools of
thinking. Specifically, we define a common retrieval function (e.g.,
discrimination-based objective function) for both models. On one
hand, the discriminative model pϕ (r |q,d ) aims to maximise the ob-

jective function by learning from labelled data. It naturally provides
alternative guidance to the generative retrieval model beyond tra-
ditional log-likelihood. On the other hand, the generative retrieval
model pθ (d |q, r ) acts as a challenger who constantly pushses the
discriminator to its limit. Iteratively it provides the most difficult
cases for the discriminator to retrain by adversarially minimising
the objective function. In such a way, the two types of IR models
act as two players in a minimax game and each of them strikes to
improve itself to ‘beat’ the other one at every round of this competi-
tion. Note that our minimax game based approach is fundamentally
different from the existing game-theoretic IR methods [26, 46], in
the sense that the existing approaches generally try to model the
interaction between user and system, whereas our approach aims
to unify generative and discriminative IR models.

Empirically, we have realised the proposed minimax retrieval
framework in three typical IR applications: web search, item recom-
mendation, and question answering. In our experiments, we found
that the minimax game arrives at different equilibria and thus dif-
ferent effect of unification in different se�ings. With the pointwise
adversarial training, the generative retrieval model can be signif-
icantly boosted by the training rewards from the discriminative
retrieval model. �e resulting model outperforms several strong
baselines as much as 22.56% in web search and 14.38% in item recom-
mendation on Precesion@5. We also found that with new pairwise
adversarial training, the discriminative retrieval model is largely
boosted by examples selected by the generative retrieval model
and outperforms the compared strong algorithms up to 23.96% on
Precision@5 in web search and 3.23% on Precision@1 in question
answering.

2 IRGAN FORMULATION

In this section, we take the inspiration from GANs and build a
unified framework of fusing generative and discriminative IR in
an adversarial se�ing; we call it IRGAN, and its applications on
specific IR problems shall be given in the follow-up section.

2.1 A Minimax Retrieval Framework

Without loss of generality, let us consider the following information
retrieval problem. We have a set of queries {q1, ...,qN } and a set of
documents {d1, ...,dM }. In a general se�ing, a query is any specific
form of the user’s information need such as search keywords, a user
profile, or a question, while documents could be textual documents,
information items, or answers, depending on the specific retrieval
task. For a given query qn , we have a set of relevant documents
labelled, denoted as set Rn . �e size of Rn is much smaller than the
total number of documentsM .

�e underlying true relevance distribution can be expressed
as conditional probability: ptrue (d |q, r ), which depicts the (user’s)
relevance preference distribution over the candidate documents
with respect to her submi�ed query. Given a set of samples from
ptrue (d |q, r ) observed as the training data, we can try to construct
two types of IR models:

Generative retrieval model pθ (d |q, r ), which tries to generate
(or say select) relevant documents, from the candidate pool for
the given query q; in other words, its goal is to approximate the
true relevance distribution over documents ptrue (d |q, r ) as much
as possible.

Discriminative retrieval model fϕ (q,d ), which, in contrary, tries

to discriminate well-matched query-document tuples (q,d ) from
ill-matched ones, where the goodness of matching given by
fϕ (q,d ) depends on the relevance of d to q; in other words,

its goal is to distinguish between relevant documents and non-
relevant documents for the query q as accurately as possible. It is
in fact simply a binary classifier, and we could use 1 as the class
label for the query-document tuples that truly match (positive
examples) while 0 as the class label for those do not really match
(negative examples).

2.1.1 Overall Objective. �us, inspired by the idea of GAN, we
aim to unify these two different types of IR models by le�ing them
play a minimax game: the generative retrieval model would try to
generate (or select) relevant documents that look like the ground-
truth relevant documents and therefore could fool the discrimina-
tive retrieval model, whereas the discriminative retrieval model
would try to draw a clear distinction between the ground-truth
relevant documents and the generated ones made by its opponent
generative retrieval model. Formally, we have:

JG
∗
,D∗
= min

θ
max
ϕ

N∑

n=1

(

Ed∼ptrue (d |qn,r ) [logD (d |qn )] + (1)

Ed∼pθ (d |qn,r ) [log(1 − D (d |qn ))]
)

,

where the generator G is directly wri�en as pθ (d |qn , r ), and the
probability of document d being relevant to query q is given by the
sigmoid function of the discriminator score

D (d |q) = σ ( fϕ (d,q)) =
exp( fϕ (d,q))

1 + exp( fϕ (d,q))
. (2)

We leave the specific parametrisation of fϕ (d,q) for the next

section when we discuss each of three specific IR tasks we have
considered. From Eq. (1), we can see that the optimal parameters
of the generative retrieval model and the discriminative retrieval
model can be learned iteratively by maximising and minimising
the same objective function, respectively.

2.1.2 Optimising Discriminative Retrieval. �e objective for the
discriminator is to maximise the log-likelihood of correctly distin-
guishing the true and generated relevant documents. With the
observed relevant documents, and the ones sampled from the cur-
rent optimal generative model pθ ∗ (d |q, r ), one can then obtain the
optimal parameters for the discriminative retrieval model:

ϕ∗ = argmax
ϕ

N∑

n=1

(

Ed∼ptrue (d |qn,r )

[

log(σ ( fϕ (d,qn ))
]

+

Ed∼pθ ∗ (d |qn,r )

[

log(1 − σ ( fϕ (d,qn )))
]

)

, (3)

where if the function fϕ is differentiable with respect to ϕ, the

above is solved typically by stochastic gradient descent.
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2.1.3 Optimising Generative Retrieval. By contrast, the genera-
tive retrieval model pθ (d |q, r ) intends to minimise the objective; it
fits the underlying relevance distribution over documentsptrue (d |q, r )
and based on it, randomly samples documents from the whole doc-
ument set in order to fool the discriminative retrieval model.

It is worth mentioning that unlike GAN [13, 18], we design the
generative model to directly generate known document (in the
document identifier space) not its features, because our work here
intends to select relevant documents from a given document pool.
Note that it is feasible to generate new documents (features, such
as the value of BM25) by IRGAN, but to stay focused, we leave it
for future investigation.

Specifically, while keeping the discriminator fϕ (q,d ) fixed a�er
its maximisation operation in Eq. (1), we then learn the generative
model via performing its minimisation:

θ∗ = argmin
θ

N∑

n=1

(

Ed∼ptrue (d |qn,r )

[

logσ ( fϕ (d,qn ))
]

+

Ed∼pθ (d |qn,r )

[

log(1 − σ ( fϕ (d,qn )))
]

)

= argmax
θ

N∑

n=1

Ed∼pθ (d |qn,r )

[

log(1 + exp( fϕ (d,qn )))
]

︸                                               ︷︷                                               ︸

denoted as JG (qn )

, (4)

where for each query qn we denote the objective function of the

generator as JG (qn )
1.

As the sampling of d is discrete, it cannot be directly optimised
by gradient descent from the original GAN formulation. A common
approach is to use policy gradient based reinforcement learning
(REINFORCE) [42, 44]. Its gradient is derived as follows:

∇θ J
G (qn )

= ∇θEd∼pθ (d |qn,r )

[

log(1 + exp( fϕ (d,qn )))
]

=

M∑

i=1

∇θpθ (di |qn , r ) log(1 + exp( fϕ (di ,qn )))

=

M∑

i=1

pθ (di |qn , r )∇θ logpθ (di |qn , r ) log(1 + exp( fϕ (di ,qn )))

= Ed∼pθ (d |qn,r )

[

∇θ logpθ (d |qn , r ) log(1 + exp( fϕ (d,qn )))
]

≃
1

K

K∑

k=1

∇θ logpθ (dk |qn , r ) log(1 + exp( fϕ (dk ,qn ))), (5)

where we perform a sampling approximation in the last step in
which dk is the k-th document sampled from the current version
of generator pθ (d |qn , r ). With reinforcement learning terminology,
the term log(1 + exp( fϕ (d,qn ))) acts as the reward for the policy

pθ (d |qn , r ) taking an action d in the environment qn [39].
In order to reduce variance during the REINFORCE learning, we

also replace the reward term log(1 + exp( fϕ (d,qn ))) by its advan-

tage function:

log(1 + exp( fϕ (d,qn ))) − Ed∼pθ (d |qn,r )
[

log(1 + exp( fϕ (d,qn )))
]

,

1Following [13], Ed∼pθ (d |qn ,r )[log(σ (fϕ (d, qn )))] is normally used to be max-

imised instead, which keeps the same fixed point but provides more sufficient gradient
for the generative model.

Algorithm 1 Minimax Game for IR (a.k.a IRGAN)

Input: generator pθ (d |q, r ); discriminator fϕ (x
q
i );

training dataset S = {x }

1: Initialise pθ (d |q, r ), fϕ (q, d ) with random weights θ, ϕ .

2: Pre-train pθ (d |q, r ), fϕ (q, d ) using S

3: repeat

4: for g-steps do

5: pθ (d |q, r ) generates K documents for each query q

6: Update generator parameters via policy gradient Eq. (5)

7: end for

8: for d-steps do

9: Use current pθ (d |q, r ) to generate negative examples and com-

bine with given positive examples S

10: Train discriminator fϕ (q, d ) by Eq. (3)

11: end for

12: until IRGAN converges

where the term Ed∼pθ (d |qn,r )
[

log(1 + exp( fϕ (d,qn )))
]

acts as the

baseline function in policy gradient [39].
�e overall logic of our proposed IRGAN solution is summarised

in Algorithm 1. Before the adversarial training, the generator and
discriminator can be initialised by their conventional models. �en
during the adversarial training stage, the generator and discrimina-
tor are trained alternatively via Eqs. (5) and (3).

2.2 Extension to Pairwise Case

In many IR problems, it is common that the labelled training data
available for learning to rank are not a set of relevant documents
but a set of ordered document pairs for each query, as it is o�en
easier to capture users’ relative preference judgements on a pair of
documents than their absolute relevance judgements on individual
documents (e.g., from a search engine’s click-through log) [19].
Furthermore, if we use graded relevance scales (indicating a varying
degree of match between each document and the corresponding
query) rather than binary relevance, the training data could also be
represented naturally as ordered document pairs.

Here we show that our proposed IRGAN framework would also
work in such a pairwise se�ing for learning to rank, where for
each query qn we have a set of labelled document pairs Rn =
{〈di ,dj 〉|di ≻ dj }, where di ≻ dj means di is more relevant to qn
than dj . As we have done in Section 2.1, let pθ (d |q, r ) and fϕ (q,d )

denote the generative retrieval model and the discriminative re-
trieval model respectively.

�e generatorG would try to generate document pairs that are
similar to those in Rn , i.e., with the correct ranking. �e discrimi-
nator D would try to distinguish such generated document pairs
from those real document pairs. �e probability that a document
pair 〈du ,dv 〉 being correctly ranked can be estimated by the dis-
criminative retrieval model through a sigmoid function:

D (〈du ,dv 〉|q) = σ ( fϕ (du ,q) − fϕ (dv ,q))

=

exp( fϕ (du ,q) − fϕ (dv ,q))

1 + exp( fϕ (du ,q) − fϕ (dv ,q))

=

1

1 + exp(−z)
, (6)

where z = fϕ (du ,q) − fϕ (dv ,q). Note that − logD (〈du ,dv 〉|q) =

log(1 + exp(−z)) is exactly the pairwise ranking loss function used
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by the learning to rank algorithm RankNet [3]. In addition to the lo-
gistic function log(1 + exp(−z)), it is possible to make use of other
pairwise ranking loss functions [7], such as the hinge function
(1 − z)+ (as used in Ranking SVM [16]) and the exponential func-
tion exp(−z) (as used in RankBoost [11]), to define the probability
D (〈du ,dv 〉|q).

If we use the standard cross entropy cost for this binary classifier
as before, we have the following minimax game:

JG
∗
,D∗
= min

θ
max
ϕ

N∑

n=1

(

Eo∼ptrue (o |qn ) [logD (o|qn )]+ (7)

Eo′∼pθ (o′ |qn )
[

log(1 − D (o′ |qn ))
]
)

,

where o = 〈du ,dv 〉 and o
′
= 〈d ′u ,d

′
v 〉 are true and generated docu-

ment pairs for query qn respectively.
In practice, to generate a document pair through generatorG , we

first pick a document pair 〈di ,dj 〉 from Rn , take the lower ranked
document dj , and then pair it with a document dk selected from
the unlabelled data to make a new document pair 〈dk ,dj 〉. �e
underlying rationale is that we are more interested in identifying
the documents similar to higher ranked document di as such docu-
ments are more likely to be relevant to the query qn . �e selection
of the document dk is based on the criterion that dk should be
more relevant than dj according to the current generative model
pθ (d |q, r ). In other words, we would like to select dk from the
whole document set to generate a document pair 〈dk ,dj 〉 which
can imitate the document pair 〈di ,dj 〉 ∈ Rn .

Suppose that the generative model pθ (d |q, r ) is given by a so�-
max function (which is indeed used throughout Section 3, as we
shall see later)

pθ (dk |q, r ) =
exp(дθ (q,dk ))
∑

d exp(дθ (q,d ))
, (8)

where дθ (q,d ) is a task-specific real-valued function reflecting the
chance of d being generated from q. �e probability of choosing
a particular document dk could then be given by another so�max
function:

G (〈dk ,dj 〉|q) = pθ (o
′ |q) =

exp
(

дθ (dk ,q) − дθ (dj ,q)
)

∑

d exp
(

дθ (d,q) − дθ (dj ,q)
)

=

exp (дθ (dk ,q))
∑

d exp (дθ (d,q))

= pθ (dk |q, r ) . (9)

In this special case,G (〈dk ,dj 〉|q) happens to be equal topθ (dk |q, r ),
which is simple and reasonable. In general, the calculation of
G (〈dk ,dj 〉|q) probably involves bothpθ (dk |q, r ) andpθ (dj |q, r ). For
example, one alternative way is to sample dk only from the docu-
ments more relevant to the query than dj , and let G (〈dk ,dj 〉|q) be
directly proportional to max(pθ (dk |q, r ) − pθ (dj |q, r ), 0).

�is generative model pθ (d |q, r ) could be trained by the REIN-
FORCE algorithm [42, 44] in the same fashion as we have explained
in Section 2.1.

2.3 Discussion

It can be proved that when we know the true relevance distribution
exactly, the above minimax game of IRGAN, both pointwise and
pairwise, has a Nash equilibrium in which the generator perfectly

Observed positive samples

Generated unobserved samples

Unobserved positive samples

Unobserved negative samples

Upward force from REINFORCE

The underlying correlation

between positive samples

Downward force from knocker

Decision Boundary
Discriminator

Figure 1: An illustration of IRGAN training.

fits the distribution of true relevant documents (i.e., pθ (d |q, r ) =
ptrue (d |q, r ) in the pointwise case and pθ (o

′ |q) = ptrue (o|q) in the
pairwise case), while the discriminator cannot distinguish gener-
ated relevant documents from the true ones (i.e., the probability
of d being relevant to q, D (d |q) in the pointwise case or D (o′ |q) in

pairwise, is always 1
2 ) [13]. However, in practice, the true distri-

bution of relevant documents is unknown, and in such a situation,
how the generative/discriminative retrieval models could converge
to achieve such an equilibrium is still an open problem in the cur-
rent research literature [13, 14]. In our empirical study in IR, we
found that depending on the specific tasks, generative retrieval and
discriminative retrieval may reach a different level of performance;
and at least one of them would be significantly improved compared
to the one without adversarial training.

In order to understand how the discriminator and the generator
help each other, suppose for (part of) positive documents, their
relevance score by the discriminator fϕ (q,d ) and the conditional

probabilistic density pθ (d |q, r ) are positively correlated. In each
epoch, the generator tries to generate samples closed to the discrim-
inator’s decision boundary to confuse its training next round, while
the discriminator tries to score down the generated samples. With
the above assumption, since there exists positive correlation pat-
terns between the positive but unobserved (i.e., the true-positive)
samples and (part of) the observed positive samples, the generator
will learn to push upwards these positive but unobserved samples
again faster than other samples with the signal from the discrimi-
nator.

To understand this process further, let us take an analogy with
a knocker kicking the floating soap in the water, as illustrated in
Figure 1. �ere exists some linking lines (i.e. positive correlation)
between the positive observed soaps that permanently float on the
surface of thewater (i.e. decision boundary of the discriminator) and
the unobserved soaps which are indeed positive. �e discriminator
acts as the knocker that kicks down the floating-up soaps, while
the generator acts as the water that selectively floats the soaps
up to the water surface. Even if the generator cannot perfectly
fit the conditional data distribution, the could be still a dynamic
equilibrium, which is obtained when the distribution of the positive
and negative unobserved soaps get stable over different depth of
the water. Since there exists linking lines between the observed
positive soaps and the unobserved positive ones, the la�er ones
distributed overall higher than the negative unobserved ones.

2.4 Links to Existing Work

We continue our related work discussion from Section 1 and now
focus on comparing with existing work in a greater scope.
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2.4.1 Generative Adversarial Nets. Generative Adversarial Nets
[13] were originally proposed to generate continuous data such
as images. Our work is different in the following three aspects.
First, the generative retrieval process is a stochastic sampling over
discrete data, i.e., the candidate documents, which is different from
the deterministic generation based on the sampled noise signal in
the original GAN. Specifically, as shown in Eq. (4), for each query
qn , the objective of the generative retrieval model is to minimise the
expectation of the reward signal from the discriminative retrieval
over the generated document distribution, while in original GAN,
the reward signal is solely dependent on a single generated instance.
Second, our learning process of the generative retrieval model is
based on REINFORCE algorithm from the stochastic policy gradient
in reinforcement learning field [44]. In IRGAN, the generative
retrieval model can be regarded as an actor which takes an action
of selecting a candidate document in a given environment of the
query; the discriminative retrieval model can be regarded as a
critic which performs a judgement whether the query-document
pair is relevant enough. �ird, during training, the conflicting of
ground-truth documents and the generated documents is quite
common because the documents are discrete and the candidate set
size is finite, which departs from the continuous (infinite) space for
image or the extremely huge discrete (nearly infinite) space for text
sequences [44]. Fourth, we also propose a pairwise discriminative
objective, which is unique for many IR problems.

Our work is also related to conditional GAN [29] where our
generative and discriminative models are conditional on the given
query.

2.4.2 MLE based Retrieval Models. For unsupervised learning
problem that estimates the data p.d.f. p (x ) and supervised learning
problem that estimates the conditional p.d.f. p (y |x ), maximising
likelihood estimation (MLE) plays as a standard learning solution
[30]. In IR, MLE is also widely used as an estimation method for
many relevance features or retrieval models [1], such as Term Fre-
quency (TF), Mixture Model (MM) [48] and Probabilistic Latent
Semantic Indexing (PLSI) [17]. In this paper, we provide an al-
ternative way of training and fusing retrieval models. First, the
generative process is designed to fit the underlying true conditional
distribution ptrue (d |q, r ) with the Jensen-Shannon divergence (as
demonstrated in [13]). �us, it is natural to leverage GAN to distil
a generative retrieval model to fit such an unknown conditional
data distribution using the observed user feedback data. Second,
the unified training scheme of two schools of IR models offers a
potential of obtaining be�er retrieval models because (i) the gener-
ative retrieval adaptively provides different negative samples to the
discriminative retrieval training, which is strategically diverse com-
pared with the static negative sampling [3, 35] or dynamic negative
sampling using the discriminative retrieval model itself [4, 49]; and
(ii) the reward signal from the discriminative retrieval model pro-
vides strategic guidance of training the generative retrieval model,
which is otherwise unavailable in traditional generative retrieval
model training. From the generative retrieval’s perspective, IR-
GAN is superior to traditional maximum likelihood estimation [18].
From the discriminative retrieval’s perspective, IRGAN is able to
exploit the use of the unlabelled data to achieve the effect of semi-
supervised learning [37]. �e advantages of employing two models
working together get more a�ention in recent research; one of the

variations is the dual learning proposed for two-agent co-learning
in machine translation [43].

2.4.3 Noise-Contrastive Estimation. Our work is also related to
noise-contrastive estimation (NCE) that aims to correctly distin-
guish the true data (y,x ) ∼ pdata (y |x ) from a known noise samples
(yn ,x ) ∼ pnoise (yn |x ). NCE is proved to be equivalent with MLE
when the noise sample is abundant [15]. With the finite noise
samples for contrastive learning, NCE is usually leveraged as an
efficient learning method approximated to MLE when the la�er is
inefficient, for example when the p.d.f is built by large-scale so�max
modelling.

Furthermore, self-contrastive estimation (SCE) [14], a special
case of NCE when the noise is directly sample from the current (or
a very recent) version of the model. It is proved that the gradient
of SCE matches the one of MLE, with no prerequisite of infinite
noise samples, which is a very promising property of SCE learning.
Dynamic negative item sampling work [34, 45, 49] in top-N item
recommendation with implicit feedback turns to be a practical use
case of SCE, with specific solution of efficient sampling strategies.

�e emergence of generative adversarial nets (GANs) [13], thus
our IRGAN, opens a door of learning generative and discriminative
retrieval models in an adversarial se�ing. Compared to NCE and
SCE, the GAN paradigm enables two models to learn in an adver-
sarial fashion, i.e. the discriminator learns to distinguish the true
data from the generated (faked) one while the generator learns to
generate high-quality instances to fool the discriminator.

3 APPLICATIONS

In this section, we apply our IRGAN framework into three spe-
cific IR scenarios: (i) web search with learning to rank, (ii) item
recommendation, and (iii) question answering.

As formulated in Section 2, the generator’s conditional distri-
bution pθ (di |q, r ) = exp(дθ (q,di ))/

∑

dj exp(дθ (q,dj )), i.e., Eq. (8),

fully depends on the scoring function дθ (q,d ). In the sampling
stage, the temperature parameter τ is incorporated in Eq. (8) as

pθ (d |q, r ) =
exp(дθ (q,d )/τ )

∑

j ∈I exp(дθ (q,d )/τ )
, (10)

where the lower temperature leads to the sampling focusing more
on top-ranked documents. A special case is when the temperature
is set as 0, which means the entropy of the generator is 0. In such a
case the generator simply ranks the documents in descendant order
and selects the top ones.

�e discriminator’s estimation and ranking of the documents,
i.e., Eq. (2) for pointwise se�ing and Eq. (6) for pairwise se�ing,
depends on the scoring function fϕ (q,d ).

�e implementation of the two scoring functions дθ (q,d ) and
fϕ (q,d ) are task-specific. Although there could be various imple-

mentations of fϕ (q,d ) and дθ (q,d ), e.g., fϕ (q,d ) is implemented

via a three-layer neural work while дθ (q,d ) is implemented via
factorisation machine [33], to focus more on the adversarial train-
ing, in this section we choose to implement them using the same
function (with different sets of parameters)2:

дθ (q,d ) = sθ (q,d ) and fϕ (q,d ) = sϕ (q,d ), (11)

2We will, however, provide a dedicated experiment on the interplay of the two players
from scoring functions with different model complexity in Section 4.1.
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and in the following subsections we will discuss the implementa-
tion of the relevance scoring function s (q,d ) for the three studied
scenarios.

3.1 Web Search

Generally speaking, there are three types of loss functions designed
for web search learning to rank, namely, pointwise [31], pairwise
[3] and listwise [6]. To our knowledge, the listwise approaches with
a loss defined on a document pair and a list-aware weight added
on the document pair perform practically effectively across various
learning to rank tasks, e.g., LambdaRank [5] and LambdaMART
[4]. Despite of the variety of ranking loss functions, almost every
learning to rank solution is based on a scoring function s (q,d ).

In web search scenario, each query-document pair (q,d ) can

be represented by a vector xq,d ∈ R
k , where each dimension

represents some statistical value of the query-document pair or
the either part, such as BM25, PageRank, TFIDF, language model
score etc. We follow the work of RankNet [3] to implement a
two-layer neural network for the score function:

s (q,d ) = w⊤2 tanh(W1xq,d + b1) +w0 , (12)

whereW1 ∈ R
l×k is the first fully-connected layer matrix, b1 ∈ R

l

is the bias vector for the hidden layer,w2 ∈ R
l andw0 is the weights

of the output layer.

3.2 Item Recommendation

Item recommendation is a popular data mining task that can be
regarded as a generalised information retrieval problem, where
the query is the user profile built by their past item consumption.
Collaborative filtering is one of the most important methodologies
for recommender systems, which explores underlying user-user
or item-item similarity and based on which performs personalised
recommendations [41]. In collaborative filtering, a widely adopted
model is matrix factorisation [21], following which we define our
scoring function for the preference of user u (i.e. the query) to item
i (i.e. the document) as

s (u, i ) = bi +v
⊤
uvi , (13)

where bi is the bias term for item i ,vu ,vi ∈ R
k are the latent vec-

tors of user u and item i respectively, defined in the k-dimensional
continuous space. Here we omit the global bias and user bias as
they are reduced in the task of top-N item recommendation for
each user3.

To keep our discussion unclu�ered, we have chosen a basic
matrix factorisation model to implement, and it is straightforward
to replace it with more sophisticated models such as factorisation
machines [33] and neural networks [8], whenever needed.

3.3 �estion Answering

In question answering (QA) tasks [9], each question q and answer
a are represented as a sequence of words. Typical QA solutions
aim to understand the natural language question first and then
select/generate one or more answers which best match the ques-
tion [9]. Among various QA tasks, the document-based QA task
is regarded as a typical ranking process based on the matching

3�e user bias could be used as a good baseline function for the advantage function in
policy gradient (Eq. (5)) to reduce the learning volatility [39].

score between two pieces of texts (for question and answer, respec-
tively) [9]. Recently, end-to-end approaches to short text pairs have
been proposed, by utilising neural networks, such as convolutional
neural network (CNN) [9, 38] or long short-term memory neural
network (LSTM) [40].

For a question-answer pair (q,a), we define a relevance score.
Specifically, one can leverage the convolutional neural networks
(CNN) to learn the representation of a word sequence [20]. Each

word is embedded as a vector in Rk . By aligning the vectors of
the words, an l-word sentence can be represented as a matrix in

R
l×k of embedding vectors. �en a represent vector of the cur-

rent sentence is through a max-pooling-over-time strategy a�er
convolution operation over the embedding vector aligned matrix,
yieldingvq andva ∈ R

z , where z is the number of convolutional
kernels. And the relevance score of such question-answer pair can
be defined as the cosine similarity, i.e.,

s (q,a) = cos(vq ,va ) =
v
⊤
qva

|vq | · |va |
. (14)

With the sentence representation and scoring function defined
above, the question answering problem is transformed into a query-
document scoring problem in IR [38].

Our IRGAN solution would load pre-trained models as the initial
parameters for both generator and discriminator. For each real
question-answer pair, an incorrect question-answer will be sampled
from the whole candidate answer set.

4 EXPERIMENTS

We have conducted our experiments4 corresponding to the three
real-world applications of our proposed IRGAN as discussed, i.e.,
web search, item recommendation and question answering. As each
of the three applications has its own background and baselines algo-
rithms, we organise the experiment part into three self-contained
subsections. We first test both the IRGAN-pointwise and IRGAN-
pairwise formulations within a single task, web search; and then
IRGAN-pointwise is further investigated in the case where the rank
bias is less critical (the item recommendation task), while IRGAN-
pairwise is on the question answering task for which the rank bias
is more critical (only answer is correct).

4.1 Web Search

4.1.1 Experiment Setup. Webpage search is an important prob-
lem in the IR field. In this part we use the well-known benchmark
LETOR (LEarning TO Rank) dataset [25] for webpage ranking to
conduct our experiment.

Although the standard learning to rank tasks involve explicit
expert ratings for query-document pairs, implicit feedback such as
click is much more common in practical applications, which means
in the dataset we usually face with a (small) part of user-interacted
data and a large amount of unlabelled data. Partially-labelled data
provides samples which are not explicitly labelled as positive in
training sets while being labelled as positive in test set. We are
expecting more unobserved data without explicit positive label,
which can be explored by our IRGAN methodology. �us we make
use of the MQ2008-semi collections in LETOR 4.0 as it contains
both labelled and a large amount of unlabelled data.

4Repeatable experiment code will be published on Github upon paper acceptance.
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Each query-document pair consists of a relevance level (−1, 0, 1
or 2). �e higher the relevance label, the more relevant the query-
document pair. Specifically, −1 means as unknown label. A query-
document pair is represented by a 46-dimensional feature vector,
such as BM25 and LMIR. For the purpose of using implicit feedbacks,
we re-label all the query-document pairs with relevance level higher
than 0 as 1, which represent the positive documents, and we re-
label all other pairs with −1 or 0 relevance level 0 as unknown
documents. �rough our statistics, there are 784 unique queries
in this dataset, on average each query is associated with about
5 positive documents and about 1,000 unknown documents. For
training and test data spli�ing, we perform a 4:1 random spli�ing.
Both pointwise and pairwise IRGANs are evaluated based on this
dataset.

Similar to the RankNet model [3], we adopt a neural network
model with one hidden layer and tanh activation to learn the query-
document matching score, and the size of hidden layer equals to
the feature size. Besides, both the generator and discriminator are
trained from scratch.

For performance comparison, we compare the generative re-
trieval model in our IRGAN framework with simple RankNet [3],
LambdaRank [5] and the strong baseline LambdaMART [4] for
which we use the RankLib5 implementation. For the evaluation of
the compared algorithms, we use the standard ranking measures
[7] such as Precision@N, Normalised Discounted Cumulative Gain
(NDCG@N), Mean Average Precision (MAP) and Mean Reciprocal
Ranking (MRR).

4.1.2 Results and Discussions. First we provide the overall per-
formance of the compared approaches on theMQ2008-semi dataset
as shown in Table 1. In our IRGAN framework, we use the genera-
tive retrieval model to predict the distribution of the user preferred
documents given a query and then perform the rank, which is
identical to performing the so�max sampling with temperature
parameter set very close to 0. From the result we can see the per-
formance improvements brought from our approach on all the
measures.

Specifically, IRGAN-pairwiseworks be�er than IRGAN-pointwise
on the metrics of Precision@3, NDCG@3 that are more focused on
very top rankings, whereas IRGAN-pointwise performs be�er than
IRGAN-pairwise on the metrics of Precision@10, NDCG@10 and
MAP that give more weights to the later-ranked items. A possible
explanation is that IRGAN-pointwise is targeted for, ptrue (d |q, r ),
the conditional distribution, which generally cares about whether
a document is relevant to the query, while IRGAN-pairwise would
focus on the ranking of the documents given the query.

It is worth mentioning that the data studied in our experiments
is with implicit feedback, which is common in our real life applica-
tions, such as online advertising or web search. Traditional learning
to rank methods like LambdaMART are not particularly effective
in this type of problem, which may be due to its reliance on the
∆NDCG scoring for each document pair [5].

In addition, since the adversarial training is widely known as an
effective yet unstable approach, we further investigate the learning
trend of the proposed approach. Figures 2 and 3 show the typi-
cal learning curves for the generative and discriminative retrieval
models in the two IRGAN frameworks respectively. Here we only

5h�p://people.cs.umass.edu/∼vdang/ranklib.html

Table 1: Webpage ranking performance comparison on

MQ2008-semi dataset, where ∗ means significant improve-

ment in a Wilcoxon signed-rank test.

P@3 P@5 P@10 MAP

MLE 0.1556 0.1295 0.1029 0.1604
RankNet [3] 0.1619 0.1219 0.1010 0.1517
LambdaRank [5] 0.1651 0.1352 0.1076 0.1658
LambdaMART [4] 0.1368 0.1026 0.0846 0.1288
IRGAN-pointwise 0.1714 0.1657 0.1257 0.1915

IRGAN-pairwise 0.2000 0.1676 0.1248 0.1816

Impv-pointwise 3.82% 22.56%∗ 16.82%∗ 15.50%∗

Impv-pairwise 21.14%∗ 23.96%∗ 15.98% 9.53%

NDCG@3 NDCG@5 NDCG@10 MRR

MLE 0.1893 0.1854 0.2054 0.3194
RankNet [3] 0.1801 0.1709 0.1943 0.3062
LambdaRank [5] 0.1926 0.1920 0.2093 0.3242
LambdaMART [4] 0.1573 0.1456 0.1627 0.2696
IRGAN-pointwise 0.2065 0.2225 0.2483 0.3508

IRGAN-pairwise 0.2148 0.2154 0.2380 0.3322

Impv-pointwise 7.22% 15.89% 18.63% 8.20%
Impv-pairwise 11.53% 12.19% 13.71% 2.47%
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Figure 2: Learning curves of the pointwise IRGAN on web

search task.

show the performance of Precision@5 and NDCG@5 for discus-
sion, and other metrics are with a similar trend. We can observe
that a�er about 150 epoches for IRGAN-pointwise and 60 epoches
for IRGAN-pairwise of the adversarial game training, both Preci-
sion@5 and NDCG@5 converge and the winner player consistently
outperforms the best baseline LambdaRank.

Figure 4 show how the ranking performance varies against the
temperature parameter in Eq. (10) with which the generative re-
trieval model samples negative query-document pairs for the dis-
criminative retrieval model. We find the empirically optimal sam-
pling temperature is 0.2. �ere is an obvious performance ascent
when tuning the temperature from 0 to the optimal value and an
obvious descent from the optimal value to larger, which indicates
properly increasing the aggressiveness (i.e. the degree of focusing
on the top documents) of the generative retrieval model is impor-
tant.

Furthermore, we study the impact of the model complexity of
fϕ (q,d ) and дθ (q,d ) on the interplay between them. In Figure 5 we

have compared different combinations of generative and discrimi-
native model implementations (i.e., linear model and two-layer NN)
under IRGAN-pointwise and IRGAN-pairwise, respectively. We ob-
serve that (i) for IRGAN-pointwise, the NN implemented generator
works be�er than its linear version, while the NN implemented

http://people.cs.umass.edu/~vdang/ranklib.html
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Figure 3: Learning curves of the pairwise IRGAN on web

search task.
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Figure 4: Ranking performance with different sampling

temperatures of pointwise IRGAN on web search task.
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Figure 5: Ranking performance for IRGAN with different

generator and discriminator scoring functions.

discriminator may not offer a good guidance if the generator has
lower model complexity (i.e. linear). (ii) For IRGAN-pairwise, the
NN implemented discriminator outperforms its linear version. �is
suggests that the one used for performing the prediction (either gen-
erator in IRGAN-pointwise or discriminator in IRGAN-pairwise)
should be implemented with a capacity at least as high as its oppo-
nent.

4.2 Item Recommendation

4.2.1 Experiment Setup. We conduct our experiments on two
widely used collaborative filtering datasets: Movielens (100k) and
Netflix. �eir details are shown in Table 2. Following the experi-
ment se�ing of [49], we choose the 5-star ratings for both Movie-
lens and Netflix as positive feedback and treat all other entries as
unknown feedback as we mainly focus on the implicit feedbacks
problem. For training and test data spli�ing, we follow [49] to give a
4:1 random spli�ing on both datasets. �e factor numbers of matrix
factorisation are 5 and 16 for Movielens and Netflix respectively.

Table 2: Characteristics of the datasets.

Dataset Users Items Ratings

Movielens 943 1,683 100,000

Netflix 480,189 17,770 100,480,507

Table 3: Item recommendation results (Movielens).

P@3 P@5 P@10 MAP

MLE 0.3369 0.3013 0.2559 0.2005
BPR [35] 0.3289 0.3044 0.2656 0.2009
LambdaFM [45] 0.3845 0.3474 0.2967 0.2222
IRGAN-pointwise 0.4072 0.3750 0.3140 0.2418

Impv-pointwise 5.90%∗ 7.94%∗ 5.83%∗ 8.82%∗

NDCG@3 NDCG@5 NDCG@10 MRR

MLE 0.3461 0.3236 0.3017 0.5264
BPR [35] 0.3410 0.3245 0.3076 0.5290
LambdaFM [45] 0.3986 0.3749 0.3518 0.5797
IRGAN-pointwise 0.4222 0.4009 0.3723 0.6082

Impv-pointwise 5.92%∗ 6.94%∗ 5.83%∗ 4.92%∗

Table 4: Item recommendation results (Netflix).

P@3 P@5 P@10 MAP

MLE 0.2941 0.2945 0.2777 0.0957
BPR [35] 0.3040 0.2933 0.2774 0.0935
LambdaFM [45] 0.3901 0.3790 0.3489 0.1672
IRGAN-pointwise 0.4456 0.4335 0.3923 0.1720

Impv-pointwise 14.23%∗ 14.38%∗ 12.44%∗ 2.87%∗

NDCG@3 NDCG@5 NDCG@10 MRR

MLE 0.3032 0.3011 0.2878 0.5085
BPR [35] 0.3077 0.2993 0.2866 0.5040
LambdaFM [45] 0.3942 0.3854 0.3624 0.5857
IRGAN-pointwise 0.4498 0.4404 0.4097 0.6371

Impv-pointwise 14.10%∗ 14.27%∗ 13.05%∗ 8.78%∗

Specifically, when training the discriminative retrieval model,
the generative retrieval model is leveraged to sample negative items
with the sample number of positive items for each user via Eq. (10)
with the temperature parameter set as 0.2, which to-some-extent
pushes the item sampling to the top ones. �en the training scheme
of the discriminative retrieval model is via Eq. (3). On the other
hand, since the training of the generative retrieval model is per-
formed by REINFORCE as in Eq. (5), which is normally implemented
by the policy gradient on the sampled K items from pθ (d |qn , r ). In
such a case, if the item size is huge (e.g., more than 104) compared
with K , it is more practical to leverage importance sampling to
force the generative retrieval model to sample (some of) positive
samples d ∈ Rn . As such the positive reward can be observed from
REINFORCE and the generative retrieval model can be learned
properly.

For comparison, we compare IRGAN with Bayesian Personalised
Ranking (BPR) [35] and a state-of-the-art LambdaRank based collab-
orative filtering (LambdaFM) [45] for top-N item recommendation
tasks [45, 49]. Similar to web search tasks, the evaluation measures
are Precision@N, NDCG@N, MAP and MRR.

4.2.2 Results and Discussion. First, the overall performance of
the compared approaches on the two datasets is shown in Tables 3
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Figure 6: Learning curve of precision and NDCG of the gen-

erative retrieval model for top-5 item recommendation task

on Movielens dataset.

0.0 0.1 0.2 0.3 0.4 0.5

Temperature

0.345

0.350

0.355

0.360

0.365

0.370

0.375

0.380

P
re

ci
si

o
n
@

5

Generator of IRGAN

0.0 0.1 0.2 0.3 0.4 0.5

Temperature

0.375

0.380

0.385

0.390

0.395

0.400

0.405

N
D

C
G

@
5

Generator of IRGAN

Figure 7: Ranking performance with different sampling

temperatures on Movielens dataset.

and 4. From the results, we observe that IRGAN achieves statis-
tically significant improvement across all the evaluation metrics
and datasets. Note that the generative retrieval model in IRGAN
does not explicitly learn to optimise the final ranking measures
like what LambdaFM does, it still performs consistently be�er than
LambdaFM. Our explanation is that the adversarial training pro-
vides bothmodels a higher learning flexibility than the single-model
LambdaFM or BPR training.

We further investigate the learning trend of the proposed ap-
proach. �e learning curves are shown in Figure 6 for Precision@5
and NDCG@5. �e results demonstrate a reliable training pro-
cess where IRGAN owns a stable superiority over the baseline
LambdaFM from the beginning of adversarial training.

In addition, as shown in Figure 7, we also investigate how the
performance varies w.r.t. the sampling temperature in Eq. (10),
which is consistent with the observations in web search task.

4.3 �estion Answering

4.3.1 Experiment Setup. InsuranceQA [10] is one of the most
studied question-answering dataset. Its questions are submi�ed
from real users and the high-quality answers are composed by pro-
fessionals with deep domain knowledge. Due to that the candidate
answers are usually randomly sampled from the whole answers
pool (some other QA datasets may have a small-size fixed candi-
date answers for each single question), InsuranceQA is suitable for
testing our sampling and generating strategy. �ere are a training
set, a development set and two test sets (test-1 and test-2) in the
published corpus for a fair comparison among different methods.
12,887 questions are included in the train set with correct answers,
while development set have 1,000 unseen question-answer pairs
and the two test sets are composed by 1,800 pairs. �e system is

Table 5: �e Precision@1 of InsuranceQA.

test-1 test-2

QA-CNN [9] 0.6133 0.5689

LambdaCNN [9, 49] 0.6183 0.5838

IRGAN-pairwise 0.6383 0.5978

Impv-pairwise 3.23%∗ 2.74%
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Figure 8: �e experimental results in QA task.

expected to find the only one real answer from 500 candidate an-
swers under the evaluation of Precision@1. As we found from the
web search task that IRGAN-pairwise works be�er for top-ranked
documents, we test IRGAN-pairwise in the QA task experiment.

To focus on evaluating the effectiveness of IRGAN, we use a
simple convolutional layer on the basic embedding matrix of a
question sentence or an answer sentence. A representation vector
of the current sentence is distilled from a max-pooling strategy
a�er convolution [20], yieldingvq andva in Eq. (14). �e matching
probability of such question-answer pair is denoted as the cosine
distance, which is similar to the basic CNN-QA model [9].

In detail, a�er replacing the out-of-glossary words as a specific
token, the embedding of each word is initialised as a 100-dimension
random vector. In the convolutional layer, the window size of the
convolution kernel is set as (1, 2, 3, 5). A�er the convolutional layer,
the max-pooling-over-time strategy is adopted [20], where each
feature map will be pooled as a scalar since its convolution kernel
width is the same as the embedding vector.

�e pairwise adversarial training scheme for the generative and
discriminative retrieval models are just the same that for web search
task. �e difference lies in the evaluation metric adopted. Here
InsuranceQA focuses on Precision@1 of both retrieval models, since
it focuses the performance of the only answer returned to the user.

4.3.2 Results and Discussion. �e final results are shown as in
Table 5, where IRGAN outperforms both the basic CNN model with
random sampling strategy (QA-CNN) and CNN with dynamic nega-
tive sampling strategy (LambdaCNN) [9, 49]. Prior to the adversarial
training process, we adopt the parameters of a strong pre-trained
model to initialise the both retrieval models. �e trends of the train-
ing process of two models are shown in Figure 8, which is evaluated
in the test-1 set. Finally, the performance of the discriminative re-
trieval model of IRGAN-pairwise is be�er than LambdaCNN while
the generative retrieval model tends to be worse during the pairwise
adversarial training. �e sparsity of the answers distribution may
be the main reason for the worse generator, since each question
only has one correct answer. Due to the sparse distribution of the
true answers, the generator may fail to get a positive feedback from
the discriminator.
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5 CONCLUSIONS

In this paper, we have proposed IRGAN framework that unifies two
schools of information retrieval methodologies, i.e., generative mod-
els and discriminative models, via adversarial training in a minimax
game. Such an adversarial training framework takes advantages
from both schools of methodologies: (i) the generative retrieval
model is guided by the signal provided from the discriminative
retrieval model, which makes it more favourable than the non-
learning methods or the maximum likelihood estimation scheme;
(ii) the discriminative retrieval model could be enhanced to be�er
rank top documents via a strategic negative sampling from the
generator. Overall, IRGAN provides a more flexible and strate-
gic training environment that combines the two retrieval models.
Experiments were conducted on four real-world datasets in three
typical information retrieval tasks, namely web search, item recom-
mendation and question answering. Significant performance gains
were observed in each set of experiments.

Despite the great empirical success of GAN [13], there are still
many questions with regard to its theoretical foundation remaining
to be answered by the research community. For example, it is “not
entirely clear” why GAN can generate sharper realistic images than
alternative techniques [12]. Our exploration of adversarial training
for IR in the proposed IRGAN framework has suggested that differ-
ent equilibria could be reached in the end depending on the tasks
and se�ings. In the pointwise version of IRGAN, the generative re-
trieval model gets improved more than the discriminative retrieval
model, but we have an opposite observation in the pairwise case.
�is phenomenon certainly warrants further investigation.

We also plan to extend our framework and test it over the gen-
eration of the word tokens. One possible direction is to dive into
the word weighting schemes such as [32, 36, 47] learned from the
IRGAN generative retrieval model given each query and based on
which derive new ranking features. Furthermore, the language
model could be re-defined with GAN training, where new word
pa�erns would be revealed.
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