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Abstract In this paper, we report on our “Iridis-Pi” clus-

ter, which consists of 64 Raspberry Pi Model B nodes each

equipped with a 700 MHz ARM processor, 256 MiB of RAM

and a 16 GiB SD card for local storage. The cluster has a

number of advantages which are not shared with conven-

tional data-centre based cluster, including its low total power

consumption, easy portability due to its small size and weight,

affordability, and passive, ambient cooling. We propose that

these attributes make Iridis-Pi ideally suited to educational

applications, where it provides a low-cost starting point to

inspire and enable students to understand and apply high-

performance computing and data handling to tackle com-

plex engineering and scientific challenges. We present the

results of benchmarking both the computational power and

network performance of the “Iridis-Pi.” We also argue that

such systems should be considered in some additional spe-

cialist application areas where these unique attributes may

prove advantageous. We believe that the choice of an ARM

CPU foreshadows a trend towards the increasing adoption

of low-power, non-PC-compatible architectures in high per-

formance clusters.

Keywords Low-power cluster · MPI · ARM · Low cost ·

Education · Hadoop · HDFS · HPL

1 Introduction

In this paper, we introduce our “Iridis-Pi” cluster, which

was assembled using 64 Raspberry Pi nodes interconnected

with 100 Mbits−1 Ethernet links, two of which are shown

in Figure 1. The name is derived from the names of the
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Fig. 1 The “Iridis-Pi” cluster

Raspberry Pi, and of our main institutional cluster, Iridis 3,

which ranked 74th in the TOP500 list and was the green-

est machine in the UK when it was launched in 2010. The

“Iridis-Pi” cluster has a low total cost, comparable to that of

a single workstation, and consumes relatively little energy.

These qualities, along with its light weight, small volume

and passive, ambient cooling render it eminently suitable for

a number of applications that a to which a conventional clus-

ter with its high attendant costs and special infrastructure

requirements is ill-suited.

1.1 Context and related work

Low-power, data intensive computing is coming to be an

area of great interest, both academically and in industry.

As large scale, data-rich applications become increasingly

mainstream, infrastructure providers are paying consider-

able attention to both the energy consumed by the compu-

tational hardware and the cooling burden that this imposes.

The hardware industry is offering more energy-efficient servers,
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often using low-power CPUs, and there is growing interest

in using low-power chips of alternative architectures such

as ARM in the data centre; companies such as Calxeda1

have been founded around these developments. Moreover,

Adapteva’s “Parallela: A Supercomputer for Everyone” project2,

recently succeeded in gathering sufficient community fund-

ing towards the aim of democratising high-performance com-

puting by producing compact boards based upon a scalable

array of simple RISC processors accompanied by an ARM

CPU. Traditional spinning disks deliver relatively poor seek

performance, which decreases their attractiveness for ran-

dom access to small data, whilst high-performance RAM

consumes significant amounts of energy. Partially in response

to these shortcomings, solid state flash storage is seeing a

rise in popularity, offering low power consumption coupled

with fast, efficient random access to data.

There is an increasingly active research effort into low-

power cluster systems, such as the Fast Array of Wimpy

Nodes (FAWN) project [3], which develops low-power sys-

tems for key-value storage systems using a cluster of low-

power, PC-compatible systems based on AMD Geode LX or

Intel Atom processors and flash based storage. Others have

also proposed coupling solid state storage and low-power

CPUs, with a goal of increasing systems’ I/O performance

without incurring increased power consumption [14]. Ear-

lier work also argued that low-cost, low-power servers may

return better price-to-performance and power-to-performance

ratios than purpose-built servers [5,8,10].

1.2 The present work

The cluster that we present in this work combines the un-

conventional elements of utilising low-cost and low-power

ARM processors, commodity Ethernet interconnects, and

low-power flash based local storage, whilst supporting tra-

ditional technologies such as MPI upon which many super-

computing applications are built. With a very compact over-

all size, light weight, and passive, ambient cooling, our clus-

ter is ideal for demonstration and educational purposes. We

also propose that similar architectures may be configured to

achieve high levels of fault tolerance at modest cost, which

may find applications in e.g. military and in-vehicle systems.

The structure of the paper is as follows: in Section 2 we

give the specification of the cluster and its nodes, describ-

ing its hardware, software, cost and power consumption. In

Section 3 we then turn our attention to the cluster’s perfor-

mance, giving results from various benchmarks. With these

results in mind, we examine applications to which this kind

1 http://www.calxeda.com/
2 see http://www.kickstarter.com/projects/adapteva/

parallella-a-supercomputer-for-everyone, accessed 10 Dec
2012.

of architecture might be well-suited in Section 4. Finally, we

conclude the paper in Section 5 with an outlook in which we

foresee an increasing use of low-power, ARM based com-

puting in high-performance and scientific applications.

2 System description

In this section, we provide a description of the architecture

of the “Iridis-Pi” cluster, both in terms of its hardware com-

ponents3 and its software environment. We also detail the

low cost of the system and provide measurements of the

power consumption. The section finishes after considering

some of the potential shortcomings of building a cluster with

such low-cost hardware.

2.1 Hardware

The “Iridis-Pi” system consists of 64 Raspberry Pi Model B

nodes4, which are credit card sized single board comput-

ers. They feature a Broadcom BCM2835 system-on-chip,

which integrates a 700 MHz ARM1176JZF-S RISC proces-

sor, 256 MiB RAM (current Model B production models

have been upgraded to 512 MiB), a Broadcom VideoCore

IV GPU with HDMI and composite output, a DSP for audio,

and a single USB controller. This is wired up to an SMSC

9512 USB 2.0 hub and 10/100 Mbits−1 Ethernet adaptor,

which exposes two USB 2.0 and one Ethernet ports exter-

nally. Local storage is provided via an SD (secure digital)

card slot on board, and there are various low-level interfaces

including I2C and SPI busses, a UART and eight GPIO pins.

The device was designed to be cheap to manufacture, and

costs $35 at the time of writing [12].

The “Iridis-Pi” nodes are housed in a chassis built from

Lego, and interconnected via commodity Ethernet, as illus-

trated in Figure 2. We installed a Kingston 16 GB SDHC

flash memory card in each node, with a specified write speed

of up to 15 MBs−1. Therefore, the cluster has a total RAM

of 16 GiB and a flash capacity of 1 TB. We powered the

nodes using individual commodity, off the shelf, 5 V DC

power supplies connected to the micro USB power sockets

on the nodes.

The Raspberry Pi is not currently Open Source Hard-

ware, but the project has openly published schematics and

many components of the required device drivers. The Rasp-

berry Pi uses the first ARM-based multimedia system-on-

a-chip (SoC) with fully-functional, vendor-provided, fully

open-source drivers [1], although some code that runs on the

3 also shown in a video available online, https://www.

youtube.com/watch?v=Jq5nrHz9I94, assembled according to the
guide at http://www.southampton.ac.uk/~sjc/raspberrypi/
pi_supercomputer_southampton_web.pdf

4 See http://www.raspberrypi.org/

http://www.calxeda.com/
http://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone
http://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone
https://www.youtube.com/watch?v=Jq5nrHz9I94
https://www.youtube.com/watch?v=Jq5nrHz9I94
http://www.southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampton_web.pdf
http://www.southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampton_web.pdf
http://www.raspberrypi.org/
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Fig. 2 The “Iridis-Pi” cluster

GPU remains closed-source. This emphasises an increasing

trend towards open-source hardware as well as software en-

tering mainstream computing.

2.2 Software

We run the Raspbian operating system5, an optimised ver-

sion of the Debian GNU/Linux distribution for the Rasp-

berry Pi. We prepared one SD card using an image down-

loaded from the Raspberry Pi Foundation, and customised

this by compiling our benchmarks and associated software.

We cloned this, our ‘master’ image, to the SD cards of the

other nodes.

The results we report on here were, except where stated

otherwise, were generated while the cluster was running the

16th August 2012 release of the operating system and de-

vice firmware. We have subsequently upgraded to the latest

release (at the time of writing, is dated 16th December 2012)

and noted a small performance increase on LINPACK per-

formance when using the default system clock speed set-

tings.

The benchmarks in this paper required additional soft-

ware to be installed. To assess the numerical compute power

of the nodes and the cluster, we employed the well-known

LINPACK benchmark [6] for single-node performance, and

the HPL (High-Performance LINPACK) benchmark to mea-

sure the throughput of the cluster as a whole. Both of these

benchmarks time the machine solving a dense n × n lin-

ear system, Axxx = B, and since they are often CPU-bound,

we enabled several compiler optimisations supported by the

gcc compilers on the ARM platform. The HPL benchmark

also requires the BLAS (basic linear algebra subroutines)

and a message passing library such as MPICH2 [4] to be

available on the system. We chose to use the ATLAS BLAS

package [15], employing the same compiler optimisations

that were used for LINPACK and HPL. For our LINPACK

benchmark we picked an implementation in C which is avail-

able through Netlib6. More efficient implementations may

5 http://www.raspbian.org/
6 http://www.netlib.org/benchmark/linpackc.new

exist but the general availability and lack of specialised li-

brary dependencies of this implementation makes it appeal-

ing. Network bandwidth and latency measurements were per-

formed using iperf [7] and the NetPIPE performance evalu-

ator [13]. We tested the raw IO throughput using DD and the

cluster throughput using Hadoop [18].

2.3 Cost

The total cost of the system excluding network switches

was below £2500. Three 24-port 10/100 Mbits−1 switches

could be procured for less than £110 in total, so a complete

“Iridis-Pi” system could cost as little as £2610. We opted

for more capable 1 Gbit s−1 switches with additional man-

agement features and power over Ethernet, bringing the total

cost to around £3400. Thus, the overall cost is comparable

to that of a single, multi-core workstation.

2.4 Power

The power consumption of the system is very modest. We

measured the current drawn from the mains with the cluster

idle (the current drawn by the switches was not included in

this measurement) as 810 mA, which corresponds to 194 VA

with a 240 V mains supply. With the cluster busy (all nodes

working on a CPU-intensive benchmark test) the current

rose to 900 mA, corresponding to 216 VA.

2.5 Physical enclosure

The Lego design for the rack consisted of 2 blocks of 8 lay-

ers each containing 4 Raspberry Pi computers to give a total

of 64 housed together. A single layer is shown in figure Fig-

ure 3. This design was optimised to get to a high packing

density along with allowing access to the HDMI ports on

the outer nodes. By placing the nodes in alternating direc-

tions it allowed separation of the power and network con-

nections into bundles of 8 and helped with both the physical

system stability and cable strain relief. No additional exter-

nal cooling was needed and the system has been stable for

over 3 months with no heat-related issues for the processors

and only a very minor discoloration of a few of the single

white Lego bricks which are touching the (yellow) video out

leads. We are currently developing a 3D Rapid Prototyped

case for the system. However, we found that Lego was a

convenient way to develop a quick, easy, and stable housing

system for the computers. It has also proved a compelling

way to demonstrate how this low-cost system can be easily

built with parts around the home and has also created further

interest and outreach to demonstrate this sort of unconven-

tional architecture to a wider audience.

http://www.raspbian.org/
http://www.netlib.org/benchmark/linpackc.new
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Fig. 3 Layout of a layer of 4 Raspberry Pi computers showing back to
back arrangement

2.6 Management features

The Raspberry Pi boards lack many of the management fea-

tures available on current server-class motherboards for the

microprocessors more commonly deployed in servers and

clusters, such as the ability to boot the system from the net-

work for rapid deployment of operating systems, as well

as various remote management and system health monitor-

ing technologies which reduce the need for physical hands-

on processes during system administration. These shortcom-

ings will not be a problem for individual users who wish

to use single Raspberry Pi boards, and such users make up

the majority of the Raspberry Pi’s target market. However,

the lack of a network boot facility for cluster deployment

meant that the 64 SD cards had to be manually imaged—a

time-consuming task. The lack of remote out-of-band man-

agement facilities would be a considerable inconvenience if

the cluster were to be deployed in a data centre, as local ac-

cess to each board may be necessary for any troubleshooting

or upgrading process; however, the compact, lightweight,

quiet, passively-cooled nature of the “Iridis-Pi” cluster could

mitigate these issues, since it is feasible to have the clus-

ter located in close proximity to its users and administrators

rather than in a data centre.

3 Performance results

In this section we present some results obtained in bench-

marking the performance of the cluster and of the nodes. We

begin with some computational benchmark results obtained

by running the LINPACK and HPL (high-performance LIN-

PACK) benchmark suite [2] on the cluster. We then give

additional performance results for the network and storage

subsystems.

3.1 Single node compute

We benchmarked the nodes of the cluster by running the

LINPACK benchmark, both in single and double precision
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Fig. 4 Single precision performance of a single node on various prob-
lem sizes n using the LINPACK benchmark (tests carried out on Rasp-
bian 16th Dec 2012 release with the Linux 3.6.11+ kernel).

modes. This benchmark aims to assess the computer’s abil-

ity to solve real-world problems by solving a dense n× n

system of linear equations, Axxx = bbb, on a single node.

We compiled the benchmark with optimisations, and ran

it for n = 200 in both double and single precision on the in-

dividual nodes of the “Iridis-Pi” system. Across the nodes,

the mean single precision performance was 55571 kflops−1,

with a standard deviation of 304 kflops−1; the mean dou-

ble precision performance was 41078 kflops−1 with stan-

dard deviation 1077 kflops−1.

On a single node, running a newer release of the oper-

ating system, compiler and firmware (dated 16th Decem-

ber 2012), we investigated a range of different LINPACK

problem sizes using the single precision benchmark. Fig-

ure 4 illustrates our results, which indicate a peak single-

node performance of around 65000 kflops−1 for a problem

size n = 100.

By means of a comparison, we also ran the LINPACK

benchmark on a workstation based on an Intel Xeon E5320

clocked at 1.86 GHz, and achieved a peak single-precision

performance (using a single core, of which this chip has

four) of 1.18 Gflops−1 with n = 2000 and 1.06 Gflops−1 for

n = 200.

3.2 Cluster compute

Here we present results for the compute performance of the

cluster running the HPL suite. This benchmark aims to as-

sess the computer’s ability to solve real-world problems by

solving a dense n× n system of linear equations, Axxx = bbb,

in parallel across a chosen number of nodes, a common re-

quirement in engineering applications.

We benchmarked using various problem sizes n and num-

bers of nodes N, and for each combination, we tried multi-

ple process grid dimensions. In these results we quote the
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Fig. 5 Computational performance measured using HPL benchmark,
as a function of number of nodes, N, for various orders n of the matrix
A.

best achieved performance for a given n–N combination.

The performance scaling is presented in Figure 5 and Fig-

ure 6.

In Figure 5, we show how the computational performance

increases for various problem sizes as more nodes are in-

troduced. The linear scaling line is fitted through the ori-

gin and the first data point for the n = 10240 problem. It

can be seen that for the smallest problem (n = 1280), using

more than 24 nodes gives no advantage, with the increase

in communications overhead overwhelming the larger pro-

cessing capacity available. For n = 10240, the system con-

tinues to demonstrate good scaling up to the full 64 nodes,

achieving 1.14 Gflops−1 throughput. Larger problem sizes

(constrained by the available memory) would achieve even

closer to the asymptotic linear scaling.

The results are plotted as a function of the problem size,

n, for each of the numbers N of nodes in Figure 6. It was

not possible to run the largest problem size on only four

nodes because the available memory was insufficient. It can

be seen that the system performance scaling is closer to lin-

ear for the larger problem sizes, where communication over-

heads are amortised over larger, longer-running calculations.

3.3 Network

We used the nodes’ on-board 100 Mbits−1 network interface

(which is part of the SMSC 9512 USB hub and Ethernet

adaptor, and therefore communicates to the processor over

USB 2.0) for our cluster’s inter-node communications. We

now present the results we obtained from assessing the avail-

able bandwidth and latency using these interfaces. We con-

sidered three scenarios: firstly, picking two physical nodes,

we measured the bandwidth between them as a function of

the size of the message passed between the nodes in a “ping

pong” style test, and secondly as a function of the num-
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Fig. 6 Computational performance measured using HPL benchmark,
as a function of the various order n of the matrix A, for various numbers
N of nodes.
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Fig. 7 Throughput and half-round-trip time plotted against block size.

ber of TCP connections made in parallel. Finally, we nom-

inated one physical node a ‘server’ and measured the band-

width that it afforded to various numbers N of ‘client’ nodes

that connected to it. These tests were carried out with the

iperf [7] and NetPIPE [13] software tools.

3.3.1 Effects of data block size

We nominated one node as our ‘reference’ node, and used

the NetPIPE software to investigate the effect of block size

on throughput and round-trip time between this reference

node and the other nodes in the system. A round trip con-

sists of the ‘reference’ node sending, then receiving, a block

of some size c, whilst the ‘other’ node receives, then sends

blocks of size c. Our recorded times are the half-round-trip

times, i.e. they represent the time taken to send or receive a

block of a given size.

In Figure 7, network throughput and half-round-trip time

are plotted against the size, c, of the blocks in use. Lines
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representing the measurements carried out between the ‘ref-

erence’ and each ‘other’ node are superimposed upon each

other, accounting for the thickness of the plotted lines and

illustrating that the inter-node variability is relatively low. It

can be seen from the throughput curve that using small block

sizes will limit the network’s throughput severely. This ob-

servation is also borne out by the time curve for small block

sizes; there is virtually no time penalty for increasing the

block size from 1 B to a little above 100 B, and the through-

put grows approximately linearly with block size in this regime,

indicating that the performance here is mostly limited by

per-packet overheads (i.e. latency). For block sizes of ap-

proximately 105 B and above, peak throughput is achieved

and in this regime, the time increases linearly with block

size, indicating that the transfers are now limited by the

maximum sustained bandwidth of the network link.

Latency The latency can be inferred from Figure 7 as the

time taken for a block size of zero, and is around 0.5 ms

between the ‘reference’ and any of the ‘other’ nodes.

3.3.2 Multiple connections between one client and one

server

We now turn our attention to multiple simultaneous network

connections between a single client and a single server, as

may arise e.g., when distributing multiple files to a node.

The results of the first such investigation, using various num-

bers of parallel connections between one client and one server

node, are shown in Figure 8. It can be seen that the aggre-

gate bandwidth reported by the iperf server decreased with

increasing numbers of connections, which is as expected,

since each connection has associated overheads. Modelling

the overheads incurred as a linear function of the number

of connections used, we fitted the curve B(Np) = a/Np +
b · (Np − 1), where a is the bandwidth of a single connec-

tion and b is a coefficient expressing a per-connection over-

head, to the data using a nonlinear least-squares (NLLS)

Marquardt-Levenberg algorithm [9,11]. This resulted in the

single-connection bandwidth a = 74.1 ± 0.3Mbit/s and a

per-connection decrement of b = −0.014± 0.0099Mbit/s.

This is the curve fit shown in the figure and gives some in-

sight into the relatively small additional overhead incurred

when many parallel connections are opened between two

nodes.

We noted that with larger numbers of parallel connec-

tions, not all connections were reported by the server as hav-

ing been open for identical time periods. In these cases, the

reported bandwidth sum is an estimate, obtained from the

total amounts of data transferred and time passed.

Connections from multiple clients to one server An alterna-

tive case is the one where a particular node is designated the
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iperf server, and we make multiple connections to it from

various numbers of other nodes, measuring the bandwidth

achieved in each situation, as might be the case when all the

nodes involved in an MPI job communicate their results to

a “master” (rank 0) node. To synchronise the connections to

the server, we ensured that all the nodes kept an accurate lo-

cal clock by running ntpd, and scheduled the multiple con-

nections to begin synchronously by using the at scheduler

on each node.

Our results are presented in Figure 9. It can clearly be

seen that the sum of the bandwidths across all client nodes

increases to a peak for four concurrent connections, and de-

creases only slightly as the number of clients increases. At

peak, we achieved 99.2% of the 100 Mbits−1 theoretical peak

throughput.
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3.4 Storage

The “Iridis-Pi” uses 16 GiB Class 10 Kingston SD cards

with an expected 15 MBs−1 write throughput. The expected

I/O performance will vary between brands and classes. We

tested the performance using dd to write various file sizes,

keeping a constant 1 MiB block size, and plotted the results

in Figure 10. The data were piped from /dev/zero to re-

duce the CPU load. For large file sizes, the write rate con-

verges to approximately 10 MBs−1.

3.5 Distributed file system

Each node in the cluster has an SD card for storage, giving

the cluster a total storage capacity of 1 TiB. As this stor-

age is distributed across all the nodes it is difficult to utilise

efficiently, for example the MPI tasks use local storage as

required but then pool results on a single node. In order to

utilise the storage efficiently we need to use a distributed file

system, such as Hadoop DFS [16,17]. Hadoop consists of a

distributed file system as well as a distributed computational

system — map-reduce [18] — and it is supported across a

wide range of hardware, operating systems and cloud providers.

We used Hadoop version 1.1.1 with default settings with

the exception of the following: the number of replications

was set to one, resulting in each file existing in a total of two

locations; and each node was limited to a maximum of one

map and one reduce task to avoid over committing the hard-

ware. With the exception of the buffer tests, all tests were

carried out with a memory buffer size of 1024 B.

The Hadoop cluster setup uses a dedicated node for the

distributed file system service, and a dedicated node for the

job tracker service. Each of the remaining nodes are con-

figured with both a data tracker and a task tracker service.

Counting the cluster and Hadoop headnodes, this reserves a

total of three nodes for dedicated functions plus two kept as

spare, leaving 59 nodes for the Hadoop testing.
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Fig. 11 Cluster and per node write throughput for files of various sizes.

Since each node does not have much RAM, we had to

increase the swap file size to run the tests. Each node was

allocated a 400 MB swap file. The current production ver-

sion of the Model B Raspberry Pi , which has double the

RAM would be better suited to running Hadoop as the tests

quickly run out of memory and using a swap file has a seri-

ous performance impact.

Hadoop ships with a series of benchmarking and testing

tools. We selected the TestDFSIO [17] benchmark to per-

form a series of read and write tests on the cluster. These

also test the compute functionality as TestDFSIO uses map-

reduce to distribute tests and collate results on the cluster. A

series of tests were run for both read and write with a con-

stant 1024 B memory buffer, and a third set of tests were run

with a variable memory buffer size. Varying the buffer size

up to 1.3 MB did not have an impact on the throughput.

The per node throughput shown in Figure 11 peaks at

0.38 MBs−1 for file sizes of 200 MB and only degrades slightly

as the file size grows to 1 GB. The throughput for smaller

files is significantly worse. If we look at the throughput for

the cluster as a whole, Figure 11 shows that the through-

put improves with larger file sizes, and indicates that files

greater than 1 GB can expect to see slightly better through-

put than the 17 MBs−1 shown.

Although the Hadoop IO results are very slow, the clus-

ter executed map-reduce tasks and replicated data as ex-

pected. The setup and configuration is similar to that im-

plemented on larger, more traditional clusters, providing an

excellent learning and testing tool.

4 Potential Applications

The small size, low power usage, low cost and portabil-

ity of the “Iridis-Pi” cluster must be contrasted against its

relatively low compute power and limited communications

bandwidth (compared to a contemporary, traditional HPC
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cluster), making this architecture most appropriate as a teach-

ing cluster. In this role, it could be used to help students to

understand the building blocks of parallel and high perfor-

mance computation. It is also a valuable alternative to using

virtualization to demonstrate the principles of HPC, since

the latter tends to hide various “real-world” aspects of HPC

such as interconnects between nodes, power, cooling, file

systems, etc. Due to its low cost, it may also bring clus-

ter computing to institutions which lack the space, funds,

and administrative staff to run a conventional cluster. Even

in institutions which have clusters available, “Iridis-Pi” style

clusters could be made available to students as a rapid means

of testing the functionality and scaling of parallel codes with-

out the long job queues often associated with institutional

systems. It would also encourage developers to work with

other architectures, enhancing code portability, which may

be of increasing importance as low-power ARM chips be-

gin to enjoy a larger role in the data centre, as we suggest

in Section 5.

A reasonable comparison of computing power at this

cost would be a single multi-core workstation, which may

provide more capacity and expandability in terms of conven-

tional SATA storage and PCI Express peripherals. However,

a portable cluster can be designed to continue to run even

after failures of a number of its nodes as single points of

failure may be removed. In harsh environments or where re-

pair would be difficult or impossible—such as military use,

or in the ocean or space—this could be attractive if raw com-

puting power is not the only requirement, raising several in-

teresting possibilities.

As the computational power of low-power processors

improves, driven largely by portable consumer devices such

as mobile telephones and tablets, the amount of useful work

that can be done on a cluster like this will inevitably in-

crease. Embedded clusters could become convenient for build-

ing management systems, where they could be used for run-

ning prediction models based on current sensor readings to

optimise the energy consumption and inhabitant comfort of

a building. Light-weight clusters could also become useful

in aeroplanes, trains and cars. Even in the consumer market,

small groups of embedded computers networked together in

future generations of smart houses could allow more intelli-

gent energy management and improved reliability.

Our “Iridis-Pi” cluster includes 64 GPUs, giving rise to

the possibility of a portable GPU cluster which may pro-

vide something that a single high-powered workstation can-

not. Its 64 video outputs would allow it to drive video walls,

and the GPUs could perform image reconstruction, perhaps

in medical or similar applications. The network bandwidth

may be the main hindrance here. Again, a portable GPU

cluster may be designed so that even if some nodes fail,

the cluster is able to continue at a reduced capacity (e.g.,

at a lower resolution in the case of image reconstruction).

These GPUs have a specified performance of 24 Gflops−1

each and therefore afford the cluster, in theory, an additional

1536 Gflops−1 peak performance.

As clustered file systems and map-reduce functionality

become more common place it is advantageous to demon-

strate such concepts for educational proposes. We installed

Hadoop on the cluster and configured both the distributed

file system and the map-reduce features to provide over 700 GiB

of usable storage as well as a distributed computational re-

source. The performance was usable but limited to simple

examples, with RAM being the key limitation. Current pro-

duction versions of the Raspberry Pi Model B have more

RAM and would be better suited to use with Hadoop, but

still biased towards education.

Overall, a low cost cluster-in-a-box has the potential to

broaden access to cluster computing and move clusters out

of the data centre and into everyday use.

5 Outlook

With the increasing relevance of energy-aware computing

we foresee that ARM-based processors are likely to become

ever more popular as time goes on. AMD has recently an-

nounced7 that it will introduce a multi-core system-on-a-

chip processor based on 64-bit ARM technology, targeted

for production in 2014. The company foresees the transition

in which 64-bit ARM chips become mainstream as analo-

gous to the earlier transition in which x86-64 architectures

became popular in the data centre. The performance per watt

offered by these ARM parts should be higher than that of

x86-64 competition, and their energy efficiency will increase

the achievable server density. Further evidence for this view

is the recent success of Adapteva’s “Parallela: A Supercom-

puter for Everyone” project8, which aims to democratise

high-performance computing by producing compact boards

based upon a scalable array of simple RISC processors ac-

companied by an ARM CPU. Moreover, the increasing trend

towards open computational environments is echoed in the

Parallela project, which will support the OpenCL standard,

and ship with free, open source development tools.

6 Conclusions

We have described our 64-node Raspberry Pi cluster and

presented some performance benchmarks. A single node ex-

hibited a peak computational performance of around 65000 kflops−1

in single precision for a problem size of n = 100, and the

7 http://www.amd.com/us/press-releases/Pages/

press-release-2012Oct29.aspx accessed 10 Dec 2012.
8 see http://www.kickstarter.com/projects/adapteva/

parallella-a-supercomputer-for-everyone, accessed 10 Dec
2012.

http://www.amd.com/us/press-releases/Pages/press-release-2012Oct29.aspx
http://www.amd.com/us/press-releases/Pages/press-release-2012Oct29.aspx
http://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone
http://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone


Iridis-pi: a low-cost, compact demonstration cluster 9

mean double precision performance for n= 200 was 41078 kflops−1.

Large problem sizes in the high performance LINPACK (HPL)

benchmark scaled well with increasing numbers of nodes

but network overheads limited the scaling for smaller prob-

lems. The cluster delivered a peak performance of 1.14 Gflops−1

using 64 nodes with a problem size of n = 10240. The mem-

ory capacity of the nodes is the main limit on the maximum

problem size addressable.

At peak, a node was found to achieve 99.2% of its nomi-

nal 100 Mbits−1 bandwidth, and the typical latency for small

packets was around 0.5 ms.

Benchmarking Hadoop running on the cluster showed

that the IO performance scaled across the cluster, although

the peak per node throughput was a rather poor 0.38 MBs−1.

For file sizes of 1 GB we saw a total cluster throughput of

17 MBs−1.

We have described how the unconventional architecture

of this cluster reduces its total cost and makes it an ideal

resource for educational use in inspiring students who are

learning the fundamentals of high-performance and scien-

tific computing. We also explored additional application ar-

eas where similar architectures might offer advantages over

traditional clusters. We foresee that, although our cluster ar-

chitecture is unconventional by today’s standards, many as-

pects of its design—the use of open source hardware and

software, the adoption of low-power processors, and the wider

application of flash based storage—will become increasingly

mainstream into the future.
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