SUPPORTING INFORMATION

Iridium-Catalyzed Ring Cleavage Reaction of Cyclobutanone O-Benzoyloximes Providing Nitriles

Takahiro Nishimura,* Tomoki Yoshinaka, Yoshiki Nishiguchi, Yasunari Maeda, and Sakae Uemura*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan E-mail: takahiro@scl.kyoto-u.ac.jp

General Methods. ¹H NMR spectra were obtained in CDCl₃ at 270, 300, or 400 MHz with Me₄Si as an internal standard. ¹³C NMR spectra were obtained at 67.8, 75.5, or 100 MHz. Elemental analyses were performed at the Microanalytical Center of Kyoto University.

Materials. All commercially available organic and inorganic compounds were used without further purification except for the solvent, which was distilled by the known method before use. Cyclobutanone *O*-benzoyloximes were prepared according to the reported procedures from the corresponding cyclobutanones.^{S1} Cyclobutanones were produced by the reduction of α , α -dichlorocyclobutanones synthesized from the corresponding alkenes by the reported procedure^{S2} in the presence of Zn-powder and AcOH.^{S3}

3-Methyl-3-phenylcyclobutanone *O*-benzoyloxime (1a). White solid; mp 81.0–81.5 °C; ¹H NMR (270 MHz, CDCl₃) δ 1.59 (s, 3H), 3.15–3.37 (m, 2H), 3.38–3.58 (m, 2H), 7.23–7.34 (m, 3H), 7.37 (t, *J* = 6.9 Hz, 2H), 7.47 (t, *J* = 6.9 Hz, 2H), 7.59 (t, *J* = 6.9 Hz, 1H), 8.07 (d, *J* = 7.3 Hz, 2H); ¹³C NMR (67.8 MHz, CDCl₃) δ 30.9, 38.0, 44.8, 125.0, 126.3, 128.4, 128.5, 128.9, 129.5, 133.1, 147.8, 163.8, 165.0. Anal. Calcd for C₁₈H₁₇NO₂: C, 77.40; H, 6.13; N, 5.01. Found: C, 77.27; H, 6.14; N, 4.99.

Benzoic acid 3-phenylcarboxyimino-1-methylcyclobutylmethyl ester (1c). White solid; mp 59.1–59.3 °C; ¹H NMR (270 MHz, CDCl₃) δ 1.44 (s, 3H), 2.92 (d, *J* = 18.8 Hz, 2H), 3.22 (d, *J* = 18.8 Hz, 2H), 4.34 (s, 2H), 7.38–7.64 (m, 6H), 8.04 (d, *J* = 7.3 Hz, 4H); ¹³C NMR (67.8 MHz, CDCl₃) δ 23.8, 33.7, 40.8, 70.3, 128.4, 128.8, 129.5, 133.2, 163.7, 164.2, 166.2. Anal. Calcd for C₂₀H₁₉NO₄: C, 71.20; H, 5.68; N, 4.15. Found: C, 71.26; H, 5.81; N, 4.09.

2-Benzyloxymethyl-3,3-dimethylcyclobutanone *O*-benzoyloxime (**4a**, *E/Z* mixture). Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ1.23 (s, 2.1H), 1.27 (s, 0.9H), 1.33 (s, 0.9H), 1.36 (s, 2.1H), 2.70–2.85 (m, 2H), 3.30–3.36 (m, 1H), 3.71–3.98 (m, 2H), 4.48–4.55 (m, 2H), 7.22–7.50 (m, 7H), 7.53–7.65 (m, 1H), 7.90–8.04 (m, 2H). ¹³C NMR (67.8 MHz, CDCl₃) δ 22.6, 22.7, 29.9, 30.1, 33.0, 33.7, 43.5, 43.8, 54.1, 55.3, 66.3, 66.9, 73.1, 73.2, 127.5, 127.6, 127.6, 128.3, 128.4, 128.4, 128.8, 129.0, 129.4, 129.5, 133.0, 133.1, 137.8, 138.0, 163.8, 166.0, 166.9. Anal. Calcd for C₂₁H₂₃NO₃: C, 74.75; H, 6.87; N, 4.15. Found: C; 74.73, H; 6.95, N; 4.11.

1-Phenylbicyclo[3.2.0]heptan-6-one *O*-benzoyloxime (4b, *E/Z* mixture). Colorless oil; ¹H NMR (270 MHz, CDCl₃) δ 1.76–2.46 (m, 6H), 3.05–3.19 (m, 1H), 3.43 (d, *J* = 18.1 Hz, 2H) 3.85–3.92 (m, 1H), 7.20–7.62 (m, 8H), 8.03–8.08 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 26.3, 26.4, 30.8, 32.7, 41.8, 41.9, 42.4, 42.4, 48.2, 49.0, 55.6, 55.9, 125.5, 126.3, 128.5, 128.5, 128.6, 129.1, 129.1, 129.6, 133.2, 133.3, 146.6, 146.6, 163.9, 168.9, 169.6. Anal. Calcd for C₂₀H₁₉NO₂: C, 78.66; H, 6.27; N, 4.59. Found: C; 78.96, H; 6.36, N; 4.48.

Typical Procedure for the Synthesis of 3-Methyl-3-phenylbutyronitrile. A mixture of $[IrCl(cod)]_2$ (0.0024 mmol), BnBPA (0.0050 mmol), K₂CO₃ (0.10 mmol), 9,10-dihydroanthracene (0.12 mmol), and DMF (0.30 mL) in a 20-mL Schlenk tube was stirred at room temperature under N₂. After 15 min, 3-methyl-3-phenylcyclobutanone *O*-benzoyloxime (**1a**) (0.10 mmol) in DMF (0.20 mL) was added, and the resulting mixture was stirred at 50 °C for 48 h. The reaction mixture was cooled down to room temperature, and then filtered through a pad of Florisil. The filtrate was concentrated under vacuum to leave a colorless oil, which was subjected to column chromatography on SiO₂ with EtOAc-hexane (3/97) as eluent.

3-Benzyl-3-methyl-4-phenylbutyronitrile (2b). Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.95 (s, 3H), 2.04 (s, 2H), 2.74 (d, *J* = 13.5 Hz, 2H), 2.83 (d, *J* = 13.5 Hz, 2H), 7.15–7.37 (m, 10H); ¹³C NMR (75.5 MHz, CDCl₃) δ 23.6, 26.4, 38.0, 46.0, 118.8, 126.7, 128.3, 130.5, 136.7. HRMS (FAB): calcd for C₁₈H₂₀N (M+H⁺), 250.1596; found, 250.1596. Anal. Calcd for C₁₈H₁₉N: C, 86.70; H, 7.68; N, 5.62. Found: C, 86.16; H, 7.70; N, 5.44.

Benzoic acid 3-cyano-2,2-dimethylpropyl ester (2c). Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ

1.22 (s, 6H), 2.46 (s, 2H), 4.16 (s, 2H), 7.43–7.51 (m, 2H), 7.55–7.63 (m, 1H), 8.02–8.07 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 24.2, 27.9, 34.2, 55.7, 117.7, 128.5, 129.6, 129.7, 133.3, 166.1. HRMS (FAB): calcd for C₁₄H₁₆NO₂ (M+H⁺), 218.1181; found, 218.1183. Anal. Calcd for C₁₃H₁₅NO₂: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.79; H, 7.00; N, 6.21.

5-Benzyloxy-3,3-dimethylpentanenitrile (5a). Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 1.10 (s, 6H), 1.71 (t, *J* = 6.2 Hz, 2H), 2.34 (s, 2H), 3.56 (t, *J* = 6.2 Hz, 2H), 4.49 (s, 2H), 7.25–7.40 (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃) δ 27.2, 30.8, 32.5, 40.4, 66.8, 73.1, 118.6, 127.6, 127.6, 128.4, 138.2. Anal. Calcd for C₁₄H₁₉NO: C, 77.38; H, 8.81; N, 6.45. Found: C, 77.51; H, 8.82; N, 6.30.

1-Phenylcyclopentylacetonitrile (5b). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.77–1.83 (m, 4H), 2.05–2.09 (m, 4H), 2.58 (s, 2H), 7.23–7.42 (m, 5H); ¹³C NMR (67.8 MHz, CDCl₃) δ 23.1, 30.4, 37.2, 49.2, 118.3, 126.4, 126.8, 128.5, 145.5. HRMS (FAB): calcd for C₁₃H₁₅N (M+H⁺), 186.1283; found, 186.1288.

Typical Procedure for the Reaction of 3-Methyl-3-phenylcyclobutanone *O*-Benzoyloxime (1a) with Diphenyldisulfide. A mixture of $[IrCl(cod)]_2$ (0.0125 mmol), BnBPA (0.025 mmol), K₂CO₃ (0.50 mmol), and ethylene carbonate (0.50 mL) in a 20-mL Schlenk tube was stirred at 50 °C under N₂. After 15 min, 3-methyl-3-phenylcyclobutanone *O*-benzoyloxime (1a) (0.50 mmol) and diphenyl disulfide (0.75 mmol) in ethylene carbonate (0.50 mL) were added, and the resulting mixture was stirred at 50 °C for 24 h. The reaction mixture was cooled down to room temperature, and then filtered through a pad of Florisil. The filtrate was concentrated under vacuum to leave a yellow oil, which was subjected to column chromatography on SiO₂ with EtOAc-hexane (3/97) as eluent.

3-Methyl-3-phenyl-4-(phenylthio)butyronitrile (6). Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 1.56 (s, 3H), 2.77 (d, *J* = 16.5 Hz, 1H), 2.85 (d, *J* = 16.5 Hz, 1H), 3.30 (d, *J* = 13.0 Hz, 1H), 3.31 (d, *J* = 13.0 Hz, 1H), 7.06–7.32 (m, 10H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.4, 29.5, 41.7, 47.0, 117.7, 125.6, 126.6, 127.4, 128.7, 129.0, 130.3, 136.3, 142.8. HRMS (FAB); calcd for C₁₇H₁₇NS (M⁺), 267.1082; found, 287.1083. Anal. Calcd for C₁₇H₁₇NS: C, 76.36; H, 6.41; N, 5.24. Found: C, 76.31; H, 6.38; N, 5.24.

3-Methyl-3-phenyl-4-(phenylseleno)butyronitrile (7). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.62 (s, 3H), 2.82 (d, *J* = 16.6 Hz, 1H), 2.91 (d, *J* = 16.6 Hz, 1H), 3.33 (d, *J* = 12.7 Hz, 1H), 3.40 (d, *J* = 12.7 Hz, 1H), 7.18–7.35 (m, 8H), 7.42–7.44 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.7, 30.0, 41.5, 41.7, 117.7, 125.5, 127.2, 127.3, 128.6, 129.0, 130.3, 133.2, 142.9. Anal. Calcd for C₁₇H₁₇NSe: C, 64.97; H, 5.45; N, 4.46. Found: C, 65.05; H, 5.50; N, 4.28.

3-Methyl-3-phenyl-4-(phenyltellro)butyronitrile (8). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.67 (s, 3H), 2.85 (d, *J* = 16.1), 2.91 (d, *J* = 16.6), 3.33 (d, *J* = 12.2), 3.49 (d, *J* = 12.2), 7.14–7.35 (m, 10H), 7.64–7.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.2, 26.8, 31.4, 41.3, 117.9, 125.3, 127.3, 127.9, 128.7, 129.2, 138.9, 143.5. Anal. Calcd for C₁₇H₁₇NTe: C, 56.26; H, 4.72; N, 3.86. Found: C, 56.34; H, 4.78; N, 3.79.

References

- (S1) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049.
- (S2) Ramnauth, J.; Lee-Ruff, E. Can. J. Chem. 1999, 77, 1245.
- (S3) Aljancic-Solaja, I.; Rey, M.; Dreiding, A. S. Helv. Chim. Acta 1987, 70, 1302.