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IRIS Based Human Recognition System 
 
 
 
 
 
 
 
 
 
 

Abstract 
 
The paper explores iris recognition for personal identification and verification. In this paper a new 
iris recognition technique is proposed using (Scale Invariant Feature Transform) SIFT. Image-
processing algorithms have been validated on noised real iris image database. The proposed 
innovative technique is computationally effective as well as reliable in terms of recognition rates. 
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1 INTRODUCTION 

Today, biometric recognition is a common and reliable way to authenticate the identity of a living 
person based on physiological or behavioral characteristics. A physiological characteristic is 
relatively stable physical characteristics, such as fingerprint, iris pattern, facial feature, hand 
silhouette, etc. This kind of measurement is basically unchanging and unalterable without 
significant duress. A behavioral characteristic is more a reflection of an individual’s psychological 
makeup as signature, speech pattern, or how one types at a keyboard. The degree of intra-
personal variation in a physical characteristic is smaller than a behavioral characteristic. For 
examples, a signature is influenced by both controllable actions and less psychological factors, 
and speech pattern is influenced by current emotional state, whereas fingerprint template is 
independent. Nevertheless all physiology-based biometrics don’t offer satisfactory recognition 
rates (false acceptance and/or false reject rates, respectively referenced as FAR and FRR). The 
automated personal identity authentication systems based on iris recognition are reputed to be 
the most reliable among all biometric methods: we consider that the probability of finding two 
people with identical iris pattern is almost zero [1]. That’s why iris recognition technology is 
becoming an important biometric solution for people identification in access control as networked 
access to computer application [2]. Compared to fingerprint, iris is protected from the external 
environment behind the cornea and the eyelid. No subject to deleterious effects of aging, the 
small-scale radial features of the iris remain stable and fixed from about one year of age 
throughout life. This paper is divided into 4 main parts. The Section 1 introduces what is the 
position of iris technology in personal authentication. In the Section 2, we sum up the state of the 
art in the domain of iris recognition. The more widely known iris recognition system developed by 
J.Daugman [4] is taken as reference for comparison. The Section 3 presents in details our 
approach, and discusses the different issues we chose. At last a conclusion is done in Section 4, 
which tasks about the next considerations for the improvement of the proposed solution. 
 

2. LITERATURE SURVEY 
The French ophthalmologist Alphonse Bertillon seems to be the first to propose the use of iris 
pattern (color) as a basis for personal identification [3]. In 1981, after reading many scientific 
reports describing the iris great variation, Flom and San Francisco ophthalmologist Aran Safir 
suggested also using the iris as the basis for a biometric. In 1987, they began collaborating with 
computer scientist John Daugman of Cambridge University in England to develop iris 
identification software who published his first promising results in 1992 [4]. Later on a little similar 
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works have been investigated, such as R.Wildes’ [5], W.Boles’ [6] and R.Sanchez- Reillo’s [7] 
systems, which differ both in the iris features representation (iris signature) and pattern matching 
algorithms. R.Wildes’ solution includes (i) a Hough transform for iris localization, (ii) Laplacian 
pyramid(multi-scale decomposition) to represent distinctive spatial characteristics of the human 
iris, and (iii) modified normalized correlation for matching process. W.Boles’ prototype operates in 
building (j) a one dimensional representation of the gray level profiles of the iris followed by 
obtaining the wavelet transform zero-crossings of the resulting representation, and (jj) original 
dissimilarity functions that enable pertinent information selection for efficient matching 
computation. To finish J.Daugman’s and R.Sanchez-Reillo’s systems are implemented exploiting 
(l) integrodifferential operators to detect iris inner and outer boundaries, (ll) Gabor filters to extract 
unique binary vectors constituting iriscodeTM, and (lll) a statistical matcher (logical exclusive OR 
operator) that analyses basically the average Hamming distance between two codes (bit to bit 
test agreement). Because of unified reference database of iris images does not exist, a classic 
performance comparison of the described systems is not trivial. However in terms of recognition 
rates (FAR, FRR), the commercial success of the patented Daugman’s system speak in his favor. 
Indeed Daugman’s mathematical algorithms have been contributing to a commercial solution 
patented by IriScan Inc. This biometric identification platform processes iris recognition through (i) 
a specific optical unit that enables noninvasive acquisition of iris images, and (ii) a data 
processing unit. Although capturing a well-defined image of the iris while not interacting actively 
with the device seems to be one the major challenge we encountered for iris recognition system 
design, our research focus on the second block both in charge of (j) the enrolment process, 
and (jj) the matching which quantifies the similitude between two biometric templates. 
 

3. PROPOSED APPROACH 
Previous work on iris recognition, derived from the information found in the open literature, led us 
to suggest a few possible improvements. For justification of these new concepts we implemented 
in Matlab/C .The algorithm used is as follows:  
  

• Image Acquisition 

• Iris Localization. 
• Find the darkest point of image (referred as black hole) in the global image analysis. 
• Determine a range of darkness (based on 1) designated as the threshold value (t) for 

identification of black holes. 
• Determine the number of black holes and their coordinates according to the predefined 

threshold. Calculate the centre of mass of these black holes.  
• Construct a L x L region centred at the estimated centroid. 
• Repeat step 3 to improve the estimation of actual centroid of pupil.  
• Find key points using SIFT. 
• Match the key points of the input image with the key points of images in database. 

The algorithm is beautifully explained by following algorithmic flow chart ,figure 1  

 

FIGURE 1: Iris Recognition: The Process 

 
3.1 IMAGE ACQUISITION 
One of the major challenges of automated iris recognition is to capture a high-quality image of the 
iris while remaining noninvasive to the human operator. Given that the iris is a relatively small 
(typically about 1 cm in diameter), dark object and that human operators are very sensitive about 
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their eyes, this matter requires careful engineering. Several points are of particular concern. First, 
it is desirable to acquire images of the iris with sufficient resolution and sharpness to support 
recognition. Second, it is important to have good contrast in the interior iris pattern without 
resorting to a level of illumination that annoys the operator, i.e., adequate intensity of source 
(W/cm ) constrained by operator comfort with brightness (W/sr-cm ). Third, these images must be 
well framed (i.e., centered) without unduly constraining the operator (i.e., preferably without 
requiring the operator to employ an eye piece, chin rest, or other contact positioning that would 
be invasive). Further, as an integral part of this process, artifacts in the acquired images (e.g., 
due to specular reflections, optical aberrations, etc.) should be eliminated as much as possible. 
Schematic diagrams of two image-acquisition rigs that have been developed in response to these 
challenges. The acquired Image is as shown in figure 2 below: 
 

 
 

FIGURE 2: Acquired Image 
 

3.2   IRIS LOCALIZATION 
Without placing undue constraints on the human operator, image acquisition of the iris cannot be 
expected to yield an image containing only the iris. Rather, image acquisition will capture the iris 
as part of a larger image that also contains data derived from the immediately surrounding eye 
region. Therefore, prior to performing iris pattern matching, it is important to localize that portion 
of the acquired image that corresponds to an iris. In particular, it is necessary to localize that 
portion of the image derived from inside the limbus (the border between the sclera and the iris) 
and outside the pupil. Further, if the eyelids are occluding part of the iris, then only that portion of 
the image below the upper eyelid and above the lower eyelid should be included. Typically, the 
limbic boundary is imaged with high contrast, owing to the sharp change in eye pigmentation that 
it marks. The upper and lower portions of this boundary, however, can be occluded by the 
eyelids. The papillary boundary can be far less well defined. The image contrast between a 
heavily pigmented iris and its pupil can be quite small. Further, while the pupil typically is darker 
than the iris, the reverse relationship can hold in cases of cataract: the clouded lens leads to a 
significant amount of backscattered light. Like the pupillary boundary, eyelid contrast can be quite 
variable depending on the relative pigmentation in the skin and the iris. The eyelid boundary also 
can be irregular due to the presence of eyelashes. Taken in tandem, these observations suggest 
that iris localization must be sensitive to a wide range of edge contrasts, robust to irregular 
borders, and capable of dealing with variable occlusion.  The systems differ mostly in the way that 
they search their parameter spaces to fit the contour models to the image information. To 
understand how these searches proceed, let I(x,y) represent the image intensity value at location 
(x,y) and let circular contours (for the limbic and papillary boundaries) be parameterized by center 
location (xc,yc) and radius r. The Daugman system fits the circular contours via gradient ascent 
on the parameters (xc,yc,r) so as to maximize 

 

Where 
2
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σσ rorrG −−∏=  is a radial Gaussian with center ro and standard 

deviation σ that smooths the image to select the spatial scale of edges under consideration * , 
symbolizes convolution, ds is an element of circular arc, and division by 2πr serves to normalize 
the integral. In order to incorporate directional tuning of the image derivative, the arc of integration 
ds is restricted to the left and right quadrants (i.e., near vertical edges) when fitting the limbic 
boundary. This arc is considered over a fuller range when fitting the pupillary boundary; however, 
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the lower quadrant of the image is still omitted due to the artifact of the specular reflection of the 
illuminant in that region (see Section II-A). In implementation, the contour fitting procedure is 
discretized, with finite differences serving for derivatives and summation used to instantiate 
integrals and convolutions. More generally, fitting contours to images via this type of optimization 
formulation is a standard machine vision technique, often referred to as active contour modeling 
The Wildes et al. system performs its contour fitting in two steps. First, the image intensity 
information is converted into a binary edge-map. Second, the edge points vote to instantiate 
particular contour parameter values. The edgemap is recovered via gradient-based edge 
detection [2], [44]. This operation consists of thresholding the magnitude of the image intensity 
gradient, i.e., 

),(*),( yxIyxG∇  where 

)/,/( yx ∂∂∂∂≡∇ while 
222

2/)()0(2
2/1),(

σσ rorxxeyxG −+−
−Π=  

is a two-dimensional Gaussian with center (xo,yo) and σ is standard deviation that smooths the 
image to select the spatial scale of edges under consideration. In order to incorporate directional 
tuning, the image intensity derivatives are weighted to favor certain ranges of orientation prior to 
taking the magnitude. For example, prior to contributing to the fit of the limbic boundary contour, 
the derivatives are weighted to be selective for vertical edges. The voting procedure is realized 
via Hough transforms [27], [28] on parametric definitions of the iris boundary contours. In 
particular, for the circular limbic or pupillary boundaries and a set of recovered edge points (xj,yj) j 
= 1…..n.  Hough transform is defined as 

 
 

 
 

FIGURE 3: Iris and centroid detection 

 
3.3 IRIS MATCHING 
Image matching is a fundamental aspect of many problems in computer vision, including object or 
scene recognition, solving for 3D structure from multiple images, stereo correspondence, and 
motion tracking. This method describes image features that have many properties that make 
them suitable for matching differing images of an object or scene. The features are invariant to 
image scaling and rotation, and partially invariant to change in illumination and 3D camera 
viewpoint. They are well localized in both the spatial and frequency domains, reducing the 
probability of disruption by occlusion, clutter, or noise. Large numbers of features can be 
extracted from typical images with efficient algorithms. In addition, the features are highly 
distinctive, which allows a single feature to be correctly matched with high probability against a 
large database of features, providing a basis for object and scene recognition. The cost of 
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extracting these features is minimized by taking a cascade filtering approach, in which the more 
expensive operations are applied only at locations that pass an initial test. 
Following are the major stages of computation used to generate the set of image features: 

• Scale-space extrema detection:  
• Key point localization: 

• Orientation assignment:  
• Key point descriptor:  

 
3.3.1 Detection Of Scale Space Schema 
As described in the introduction, we will detect keypoints using a cascade filtering approach that 
uses efficient algorithms to identify candidate locations that are then examined in further detail. 
The first stage of keypoint detection is to identify locations and scales that can be repeatably 
assigned under differing views of the same object. Detecting locations that are invariant to scale 
change of the image can be accomplished by searching for stable features across all possible 
scales, using a continuous function of scale known as scale space (Witkin,1983).It has been 
shown by Koenderink (1984) and Lindeberg (1994) that under a variety of reasonable 
assumptions the only possible scale-space kernel is the Gaussian function. Therefore, the scale 
space of an image is defined as a function, L(x, y, σ), that is produced from the convolution of a 
variable-scale Gaussian, G(x, y, σ), with an input image, I(x, y): 

L(x, y, σ) = G(x, y, σ) * I(x, y), 
Where * is the convolution operation in x and y,  

 
and To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) 
using scale-space extrema in the difference-of-Gaussian function convolved with the image, D(x, 
y, σ) which can be computed from the difference of two nearby scales separated by a constant 
multiplicative factor k:  

D(x,y,σ)=(G(x,y,kσ) - G(x,y,σ) * I(x,y) = L(x,y,kσ) – L (x,y,σ) 
 
There are a number of reasons for choosing this function. First, it is a particularly efficient function 
to compute, as the smoothed images, L, need to be computed in any case for scale space feature 
description, and D can therefore be computed by simple image subtraction In addition, the 
difference-of-Gaussian function provides a close approximation to the scale-normalized Laplacian 
of Gaussian, σ2▼

2
G, as studied by Lindeberg (1994). Lindeberg showed that the normalization 

of the Laplacian with the factor σ
2
 is required for true scale invariance. The relationship between 

D and σ
2
 ▼

2
G can be understood from the heat diffusion equation (parameterized in terms of σ 

rather than the more usual t = σ
2
):  GG 2

/ ∇=∂∂ σσ  

From this, we see that ▼
2
G can be computed from the finite difference approximation to dG/dσ, 

using the difference of nearby scales at kσ and σ: 

σσσσσσ −−≈∂∂=∇ KyxGkyxGGG /),,(),,(/
2

 

And therefore  

GkkyxGGG 222
)1(),,(/ ∇−≈≈∂∂=∇ σσσσ  . 

 The factor (k − 1) in the equation is aconstant over all scales and therefore does not influence 
extrema location. An important aspect of this approach is that it generates large numbers of 
features that densely cover the image over the full range of scales and locations. For iris 
matching and recognition, SIFT features are first extracted from a set of reference images and 
stored in a database.  
 
3.3.2 Accurate Key-point Localization 
Once a keypoint candidate has been found by comparing a pixel to its neighbors, the next step is 
to perform a detailed fit to the nearby data for location, scale, and ratio of principal curvatures. 
This information allows points to be rejected that have low contrast (and are therefore sensitive to 
noise) or are poorly localized along an edge. The initial implementation of this approach (Lowe, 
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1999) simply located keypoints at the location and scale of the central sample point. However, 
recently Brown has developed a method (Brown and Lowe, 2002) for fitting a 3D quadratic 
function to the local sample points to determine the interpolated location of the maximum, and 
his experiments showed that this provides a substantial improvement to matching and stability. 
His approach uses the Taylor expansion (up to the quadratic terms) of the scale-space function, 
D(x, y, σ), shifted so that the origin is at the sample point. 
 

 
Where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is the offset, from 
this point. The location of the extremes, ˆx, is determined by taking the derivative of this function 
with respect to x and setting it to zero, giving 

 
As suggested by Brown, the Hessian and derivative of D are approximated by using differences 
of neighboring sample points. The resulting 3x3 linear system can be solved with minimal cost. If 
the offset ˆx is larger than 0.5 in any dimension, then it means that the extreme  lies closer to a 
different sample point. In this case, the sample point is changed and the interpolation performed 
instead about that point. The final offset ˆx is added to the location of its sample point to get the 
interpolated estimate for the location of the extremum. The function value at the extremum, D(ˆx), 
is useful for rejecting unstable extrema with low contrast. For the experiments, all extrema with a 
value of |D(ˆx)| less than 0.03 were discarded (as before, we assume image pixel values in the 
range [0,1]). The key point selection is shown in figure 4 

 
 

FIGURE 4: Key points detection 
 

By assigning a consistent orientation to each  keypoint based on local image properties, the 
keypoint descriptor can be represented relative to this orientation and therefore achieve 
invariance to image rotation.  
 
3.3.3 Key-Point Matching 
The best candidate match for each key point is found by identifying its nearest neighbor in the 
database of key points from training images. The nearest neighbor is defined as the keypoint with 
minimum Euclidean distance for the invariant descriptor. However, many features from an image 
will not have any correct match in the training database because they arise from background 
clutter or were not detected in the training images. Therefore, it would be useful to have a way to 
discard features that do not have any good match to the database. A global threshold on distance 
to the closest feature does not perform well, as some descriptors are much more discriminative 
than others. A more effective measure is obtained by comparing the distance of the closest 
neighbor to that of the second-closest neighbor. If there are multiple training images of the same 
object, then we define the second-closest neighbor as being the closest neighbor that is known to 
come from a different object than the first, such as by only using images known to contain 
different objects. This measure performs well because correct matches need to have the closest 
neighbor significantly closer than the closest incorrect match to achieve reliable matching. For 
false matches, there will likely be a number of other false matches within similar distances due to 
the high dimensionality of the feature space. We can think of the second-closest match as 
providing an estimate of the density of false matches within this portion of the feature space and 
at the same time identifying specific instances of feature ambiguity. 
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3.3.4 CLUSTERING With Hough Transform 
Each of our keypoints specifies 4 parameters: 2D location, scale, and orientation, and each 
matched keypoint in the database has a record of the keypoint’s parameters relative to the 
training image in which it was found. Therefore, we can create a Hough transform entry predicting 
the model location, orientation, and scale from the match hypothesis. This prediction has large 
error bounds, as the similarity transform implied by these 4 parameters is only an approximation 
to the full 6 degree of- freedom pose space for a 3D object and also does not account for any non 
rigid deformations. Therefore, we use broad bin sizes of 30 degrees for orientation, a factor of 2 
for scale, and 0.25 times the maximum projected training image dimension (using the predicted 
scale) for location. To avoid the problem of boundary effects in bin assignment, each keypoint 
match votes for the 2 closest bins in each dimension, giving a total of 16 entries for each 
hypothesis and further broadening the pose range.  

4.  RESULTS  

Figures below shows the results obtained by applying SIFT 
 

 
 
Fig. 5 : Original Image       Fig. 6  centriod    Fig. 7 : Key points     Fig.8 : Image matching  Fig 9 : Match not found                          
                                      detection              detection          
                                                     

5. CONCLUSION 
Iris recognition system has been developed steadily with the help of MATLAB and some 
mathematical calculations, however limitations such as blur and dynamically taken images make 
it impossible to achieve perfect naturalness to combat this, we need to take images in ultraviolet 
environment. After getting image from the user the system will apply Hough transform detector 
technique to distinguish between pupillary and iris part of human eye, system applied various 
inbuilt MATLAB functions and mathematical calculations to encircle outer part of pupil that is inner 
part of iris and will mark the outer part of iris. 
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