
IRIS: Illustrative Rendering of Integral Surfaces

Mathias Hummel, Christoph Garth,

Bernd Hamann Member, IEEE, Hans Hagen Member, IEEE, Kenneth I. Joy Member, IEEE

Fig. 1. A path surface generated from a turbulent jet dataset, rendered in two different styles using the framework proposed in this
paper. In the left image, the surface is opaque, and the front and back side are rendered with yellow and blue, respectively. An
adaptive stripe pattern visualizes individual pathlines on the surface and provides the orientation of the flow. On the right, the surface
is rendered transparently with a denser stripes to give a hatching-like appearance. Both figures emphasize surface silhouettes for
better distinction of individual surface layers.

Abstract—Integral surfaces are ideal tools to illustrate vector fields and fluid flow structures. However, these surfaces can be visually
complex and exhibit difficult geometric properties, owing to strong stretching, shearing and folding of the flow from which they are de-
rived. Many techniques for non-photorealistic rendering have been presented previously. It is, however, unclear how these techniques
can be applied to integral surfaces. In this paper, we examine how transparency and texturing techniques can be used with integral
surfaces to convey both shape and directional information. We present a rendering pipeline that combines these techniques aimed at
faithfully and accurately representing integral surfaces while improving visualization insight. The presented pipeline is implemented
directly on the GPU, providing real-time interaction for all rendering modes, and does not require expensive preprocessing of integral
surfaces after computation.

Index Terms—flow visualization, integral surfaces, illustrative rendering

1 INTRODUCTION

Integral curves have a long standing tradition in vector field visual-
ization as a powerful tool for providing insight into complex vector
fields. They are built on the intuition of moving particles and the rep-
resentation of their trajectories. A number of different variants exist;
while streamlines and pathlines directly depict single particle trajec-
tories, other curves visualize the evolution of particles that are seeded
coherently in space (time lines) or time (streak lines). These curves
imitate experimental flow visualization and correspond to smoke or
dye released into a flow field. Generalizing on these concepts, integral

• Mathias Hummel and Hans Hagen are with the University of

Kaiserslautern, E-mail: {m hummel|hagen}@informatik.uni-kl.de

• Christoph Garth, Bernd Hamann and Kenneth I. Joy are with the Institute

of Data Analysis and Visualization at the University of California, Davis,

E-mail: {cgarth|hamann|kijoy}@ucdavis.edu

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

surfaces extend the depiction by one additional dimension. Stream and
path surfaces aim to show the evolution of a line of particles, seeded si-
multaneously, over its entire lifetime. These surfaces have been shown
to provide great illustrative capabilities and much improved visualiza-
tion over simple integral curves, and increase the visual insight into
flow structures encountered during their evolution. Time surfaces in-
crease the dimensionality further by showing the evolution of a two-
dimensional sheet of particles. Finally, streak surfaces borrow from
both path surfaces and time surfaces by portraying an evolving sheet
of particles that grows during the evolution at a seeding curve as new
particles are added to the surface. They are analogous to streak lines
in that they originate from wind tunnel experiments with line-shaped
nozzles and are therefore, in a sense, a very natural surface visualiza-
tion primitive for time-varying flows.

In recent years, several new algorithms have been proposed for the
computation of such integral surfaces, and techniques are now avail-
able that address a wide spectrum of visualization scenarios from real-
time interaction and computation for smaller datasets using GPUs to
very-complex large and time-dependent datasets using parallel algo-
rithms. While surface computation is already quite complex, using

integral surfaces for effective visualization can be quite difficult. Such
surfaces often have a very high visual complexity (see e.g. Figure 1)
that results from the shearing, twisting, and curling of the flow be-
havior they capture and describe. Thus, care must be taken when
combining transparent rendering, texture mapping, and other illustra-
tive techniques to preserve or enhance the understanding of the flow
as conveyed through the surface. Different rendering and illustration
approaches have been proposed previously, but as of yet it remains
unclear which of these choices systematically work well for general
integral surfaces, and how different techniques can be effectively and
efficiently combined.

In this paper, we address the issues of transparency and texture map-
ping on integral surfaces by examining and adapting several existing
visualization techniques (Sections 3 and 4). Furthermore, we present a
rendering framework that combines these with other approaches from
the field of illustrative rendering, described in Section 5. The system
we describe is fully interactive, and all visualizations can be generated
without laborious preprocessing. Our framework can thus be coupled
with both interactive and non-interactive computation techniques in
static or dynamic settings. We demonstrate the resulting visualization
in application to complex examples from CFD simulation in Section 6
and briefly evaluate our results (Section 7), before we conclude in Sec-
tion 8.

The benefits of the methods we discuss here with respect to inte-
gral surface visualization are twofold. First, the methods we describe
are able to convey the full information contained in an integral sur-
face by providing solutions to the problems of occlusion, complex
three-dimensional structure, flow orientation, and dynamics. Second,
by providing a framework that combines the different approaches, the
complexity of choosing a specific visualization style is vastly reduced,
and makes integral surface visualization accessible to visualization
users.

2 CONCEPTS AND RELATED WORK

Before we survey previous work on integral surface visualization, we
briefly describe the basic concepts underlying integral surfaces as ap-
plied to flow visualization.

2.1 Basic Setting

If v(t,x) is a (possibly time-dependent) three-dimensional vector field
that describes a flow, then an integral curve I of v is the solution to the
ordinary differential equation

I′(t) = v(t, I(t)), and I(t0) = x0, (1)

where v(t,x) is the vector at time t and location x.
Technically, it is a curve that originates at a point (t0,x0) and is tan-

gent to the vector field at every point over time. Intuitively, it describes
the path of a massless particle that is advected by v. In the typical case
that v is given in discrete form (e.g. as an interpolated variable on reg-
ular or unstructured grids), such integral curves can be approximated
using numerical integration techniques. In the case where v is indepen-
dent of time, such integral curves are called streamlines, and pathlines
in the time-dependent case.

An integral surface is the union of the trajectories of a one or two-
dimensional family of integral curves, originating from a common
seed curve or surface. Three specific instances of such surfaces are
commonly distinguished:

• A path surface P originates from a one-dimensional seed curve.
The surface consists of the positions of all particles during their
entire lifetime.

• A time surface T is a two-dimensional family of integral curves
that originate from a common seed surface, or alternatively, the
surface formed by a dense set of particles that are located on the
seed surface at the initial time and jointly traverse the flow.

• A streak surface S is the union of all particles emanating contin-
uously over time from a common seed curve and move with the
flow from the time of seeding.

If v is not time-dependent, a path surface is customarily labelled stream
surface in analogy to integral curves. Furthermore, streak surfaces
and stream surfaces are identical in this case. In this paper, we will
generally use the term path surface, however, all discussion applies
equally to stream surfaces.

Integral surfaces possess a natural parameterization. For path sur-
faces, it is given by the parameter s that indicates the starting location
on the seed curve, and the advection time t of the corresponding parti-
cle to reach the given surface point. Lines of constant s-parameter are
hence pathlines, and constant t-lines are called time lines. For streak
surfaces, the situation is similar, but s-lines are streaklines. Time sur-
faces directly inherit the parameterization of their seed surface, i.e.
the parameters (typically called u and v) at each particle on the time
surface correspond to the parameter of its seed location.

After establishing these basic notions, we will next briefly consider
previous and related work on integral surfaces.

2.2 Integral Surface Generation

Integral surfaces were first investigated by Hultquist [17], who pro-
posed a stream surface algorithm that propagates a front of particles
forming a surface through a flow. Particle trajectories are integrated
as needed and triangulation of the surface is performed on-the-fly us-
ing a greedy approach. Divergence and convergence of particles in
the advancing front is treated using a simple distance criterion that
inserts and removes particles to ensure a balanced resolution of the
surface. Advanced visualization of integral surfaces was introduced
by Löffelmann [26] in proposing texture mapping of arrows on stream
surfaces (stream arrows), with the goal of conveying the local direc-
tion of the flow. This original work did not address stretching and
divergence of the surface, which distorts the parameterization and con-
sequently can result in very large or small arrows. The same authors
subsequently addressed this by a regular, hierarchical tiling of texture
space that results in adjusted arrows [25]. However, stream arrows are
rarely used in integral surface visualization from CFD data due to the
high visual complexity of the resulting surfaces.

Garth et al. [11] built on the work of Hultquist by employing arc-
length particle propagation and additional curvature-based front re-
finement, which results in a better surface triangulation if the surface
strongly shears, twists, or folds. They also considered visualization
options such as color mapping of vector field-related variables going
beyond straightforward surface rendering. A different computational
strategy was employed by van Wijk [33], who reformulated stream
surfaces as isosurfaces; however, his method requires increased com-
putational effort to advect a boundary-defined scalar field throughout
the flow domain. Scheuermann et al. [30] presented a method for
tetrahedral meshes that solves the surface integration exactly per tetra-
hedron. Improving visualization [23], Laramee et al. employed the
Image-Space Advection technique [24] to generate a visual impres-
sion of the flow direction on the surface. This depiction is naturally
resolution-independent, but does require costly computation and a full
representation of the vector field on the surface.

More recently, Garth et al. [10] replaced the advancing front
paradigm by an incremental time line approximation scheme, allowing
them to keep particle integration localized in time. They applied this
algorithm to compute stream surfaces and path surfaces in large and
time-varying CFD datasets. Using a GPU-based approach, Schafhitzel
et al. [29] presented a point-based algorithm that does not compute an
explicit mesh representation but rather uses a very dense set of parti-
cles, advected at interactive speeds, in combination with point-based
rendering. Recently, Krishnan et al. [21], Bürger et al. [5] and von
Funck et al. [34] presented approaches for time and streak surface
computation. While the former authors focused on the CPU treatment
of large CFD datasets, the latter designed their approach for GPUs
with the aim of real-time visualization for smaller datasets. All three
papers present various visualization options, including striped textures
and advanced transparency though depth peeling (see e.g. [1]), but do
not discuss these visualization choices and their realization in detail.
The intent of this work is in part to adopt a systematic approach to inte-
gral surface visualization by discussing available visualization choices

(a) no transparency (b) constant (c) angle-based (d) normal-variation (e) with silhouettes

Fig. 2. A comparison of different transparent rendering styles. Images (c) through (e) show the effect of view-dependent transparency modulation.

in detail, and to describe their implementation in sufficient detail to be
easily reproducible.

2.3 Illustrative Rendering and Integral Surfaces

Computer graphics offers many techniques to realistically render ob-
jects in static and animated representation, and to create new scenes
under the same environmental conditions; for an overview, we refer
the reader to the works by Gooch and Gooch [13] and Strothotte and
Schlechtweg [32]. For non-photorealistic rendering, approaches have
been presented to reproduce numerous artistic techniques, such as tone
shading [12], pencil drawing [4], hatching [27], or ink drawing [31]. In
the context of integral surfaces, however, artistic representation plays
a secondary role to an accurate depiction the structure of the flow as
captured by the surface. For example, while hatching techniques pro-
viding shape cues for a depicted surface, the hatching pattern intro-
duces directional information which is at risk of being confused with
flow direction. Gorla et al. [14] study the effect of directional surface
patterns on shape perception.

The use and combination of non-photorealistic techniques to high-
light and illustrate specific aspects of a dataset has been examined in
detail in its application to volume rendering, where similar constraints
apply. Here, Ebert and Rheingans [8] present several illustrative tech-
niques such as boundary enhancement and sketch lines which enhance
structures and add depth and orientation cues. Csebfalvi et al. [6] visu-
alize object contours based on the magnitude of local gradients as well
as on the angle between viewing direction and gradient vector using
depth-shaded maximum intensity projection. Krüger et al. [22] use an
interactive magic lens based on traditional illustration techniques to
selectively vary the transparency in the visualization of iso-surfaces;
this technique is termed ClearView.

In this context, one goal of this work is to apply and adapt specific
techniques from illustrative rendering to the specific case of integral
surface visualization. Evaluating the quite significant body of work
on illustrative techniques for this scenario is beyond the scope of this
work; rather, we focus on two core aspects of integral surface render-
ing: transparency and texturing. This choice is based on the authors’
observation of typical problems that complicate integral surface visu-
alization, and is discussed in more detail in Sections 3 and 4 below.

Furthermore, we consider the following characteristics to select
techniques. First, we observe that integral surfaces can imply a sig-
nificant computational burden in the presence of large and complex
flow data sets. The surface representations resulting from such data
can be comprised of millions of triangles and take minutes to hours
to compute (cf. [10, 21]), and interaction with the surface in a near
real-time setting – possibly even during the surface computation – is
highly desirable. For less complex data, the recent work of Bürger et
al. [5] describes a real-time computation approach that leverages the
computing power of GPUs, and we aim at retaining the applicability of
the methods described in this paper in such a scenario. Similarly, the
dynamic and evolving nature of time and streak surfaces attractively
captures the temporal characteristics of flows; as such, the ability to
animate integral surfaces is pertinent to our considerations.

In the following sections, we describe approaches to transparency
and texturing that fulfill these requirements.

3 TRANSPARENCY

Due to folding, twisting, and shearing of the flow traversed by them,
integral surfaces often possess a very high depth complexity and one
often finds that large parts of the surface are occluded by the surface’s
outer layer in an opaque depiction of the surface. Introducing trans-
parency into the rendering can alleviate this; however, the number
of layers is often so large that the straightforward choice of constant
transparency produces unsatisfactory results. A low constant trans-
parency over the entire surface typically results in good visibility of
the outer layers, while the inner layers are occluded. Conversely, if
the constant transparency is high to reveal the inner layers, the outer
layers are hard to identify. As discussed previously by Diepstraten
et al. [7] among others, transparency in illustrations often applies the
100-percent-rule, stating that transparency should fall off towards the
edges of an object. This results in a non-uniform decrease of the trans-
parency of layers as the depicted surface curves away from the viewer.

The same authors propose an object-space algorithm to achieve this
by varying the transparency of a surface point as a function of its dis-
tance to its outline. The outlines of an object projected onto a 2D
screen consist of silhouettes lines (see also Section 3.4), and thus the
distance computation entails the extraction of an explicit description of
the view-dependent silhouette lines. To this purpose, an object space
approach is proposed that is too costly for large surfaces with several
millions of triangles. Moreover, this technique does not provide in-
sight into the curvature of the transparent surface. Taking a different
approach, the methods proposed by Kindlmann et al. [20] and Had-
wiger et al. [15] for direct volume rendering and iso-surface rendering
vary surface properties in dependence of the principal surface curva-
tures and are used to emphasize surface detail such as ridges and val-
leys. Thus, using such curvature measures to influence transparency
of an integral surface seems appealing. Judd et al. [19] used view-
dependent curvature to extract so-called apparent ridges. However,
none of these methods address transparency directly, and direct appli-
cation to our problem would require the computation of high-quality
curvature measures. For the interactive visualization of large trian-
gle meshes such as integral surfaces, we consider such approaches too
computationally expensive.

We instead propose two simple measures for transparency variation
that are cheap to compute and give very good results.

3.1 Angle-Based Transparency

If n is the surface normal at the considered point and v is the normal-
ized view vector, then choosing the view-dependent transparency

αview :=
2

π
arccos(n · v)

varies the transparency with the angle between n and v. This has the ef-
fect that surface regions orthogonal to the viewer become more trans-
parent, while regions where the surface curves towards or away from
the viewer are more opaque. This decreases the transparency as the
object silhouette is approached, and surface curvature is indicated in-
directly by the image-space extent of the opacity gradient, as shown
in Figures 3(a) and Figure 2(c). A drawback of this approach is the
dependence of the transparency gradient on the curvature radius of the

surface. If the integral surface contains large, almost flat parts, their
resulting high opacity can obscure the layers below.

3.2 Normal-Variation Transparency

The second approach we propose is related to the work of Kindlmann
et al. [20] in controlling the transparency as a function of the surface
curvature perpendicular to the viewer, as determined in image space.
If n(i, j) denotes the surface normal at a pixel (i, j), we observe that
the partial derivatives of the normal’s z-component

∂nz

∂ i
and

∂nz

∂ j

provide a rough approximation of the curvature of the surface perpen-
dicular to the image plane in view space. By letting

αview :=

(

(
∂nz

∂ i
)2 +(

∂nz

∂ j
)2

)

γ
2

, (2)

assuming γ = 1 for now, we obtain a transparency function that is ap-
proximately proportional to the local surface curvature perpendicular
to the viewer. As a result, the surface is more opaque where it curves
away from the viewer and most transparent when it is oriented per-
pendicular to the viewer. Furthermore, this achieves the effect that for
surface features with strong curvature such as creases or small fea-
tures, the transparency is reduced, resulting in a better visual impres-
sion of such small details. Here, αview is not exclusively dependent
on the view direction, such that strongly curved surface features can
be well identified even if viewed frontally (see Figure 2(d)). We note
that αview is not necessarily limited to the unit interval, and must be
clamped before γ is applied.

Secondly, for surface regions curving away from the viewer, nz

varies fastest as the silhouette is approached, leading to quickly in-
creasing transparency towards the boundary, as opposed to a slow gra-
dation using the angle-based transparency. In the context of integral
surface visualization, this aspect is important since it allows a clear
visual understanding of nested flow tubes that are generated by the
flow rolling the surface up into a nested set of tubes. Since curva-
ture increases for the inner tubes, they are more prominently visible
in the resulting image. This phenomenon and the visual differences
of normal-variation transparency over angle-based transparency are il-
lustrated in Figure 3.

The parameter γ in Equation 2, selected over the unit interval, al-
lows a smooth control of the strength of the normal variation trans-
parency, where we provide selection of γ over [0,1]. Larger values
emphasize the surface silhouettes and provide little additional insight.
It is our experience that controlling αview exponentially provides more
intuitive control over the effect strength than e.g. linear scaling. Fur-
thermore, we found it helpful to constrain the overall resulting trans-
parency range to a user-adjustable interval [αmin,αmax] through

α = (1−αview) ·αmin +αview ·αmax.

(a) Angle-based (b) Normal-variation

Fig. 3. A comparison of angle-based and normal-variation view-
dependent transparency rendering. In (b), the radius of the tubes affects
the transparency; the thinnest tube is most opaque. Furthermore, the
opacity gradient in (b) is stronger than in (a).

3.3 Window transparency

Despite obtaining very good results for most integral surface visual-
ization scenarios, we have nevertheless observed the occasional need
to selectively increase the transparency of the visualized surface in
certain regions. In the setting of iso-surfaces, Krüger et al. [22], in-
spired by the earlier work of Bier et al. [2], presented an innovative
approach to allow a user to selectively vary the transparency of an oc-
cluding surface through a user-controlled window. We adopt a similar
approach: we modulate the overall transparency of the rendering as a
function of the surface pixel position in image space. Typically, we de-
crease this window transparency αwindow smoothly with the distance
to a specified point in image space. This allows the easy creation of
an interaction with “windows” that allow seeing through the context
provided by an outer surface layer to reveal otherwise occluded details
(see Figure 12).

3.4 Silhouettes

Silhouettes, described e.g. by Gooch et al. [12], are a popular tech-
nique for non-photorealistic rendering. Through visually emphasizing
the transition between front- and back-facing surface layers, object
shape is revealed, and sharp surface features such as creases are high-
lighted. In transparent depictions, distinguishing layers can be diffi-
cult. Here, silhouettes reveal the layer boundaries and provide hints
at the surface’s shape. Corresponding rendering approaches can be
mainly divided into the object-space, image-space, and hybrid cate-
gories (cf. [16, 18]). Isenberg et al. [18] recommend using an image
space technique for achieving interactive frame rates with huge or an-
imated data sets. Object-space and hybrid algorithms rely on process-
ing the mesh and thus we exclude them from consideration due to the
high effort required for the large integral surfaces meshes we consider
here.

In the framework presented here, we make use of an image space
silhouette detection algorithm that is described in Section 5.

4 TEXTURES

When used correctly, textures are powerful tools that, in application
to integral surfaces, serve a dual purpose. First, they can be employed
to enhance shape perception, providing a better visual comprehension
of the complex surface shape. Second, and specific to integral sur-
faces, they can indicate flow orientation on the surface, or specific
streamlines, pathlines, streak lines, or time lines on a surface. Integral
surfaces provide a natural surface parametrization by virtue of their
construction (see Section 2). For path surfaces, unique s and t parame-
ters correspond directly to pathlines and timelines, respectively. Time
surfaces can inherit their parameterization from a parametric seed sur-
face, and streak surfaces present a hybrid, where again constant t in-
dicates time lines and fixing s provides streak lines. By carrying this
parameterization from the surface computation stage to the rendering
stage, textures can thus be applied to highlight flow behavior on the
surface.

Regarding shape enhancement, several illustrative rendering tech-
niques approximate a hatching-type depiction to improve shape per-
ception (see e.g. the work of Freudenberg et al. [9] and Strothotte and
Schlechtweg [32]). However, in this context, this introduction of di-
rectional information is at risk of being confused with flow direction.
Thus, when applying such techniques, the pattern must be oriented
along the existing parameterization.

Unfortunately, the natural integral surface parameterization is sub-
ject to strong and possibly anisotropic distortion that reflects the con-
vergence or divergence of neighboring particles traversing the flow.
In typical integral surfaces, it is not uncommon that the surface is
stretched by a factor of 1000 or greater. Thus, if the intent is to high-
light individual flow lines through a straightforward application of a
stripe texture, large gaps may appear between stripes, and stripes grow
strongly in width, thus obscuring the flow depiction in such areas (see
e.g. Figure 6(a)).

(a) s-direction (b) t-direction (c) s- and t-direction (d) two-sided shading (e) cool-warm shading

Fig. 4. The adaptive pattern has a constant resolution in image space, regardless of the variation of the texture coordinates across the surface, as
illustrated in (a), (b), and (c). Figure (d) demonstrates the effect of shading front and back sides of the surface in different colors, while (e) depicts
cool-warm shading that substitutes color variation for surface brightness change for illumination.

(a) Stripe pattern (b) Perspective view, adaptive stripe pattern

Fig. 5. Perspective distortion of texture density is addressed by adaptive
pattern evaluation.

4.1 Adaptive Patterns

Freudenberg et al. [9] proposed an approach for real-time surface
hatching by using a mipmap-like technique, so called hatch maps. In
conventional mipmapping, the texture to be mapped onto an object is
replaced by a stack of textures, where lower levels represents down-
sampled versions of the highest-resolution texture. Mipmapping then
selects an appropriate level to sample from the stack by taking into
account the image space variation of the texture coordinates, such that
a roughly one-to-one reproduction of texels to pixels is achieved and
smoothly blends between consecutive levels to avoid image disconti-
nuities. Freudenberg et al. repurpose this mechanism by loading the
stack with successively smaller images that contain lines exactly one
pixel wide. Thus, they achieve a approximately constant image space
line density, giving the impression of hatching.

Our texturing approach is based on a similar idea; however, instead
of using a finite set of textures with different resolutions, we reuse a
single texture or pattern and adjust the sampling frequency to yield
approximately constant image space pattern density. Furthermore, we
compensate for highly anisotropic stretching by determining the sam-
pling frequency independently for the parameter directions s and t.

The variation λs,t in texture coordinate in image space at a pixel
(i, j) is determined by the image-space partial derivative of the texture

(a) Regular stripe pattern. (b) Adaptive stripe pattern.

Fig. 6. Strong anisotropic surface texture coordinate stretching is ad-
dressed by an adaptive pattern.

coordinates s and t at (i, j) as

λs(i, j) =

√

(

∂ s

∂ i

)2

+

(

∂ s

∂ j

)2

(3)

and

λt(i, j) =

√

(

∂ t

∂ i

)2

+

(

∂ t

∂ j

)2

(4)

If either of λs,t doubles, the pattern frequency in the corresponding
direction must be halved to yield the same image space frequency. If
the pattern is described by a function P(s, t) over the unit square, we
determine two integer resolution levels ls and lt via

ls = log2 λs and lt = log2 λt ,

and define the frequency-adjusted pattern P̂ by evaluation of P with
correspondingly compensated frequency through

P̂ls,lt (s, t) := P(s ·2−ls
, t ·2−lt).

Since resolution levels are discretely defined, we apply bilinear in-
terpolation between neighboring resolution levels to obtain a smooth
pattern frequency in image space:

c(s, t) = (1− l̃s) ·
(

(1− l̃t) · P̂⌊ls⌋,⌊lt⌋(s, t)+ l̃t · P̂⌊ls⌋,⌈lt⌉(s, t)
)

+l̃s ·
(

(1− l̃t) · P̂⌈ls⌉,⌊lt⌋(s, t)+ l̃t · P̂⌈ls⌉,⌈lt⌉(s, t)
)

(5)

where

l̃s = ls −⌊ls⌋, l̃t = lt −⌊lt⌋

denote the fractional parts of ls and lt , respectively.

This mapping counters the effect of surface stretching on the pat-
tern representation, and additionally perspective foreshortening (simi-
lar to [9]), by adapting the scale of the pattern reproduction (see Fig-
ures 5 and 6). As demonstrated below in Section 6, this allows the
effective use of stripe textures and other texture variations to highlight
surface shape and distortion as well as flow behavior directly. While
Equations 3 and 4 seem difficult to evaluate at first glance, such eval-
uation can leverage built-in functionality of the rendering system as
discussed below in Section 5 and is actually cheap to evaluate. Note
that for the case described above, the pattern can either be procedural
(such as stripes, see Figure 4) or originate from an arbitrary texture
image.

Patterns and textures can be applied in various ways to modulate
both opacity and color of the integral surface to achieve specific visu-
alization styles. We will discuss a number of examples in Section 6.
The rendering pipeline we describe in Section 5 specifically focuses
on the straightforward cases of modulating surface transparency addi-
tively and multiplicatively, which covers a large variety of use cases.

Fig. 8. Rendering pipeline overview.

5 RENDERING PIPELINE

In this section, we provide a description of our implementation of the
integral surface rendering techniques discussed above. Our imple-
mentation is based on OpenGL, however, the concepts we make use
of could be easily ported to DirectX. We make use of programmable
shading via GLSL shader programs throughout the pipeline. As input
for our techniques, we require for each frame a discrete representation
of the integral surface (e.g. triangles or quadrilaterals), with a set of
two texture coordinates associated with each vertex. This representa-
tion need not be connected and we explicitly accommodate some com-
putation approaches (such as the method by Bürger et al. [5]) that gen-
erate surfaces as (partial) primitive soup. The normal-variation trans-
parency approach described in Section 3.2 requires continuously vary-
ing normals over the mesh; in this case, the normal must be specified
per vertex. If uniform or angle-based transparency are to be applied,
face-based normals are sufficient. In this case, no preprocessing is re-
quired at all, and illustrative integral surfaces can be rendered during
the computation phase. Additionally, our approach supports the ad-
dition of context geometry such as flow domain boundaries that are
rendered and shaded independently from the integral surface.

Since our approach makes heavy use of transparency, a primary
concern is the correct representation of transparent surfaces. Typi-
cally, there are two approaches to achieve correct transparency render-
ing at interactive speeds. The first, depth sorting, is based on sorting
all elementary primitives by distance from the camera; primitives are
then rendered from back to front with over-blending to ensure correct
transparency. This approach is conceptually simple, but requires im-
plementation on the GPU to achieve competitive performance. While
this is not a significant problem, it suffers from complications with sur-
faces that are self-intersecting. Thus, we cannot apply it in this context
since path surfaces often self-intersect.

Conversely, the depth peeling approach (see e.g. [1]) decomposes
the rendering into layers of different depth. By rendering the primi-
tives comprising the scene multiple times and discarding surface frag-
ments that are closer to the viewer than those in the previous layer,
one obtains incremental layers of depth. These layers are successively
blended together to assemble the final image. This can be performed

(a) Multiplicative modulation:

opacity is not increased by the

pattern

(b) Additive modulation: the stripe

pattern adds to the surface opacity

Fig. 7. Streamlines on a stream surface in the ellipsoid dataset are
visualized by a stripe pattern.

in both back-to-front order (using over blending) or in front-to-back
order (using under blending). The peeling approach lends itself nat-
urally to the image-based rendering techniques discussed above. Fur-
thermore, since depth ordering is resolved per pixel, self-intersecting
surfaces do not pose a problem. On the downside, this flexibility is bal-
anced by the need to render a potentially large primitive set multiple
times for a single frame.

5.1 Peeling Loop

For each frame, a depth peeling loop with on-the-fly front-to-back
peeling is executed (for a detailed discussion, we refer the reader to
the description by Bavoli and Myers [1]). Each iteration of the loop
consists of two stages. The first stage (peel stage) computes a new
depth layer of the surface based on the previous depth layer, and the
second stage (blend stage) blends it into the framebuffer. We adap-
tively terminate the peeling loop if no pixels are rendered during the
first stage, which is determined using an occlusion query for each loop
iteration. The total number of iterations is thus one greater than the
number of surface layers for the current viewpoint.

During the peel stage, we perform full surface shading, i.e. lighting
and texture evaluation of the integral surface.

Transparency If required, the view-dependent transparency term
αview is directly computed from the normal vector of the rendered frag-
ment; in the case of normal-variation transparency, the GLSL instruc-
tions dFdx and dFdy are used to evaluate the partial derivatives in
Equation 2 directly and with little additional overhead. Otherwise,
αview is assigned a constant uniform value.

Pattern or Texture In the case of adaptive patterns, ls and lt are
again computed using dFdx and dFdy, and Equation 5 can be directly
evaluated, using either a procedural pattern that is directly evaluated
in the shader or through corresponding texture lookups. Overall, we
obtain texture color ctex and αtex.

Lighting The diffuse color of the surface is evaluated according to
the specified lighting model; currently, we employ Phong and Gooch
models. The result is the diffuse surface color cdiffuse. We also com-
pute specular highlight terms (c,α)spec if specified by the user; how-
ever, we keep diffuse and specular components separate to ensure cor-
rect blending of the highlights with the surface and texture colors.

Combination The final RGBA output (c,α)peel of the peel pass
is computed as

αfinal = αview ·αtex +αspecular and

cfinal = cdiffuse · ctex + cspecular,

in the case where surface opacity should be multiplicatively modulated
by the texture opacity. If additive modulation is desired, the alpha term
changes to

αfinal = αview +αtex +αspecular.

The final RGBA values are written to a color buffer and surface
normals required in the blend stage are stored in a secondary floating-
point RGBA buffer. Here, the secondary A-component contains a

mask to that indicates whether a pixel belongs to the integral surface or
the context. This allows the blend stage operations to apply to surface
pixels only and to not affect the context geometry pixels. Note that the
depth information of the current surface layer is already stored into a
separate depth texture that is required by the depth peeling algorithm.

In the blend stage, we determine the silhouette strength by applying
a Sobel edge detection filter to both normal and depth buffers (as first
described by [28]). Here, the mask is used to avoid generating silhou-
ette pixels across surface-context and context-background pixels, by
excluding pixels that have the mask flag set for one of the pixels con-
tributing to the filter. Then, depending on the silhouette strength, the
surface color is smoothly faded into a user-specified silhouette color.

We note silhouettes are essentially extracted twice – once per pair
successive depth layers – by this approach, possibly resulting in inner
silhouettes of increased width. However, since we use a relatively
sharp and symmetric edge detection filter, this effect is reduced. While
pixel-exact silhouettes are preferable, we have nevertheless opted to
use this edge detection approach due to its purely image-space nature
whose complexity is a function of the viewport size rather than the
object-space mesh size, which can be very large in our case (cf. [18]
for a more detailed discussion).

In our implementation, instead of blending directly to the output
framebuffer, we make use of a floating-point color buffer for improved
blending accuracy in the presence of many surface layers since slight
banding artifacts can appear otherwise.

5.2 Performance

The rendering speed of the above pipeline is largely a function of the
surface geometry size, and overall rendering time is dominated by the
requirement to submit the surface for rendering multiple times during
the depth peeling. For small to medium meshes of below ≈500K tri-
angles with medium depth complexity of 10 layers or less, we achieve
interactive frame rates exceeding 15fps on moderately current graph-
ics hardware (NVidia GTX280). An exact quantification is difficult –
and we do not attempt one in this paper – since the adaptive termina-
tion of the depth peeling implies that the number of peeling passes is a
function of the depth complexity of the surface, the surface represen-
tation, and the currently chosen viewpoint. Larger meshes with many
layers result in correspondingly smaller frame rates.

We experimented with a number of different implementation tech-
niques, including fully deferred shading (cf. Saito and Takahashi [28]),
but did not observe a significant variation in rendering speeds in our
experiments. Again, we conclude that the geometry overhead from
the multiple peeling passes dominates all other factors such as shader
runtime or memory bandwidth.

6 EXAMPLES

In the following, we briefly wish to discuss a number of sensible ways
in which patterns and/or textures can be applied to enhance the visual-
ization of integral surfaces.

While we did not consider lighting and color in the previous sec-
tion, it can nevertheless play an important role in generating insight-
ful integral surface visualizations. In general, we have found high-
quality lighting, such as e.g. per-pixel evaluation of the commonly
used Phong lighting model using multiple light sources, to be con-
ducive to the impression of surface shape obtained by the viewer.
However, approximately photorealistic lighting is not optimal in some
situations. Especially in cases where the surface texture has strongly
varying intensity (such as LIC-like images or stripes), the added vari-
ation through diffuse shading can lead to confusing results, since both
shape and texture are encoded using only luminance information [35].
In these situations, it can be beneficial to adopt hue values such as
found e.g. in Gooch shading [12], to convey either of the two chan-
nels of information. Furthermore, since integral surfaces are typically
not closed, we have found it very helpful to choose different colors for
the two sides of the surface. To provide example illustrations, we used
the rendering pipeline described in Section 5 to produce renderings of
several integral surfaces computed for different flow fields.

(a) Windowed transparency provides insight while preserving con-

text.

(b) Normal-variation transparency preserves folds.

Fig. 9. A rising plume streak surface is rendered using different styles.

Plume We applied normal variation based transparency to a
streak surface in a dataset containing a rising plume (Fig. 9). The
plume contains many strongly folded surface parts that result in sharp
ridges. Here, normal-variation curvature is particularly effective in
preserving the opacity of the folds. In figure 9(a), a transparency win-
dow is used to preserve context.

Ellipsoid Figures 10(a) and 10(b) show a stream surface of a flow
field behind an ellipsoid (Figure 10). Normal-variation based trans-
parency is used to reveal the shape of the entire surface including oth-
erwise difficult to recognize inner tube-like structures. Recognition
of these shapes is further facilitated by the application of silhouettes.
The surface is rendered using different colors for front and back sides
(blue and orange, respectively). Thus, the viewer can recognize ar-
eas where the surface reverses orientation. For Figure 10(b), an adap-
tive rectangular grid pattern was used to visualize both streamlines
and timelines simultaneously. To avoid overwhelming the viewer with
excessive lines, the texture modulates the surface opacity multiplica-
tively and is thus subject to transparency modulation. This causes the
texture to be highlighted only on curved surface parts.

(a) Transparency based on normal variation conveys

surface shape.

(b) A grid pattern modulating opacity multiplica-

tively shows both streamlines and timelines.

(c) Using a noise texture blurred in t-direction results

in a LIC-like depiction of the flow.

Fig. 10. Flow behind an ellipsoid rendered using different styles.

Figures 7(a) and 7 demonstrate the effect of multiplicative versus
additive opacity modulation. Constant opacity is used with a striped
texture to visualize streamlines. With additive modulation, the stream-
lines are more clearly visible while multiplicative modulation causes
slightly less occlusion.

Figure 10(c) shows a rendering featuring an effect similar to Line
Integral Convolution, obtained by mapping a pre-convoluted (in t-
direction) noise texture onto the surface using the adaptive pattern
technique. The texture consists of noise blurred in t-direction. Cool-
warm shading is used together with silhouettes to convey shape infor-
mation.

Delta Wing Figure 12 shows renderings of a stream surface in
the delta wing dataset. To visualize the flow direction on the surface, a
stripe pattern along the s-direction is used with our adaptive pattern ap-
proach (Fig. 12 (a)). A user-defined window is used to restrict normal-
variation based transparency to a small area. In Figure 12 (b), front and
back side of the mesh are colored differently to indicate regions where
the surface is flipped. Both figures apply windowed transparency and
provide insight on the shape of otherwise hidden inner structures while
preserving the context in the scene.

Furthermore, Figure 11 (a) illustrates strong normal variation trans-
parency in combination with light silhouettes applied to the visualiza-
tion of a stream surface traversing a vortex breakdown bubble in the
same dataset. Even though the surface is quite complex, many layers
and tube structures can be well identified. For the same surface, a visu-
alization resembling a set of dense particle trajectories similar to those
generated from dye advection-type methods (e.g. [36]) can be obtained
with the adaptive pattern technique, shown in Figure 11) (b). Here,
s-stripes that indicate individual streamlines on an otherwise opaque
surface are further modulated in opacity and color to indicate direc-
tion and time. Note that even though the texture coordinates of the
surface are highly distorted, stripes are somewhat evenly distributed.

7 EVALUATION

While we have not attempted a systematic evaluation of the different
illustrative styles discussed above, we have shown the resulting depic-
tions to a number of collaborators from the flow simulation commu-
nity. In the informal feedback we have gathered, the adaptive trans-
parency was rated highly for providing improved insight into the in-
ner surface structures while maintaining the context and shape of the
surrounding layers. Here, the silhouettes were regarded important in
determining layer boundaries. Furthermore, the additional shape cues
provided through the adaptive patterns were determined useful to gain
insight into aspects of the flow not conveyed by shape alone. In gen-
eral, a more photorealistic look, including high-quality lighting, was
generally preferred over more abstract depictions. While the feedback

was largely positive, a more systematic study is indicated as future
work.

8 CONCLUSION

We have discussed several rendering techniques with regard to their
applicability for illustrative visualization of integral surfaces. The pre-
sented techniques are incorporated in an illustrative rendering frame-
work for integral surface visualization. View-dependent transparency
criteria provide improved visualization of deeply nested flow struc-

(a)

(b)

Fig. 12. Stream surface in the delta wing dataset, with windowed trans-
parency. In (a), a stripe texture is used to visualize streamlines, and
deeper layers of a vortex are visible. (b) shows a front view with two-
sided surface coloring.

(a)

(b)

Fig. 11. A stream surface visualizes flow inside a vortex breakdown bubble. In (a), the surface is rendered with strong normal variation transparency
and light silhouettes. The opaque red stripe illustrates the front of the surface. In (b), a modulated stripe texture conveys the impression of dense
particles traces; here, flow direction is indicated by intensity modulation, and velocity is expressed as the length of the traces.

tures, and an adaptive pattern approach easily allows application of
both shape-accentuating and flow-illustrating patterns and textures.
Our framework is applicable to dynamic or animated surfaces. It does
not require expensive preprocessing of the integral surface mesh, and
can thus be applied to both interactive and exploratory settings for
static as well as dynamic datasets. Furthermore, we have provided an
in-depth overview of the combined realization of the presented ren-
dering techniques in the form of a rendering framework, and have dis-
cussed specific steps in detail. We have demonstrated the capabilities
of our framework on several examples involving very complex integral
surfaces from CFD applications.

In the future, we wish to examine incorporating the concept of style
textures (described by Bruckner and Gröller [3]) into our rendering
pipeline to allow users to specify integral surface appearance by se-
lecting a style. Furthermore, we wish to examine the efficient and
effective mapping of glyphs onto the surface to allow users to anno-
tate the surface. Last but not least, we plan to evaluate our approach
through a formal user study.

ACKNOWLEDGMENTS

The authors wish to thank Markus Rütten from DLR Germany for the
datasets used in this paper. We also thank our colleagues at the Uni-
versity of Kaiserslautern and at the Institute for Data Analysis and
Visualization at UC Davis for discussion and support. This work was
supported in part by the Director, Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of Energy
under Contract No. DE-FC02-06ER25780 through the Scientific Dis-
covery through Advanced Computing (SciDAC) programs Visualiza-
tion and Analytics Center for Enabling Technologies (VACET).

REFERENCES

[1] L. Bavoli and K. Myers. Order-independent transparency with dual depth

peeling. NVIDIA Developer SDK 10, February 2008.

[2] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Tool-

glass and magic lenses: the see-through interface. In SIGGRAPH ’93:

Proceedings of the 20th annual conference on Computer graphics and

interactive techniques, pages 73–80, New York, NY, USA, 1993. ACM.

[3] S. Bruckner and E. Gröller. Style transfer functions for illustrative volume

rendering. Computer Graphics Forum, 26(3):715–724, 2007.

[4] P. Brunet, R. Scopigno, M. C. Sousay, and J. W. Buchananz. Computer-

generated graphite pencil rendering of 3d polygonal models. Computer

Graphics Forum, 18(3):195–207, 1999.

[5] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. Interactive streak

surface visualization on the gpu. IEEE Transactions on Visualization and

Computer Graphics, 15:1259–1266, 2009.

[6] B. Csebfalvi, L. Mroz, H. Hauser, A. König, and E. Gröller. Fast visu-

alization of object contours by non-photorealistic volume rendering. In

Proceedings of Eurographics, 2001.

[7] J. Diepstraten, D. Weiskopf, and T. Ertl. Transparency in interactive tech-

nical illustrations. Computer Graphics Forum, 21:2002, 2002.

[8] D. Ebert and P. Rheingans. Volume illustration: non-photorealistic ren-

dering of volume models. In VIS ’00: Proceedings of the conference on

Visualization ’00, pages 195–202, Los Alamitos, CA, USA, 2000. IEEE

Computer Society Press.

[9] B. Freudenberg, M. Masuch, and T. Strothotte. Walk-through illustra-

tions: Frame-coherent pen-and-ink style in a game engine. In In Pro-

ceedings of Eurographics 2001, pages 184–191, 2001.

[10] C. Garth, H. Krishnan, X. Tricoche, T. Tricoche, and K. I. Joy. Genera-

tion of accurate integral surfaces in time-dependent vector fields. IEEE

Transactions on Visualization and Computer Graphics, 14(6):1404–

1411, 2008.

[11] C. Garth, X. Tricoche, T. Salzbrunn, and G. Scheuermann. Surface tech-

niques for vortex visualization. In Proceedings Eurographics - IEEE

TCVG Symposium on Visualization, May 2004.

[12] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic

lighting model for automatic technical illustration. In SIGGRAPH ’98:

Proceedings of the 25th annual conference on Computer graphics and in-

teractive techniques, pages 447–452, New York, NY, USA, 1998. ACM.

[13] B. Gooch and A. A. Gooch. Non-Photorealistic Rendering. A. K. Peters

Ltd., 2001.

[14] G. Gorla, V. Interrante, and G. Sapiro. Texture synthesis for 3d shape rep-

resentation. IEEE Transactions on Visualization and Computer Graphics,

9(4):512–524, 2003.

[15] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. H. Gross. Real-

time ray-casting and advanced shading of discrete isosurfaces. Computer

Graphics Forum, 24(3):303–312, 2005.

[16] A. Hertzmann. Introduction to 3d non- photorealistic rendering: Sil-

houettes and outlines. In Non-Photorealistic Rendering (SIGGRAPH 99

Course Notes), 1999.

[17] J. P. M. Hultquist. Constructing stream surfaces in steady 3d vector fields.

In A. E. Kaufman and G. M. Nielson, editors, Proceedings of IEEE Visu-

alization 1992, pages 171 – 178, Boston, MA, 1992.

[18] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T. Strothotte.

A developer’s guide to silhouette algorithms for polygonal models. IEEE

Comput. Graph. Appl., 23(4):28–37, 2003.

[19] T. Judd, F. Durand, and E. H. Adelson. Apparent ridges for line drawing.

ACM Trans. Graph., 26(3):19, 2007.

[20] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-

based transfer functions for direct volume rendering: Methods and ap-

plications. In Proceedings of IEEE Visualization 2003, pages 513–520,

October 2003.

[21] H. Krishnan, C. Garth, and K. Joy. Time and streak surfaces for flow

visualization in large time-varying data sets. IEEE Transactions on Visu-

alization and Computer Graphics, 15(6):1267–1274, Oct. 2009.

[22] J. Krüger, J. Schneider, and R. Westermann. ClearView: An interactive

context preserving hotspot visualization technique. IEEE Transactions

on Visualization and Computer Graphics (Proceedings Visualization / In-

formation Visualization 2006), 12(5), September-October 2006.

[23] R. S. Laramee, C. Garth, J. Schneider, and H. Hauser. Texture advec-

tion on stream surfaces: A novel hybrid visualization applied to CFD

simulation results. In Proc. Eurovis 2006 (Eurographics / IEEE VGTC

Symposium on Visualization), pages 155–162, 2006.

[24] R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS:

Image space-based visualization of flow on surfaces. IEEE Transactions

on Visualization and Computer Graphics, 10(6):637–648, 2004.

[25] H. Löffelmann, L. Mroz, and E. Gröller. Hierarchical streamarrows for

the visualization of dynamical systems. In W. Lefer and M. Grave, edi-

tors, Proceedings of the 8th Eurographics Workshop on Visualization in

Scientific Computing, pages 203–211, 1997.

[26] H. Löffelmann, L. Mroz, E. Gröller, and W. Purgathofer. Stream arrows:

enhancing the use of stream surfaces for the visualization of dynamical

systems. The Visual Computer, 13(8):359 – 369, 1997.

[27] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatch-

ing. In SIGGRAPH ’01: Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, page 581, New York, NY,

USA, 2001. ACM.

[28] T. Saito and T. Takahashi. Comprehensible rendering of 3-d shapes. SIG-

GRAPH Comput. Graph., 24(4):197–206, 1990.

[29] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl. Point-based stream

surfaces and path surfaces. In Proc. Graphics Interface 2007, pages 289–

296, 2007.

[30] G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, B. Hamann, K. Joy,

and W. Kollmann. A tetrahedra-based stream surface algorithm. In Proc.

IEEE Visualization ’01 Conference, pages 151–158, 2001.

[31] M. C. Sousa, K. Foster, B. Wyvill, and F. Samavati. Precise Ink Drawing

of 3D Models. EUROGRAPHICS2003, 22(3):369–379, Sept. 2003.

[32] T. Strothotte and S. Schlechtweg. Non-Photorealistic Computer Graph-

ics. Morgan Kaufmann, 2002.

[33] J. van Wijk. Implicit stream surfaces. In Proceedings of IEEE Visualiza-

tion ’93 Conference, pages 245–252, 1993.

[34] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke sur-

faces: An interactive flow visualization technique inspired by real-world

flow experiments. IEEE Transactions on Visualization and Computer

Graphics, 14(6):1396–1403, 2008.

[35] D. Weiskopf and T. Ertl. A hybrid physical/device-space approach for

spatio-temporally coherent interactive texture advection on curved sur-

faces. In GI ’04: Proceedings of Graphics Interface, pages 263–270.

Canadian Human-Computer Communications Society, 2004.

[36] D. Weiskopf, T. Schafhitzel, and T. Ertl. Real-time advection and vol-

umetric illumination for the visualization of 3d unsteady flow. In Proc.

Eurovis (EG/IEEE TCVG Symp. Vis.), pages 13–20, 2005.

