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Abstract— Biometric methods based on iris images are be-
lieved to allow very high accuracy, and there has been an
explosion of interest in iris biometrics in recent years. In this pa-
per, we use the Scale Invariant Feature Transformation (SIFT)
for recognition using iris images. Contrarily to traditional iris
recognition systems, the SIFT approach does not rely on the
transformation of the iris pattern to polar coordinates or on
highly accurate segmentation, allowing less constrained image
acquisition conditions. We extract characteristic SIFT feature
points in scale space and perform matching based on the texture
information around the feature points using the SIFT operator.
Experiments are done using the BioSec multimodal database,
which includes 3,200 iris images from 200 individuals acquired
in two different sessions. We contribute with the analysis of
the influence of different SIFT parameters on the recognition
performance. We also show the complementarity between the
SIFT approach and a popular matching approach based on
transformation to polar coordinates and Log-Gabor wavelets.
The combination of the two approaches achieves significantly
better performance than either of the individual schemes, with
a performance improvement of 24% in the Equal Error Rate.

I. INTRODUCTION

Recognizing people based on anatomical (e.g., fingerprint,

face, iris, hand geometry, ear, palmprint) or behavioral char-

acteristics (e.g., signature, gait, keystroke dynamics), is the

main objective of biometric recognition techniques [1]. The

increasing interest on biometrics is related to the number of

important applications where a correct assessment of identity

is a crucial point. Biometric systems have several advantages

over traditional security methods based on something that

you know (password, PIN) or something that you have

(card, key, etc.). In biometric systems, users do not need

to remember passwords or PINs (which can be forgotten)

or to carry cards or keys (which can be stolen). Among all

biometric techniques, iris recognition has been traditionally

regarded as one of the most reliable and accurate biometric

identification system available [2]. Additionally, the iris is

highly stable over a person’s lifetime and lends itself to

noninvasive identification because it is an externally visible

internal organ [3].

Traditional iris recognition approaches approximates iris

boundaries as circles. The ring-shaped region of the iris is

then transferred to a rectangular image in polar coordinates

as shown in Figure 1, with the pupil center being the

center of the polar coordinates [4]. This transfer normalizes

the distance between the iris boundaries due to contrac-

tion/dilation of the pupil, the camera zoom or the camera
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to eye distance. When converting an iris region to polar

coordinates, it is necessary a very accurate segmentation

in order to create a similar iris pattern mapping between

images of the same eye [5]. Features are then extracted from

the rectangular normalized iris pattern. For this purpose, a

number of approaches have been proposed in the literature

[6], e.g.: Gabor filters, log-Gabor filters, Gaussian filters,

Laplacian-of-Gaussian filters, wavelet transforms, etc.

One of the drawbacks of traditional iris recognition ap-

proaches is that the transformation to polar coordinates can

fail with non-cooperative or low quality data (e.g. changes

in the eye gaze, non-uniform illumination, eyelashes/eyelids

occlusion, etc.) [5]. In this paper, we implement the Scale

Invariant Feature Transformation (SIFT) [7] for its use in bio-

metric recognition using iris images. SIFT extracts repeatable

characteristic feature points from an image and generates

descriptors describing the texture around the feature points.

The SIFT technique has already demonstrated its efficacy in

other generic object recognition problems, and it has been

recently proposed for its use in biometric recognition systems

based on face [8], [9], fingerprint [10] and iris images [5].

One of the advantages of the SIFT approach is that it

does not need transfer to polar coordinates. We have used

for our experiments the BioSec multimodal baseline corpus

[11] which includes 3,200 iris images from 200 individuals

acquired in two different sessions. We analyze the influence

of different SIFT parameters on the verification performance,

including the implementation of a technique to remove false

matches, as proposed previously for fingerprints [10]. We

also demonstrate that the proposed approach complements

Fig. 1. Normalization of the iris region to polar coordinates. The ring-
shaped region of the iris is transferred to a rectangular image, with the
pupil center being the center of the polar coordinates.
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Fig. 2. Architecture of an automated iris verification system using the SIFT operator.

traditional iris recognition approaches based on transforma-

tion to polar coordinates and Log-Gabor wavelets [12], [13].

In our experiments, the fusion of the two techniques achieves

a performance improvement of 24% in the Equal Error Rate.

Furthermore, since the SIFT technique does not require

polar transformation or highly accurate segmentation, and

it is invariant to changes in illumination, scale and rota-

tion, it is hoped that this technique will be feasible with

unconstrained image acquisition conditions. One of the major

current practical limitations of iris biometrics is the degree of

cooperation required on the part of the person whose image

is to be acquired. All existing commercial iris biometrics

systems still have constrained image acquisition conditions

[6]. Current efforts are aimed at acquiring images in a more

flexible manner and/or being able to use images of more

widely varying quality, e.g. the “Iris on the Move” project

[14], which is aimed to acquire iris images as a person walks

at normal speed through an access control point such as those

common at airports. This kind of systems would drastically

reduce the need of user’s cooperation, achieving transparent

and low-intrusive biometric systems, with a higher degree of

acceptance among users.

The rest of the paper is organized as follows. Section II

describes the SIFT algorithm. Section III describes our

experimental framework, including the database used, the

protocol, and the results. Finally, conclusions and future work

are drawn in Section IV.

II. SCALE INVARIANT FEATURE

TRANSFORMATION (SIFT)

Scale Invariant Feature Transformation (SIFT) [7] was

originally developed for general purpose object recognition.

SIFT detects stable feature points of an object such that

the same object can be recognized with invariance to illu-

mination, scale, rotation and affine transformations. A brief

description of the steps of the SIFT operator and their use

in iris recognition is given next. The diagram of a iris

recognition system using the SIFT operator is shown in

Figure 2.

A. Scale-space local extrema detection

The first step is to construct a Gaussian scale space, which

is done by convolving a variable scale 2D Gaussian operator

G (x, y, σ) with the input image I (x, y):

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) (1)

Difference of Gaussian (DoG) images D (x, y, σ) are then

obtained by subtracting subsequent scales in each octave:

D (x, y, σ) = L (x, y, kσ) − L (x, y, σ) (2)

where k is a constant multiplicative factor in scale space.

The set of Gaussian-smoothed images and DoG images are

called an octave. A set of such octaves is constructed by

successively down sampling the original image. Each octave

(i.e., doubling of σ) is divided into an integer number s of

scales, so k = 21/s. We must produce s+3 images for each

octave, so that the final extrema detection covers a complete

octave. In this paper we have used s=3, thus producing six

Gaussian-smoothed images and five DOG images per octave,

and a value of σ=1.6 (values from Lowe [7]). Figure 3 shows

3 successive octaves with 6 scales and the corresponding

difference images.

Local extrema are then detected by observing each image

point in D (x, y, σ). A point is decided as a local minimum

or maximum when its value is smaller or larger than all

its surrounding neighboring points. Each sample point in

D (x, y, σ) is compared to its eight neighbors in the current

image and nine neighbors in the scale above and below.

B. Accurate Keypoint Localization

Once a keypoint candidate has been found, if it observed

to have low contrast (and is therefore sensitive to noise) or

if it is poorly localized along an edge, it is removed because

it can not be reliably detected again with small variation

of viewpoint or lighting changes. Two thresholds are used,

one to exclude low contrast points and other to exclude edge

points. More detailed description of this process can be found

in the original paper by Lowe [7].

C. Orientation assignment

An orientation histogram is formed from the gradient ori-

entations within a 16×16 region around each keypoint. The

orientation histogram has 36 bins covering the 360 degree

range of orientations. Each sample added to the histogram



Fig. 3. Example of SIFT scale space construction. The figure shows 3 successive octaves, with 6 scales per octave, and the corresponding difference
images.

is weighted by its gradient magnitude and by a Gaussian-

weighted circular window centered at the keypoint. The

purpose of this Gaussian window is to give less emphasis to

gradients that are far from the center of the local extremum.

The highest peak in the histogram is then detected, as well

as any other local peak that is within 80% of the highest peak.

For locations with multiple peaks, there will be multiple

keypoints created at the same location, but with different

orientations. The major orientations of the histogram are

then assigned to the keypoint, so the keypoint descriptor can

be represented relative to them, thus achieving invariance to

image rotation.

D. Keypoint descriptor

In this stage, a distinctive descriptor is computed at each

keypoint. The image gradient magnitudes and orientations,

relative to the major orientation of the keypoint, are sam-

pled within a 16×16 region around each keypoint. These

samples are then accumulated into orientation histograms

summarizing the contents over 4×4 subregions, as shown

in Figure 4. Each orientation histogram has 8 bins covering

the 360 degree range of orientations. Each sample added

to the histogram is weighted by its gradient magnitude

and by a Gaussian circular window centered at the local

extremum. The descriptor is then formed from a vector

containing the values of all the orientation histogram entries,
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Fig. 4. Computation of SIFT keypoint descriptor (image from [7]).
The gradient magnitude and orientation at each image sample point in a
region around the keypoint location is first computed, as shown on the left,
weighted by a Gaussian window (indicated by the overlaid circle). These
samples are then accumulated into orientation histograms summarizing the
contents over 4×4 subregions, as shown on the right, with the length
of each arrow corresponding to the sum of the gradient magnitudes near
that direction within the region. The figure shows a 2×2 descriptor array
computed from an 8×8 set of samples, whereas the experiments in this
paper use 4×4 descriptors computed from a 16×16 sample array.

therefore having a 4×4×8=128 element feature vector for

each keypoint.

E. Keypoint matching

Matching between two images I1 and I2 is performed

by comparing each local extrema based on the associated

descriptors. Given a feature point p11 in I1, its closest point

p21, second closest point p22, and their Euclidean distances

d1 and d2 are calculated from feature points in I2. If the

ratio d1/d2 is sufficiently small, then points p11 and p21

are considered to match. Then, the matching score between

two images can be decided based on the number of matched

points. According to [7], we have chosen a threshold of 0.76
for the ratio d1/d2.

F. Trimming of false matches

The keypoint matching procedure described may generate

some erroneous matching points. We have removed spurious

matching points using geometric constraints [10]. We limit

typical geometric variations to small rotations and displace-

ments. Therefore, if we place two iris images side by side and

draw matching lines as shown in Figure 5 (top), true matches

must appear as parallel lines with similar lengths. According

to this observation, we compute the predominant orientation

θP and length ℓP of the matching, and keep the matching

pairs whose orientation θ and length ℓ are within predefined

tolerances εθ and εℓ, so that |θ − θP | < εθ and |ℓ − ℓP | < εℓ.

The result of this procedure is shown in Figure 5 (bottom).

III. EXPERIMENTAL FRAMEWORK

A. Database and protocol

For the experiments in this paper, we use the BioSec

baseline database [11]. It consists of 200 individuals acquired

in two acquisition sessions, separated typically by one to four

weeks. A total of four iris images of each eye, changing

eyes between consecutive acquisitions, are acquired in each

session. The total number of iris images is therefore: 200

Fig. 5. Matching of two iris images using SIFT operators without and with
trimming of false matches using geometrical constraints (top and bottom,
respectively). Trimming of false matches is done by removing matching
pairs whose orientation and length differ substantially from the predominant
orientation and length computed from all the matching pairs.

individuals × 2 sessions × 2 eyes × 4 iris = 3,200 iris

images. We consider each eye as a different user, thus having

400 users. Glasses were removed for the acquisition, while

the use of contact lenses was allowed. The database have

been acquired with the LG Iris Access 3000 sensor, with an

image size of 640 pixels width and 480 pixels height. Some

iris examples are shown in Figure 6.

The 200 subjects included in BioSec Baseline are further

divided into [11]: i) the development set, including the first

25 and the last 25 individuals of the corpus, totaling 50

individuals; and ii) the test set, including the remaining

150 individuals. The development set is used to tune the

parameters of the verification system and of the fusion exper-

iments done in this paper (indicated later in this Section). No

training of parameters is done on the test set. The following

matchings are defined in each set: a) genuine matchings: the

4 samples in the first session to the 4 samples in the second

session; and b) impostor matchings: the 4 samples in the first

session to 1 sample in the second session of the remaining

users. With the development set, this results in 50 individuals

× 2 eyes × 4 templates × 4 test images = 1, 600 genuine

scores, and 50 individuals × 2 eyes × 4 templates × 49 test

images = 19, 600 impostor scores. Similarly, for the test set

we have 150 individuals × 2 eyes × 4 templates × 4 test

images = 4, 800 genuine scores, and 150 individuals × 2
eyes × 4 templates × 149 test images = 178, 800 impostor

scores.

We have automatically segmented all the iris images using

circular Hough transform in order to detect the iris and pupil

boundaries, which are modeled as two concentric circles [4].

Then, automatically segmented images have been visually

inspected to manually correct images not well segmented.

With this procedure, we obtain a correct segmentation of

the 100% of the database. The objective is avoid bias in the

matching performance due to incorrectly segmented images.



Fig. 6. Iris examples from the BioSec database.

We then construct a binary mask that includes only the iris

region and use it to discard SIFT keypoints being detected

outside the mask. An example of segmented images together

with the detected SIFT keypoints can be seen in Figure 7.

Since eyelash and eyelid occlusion is not very prominent

in our database, no technique was implemented to detect

eyelashes or eyelids.

B. Baseline iris matcher

In order to compare the performance of the proposed

iris recognition system based on SIFT features, we use as

baseline iris matcher the freely available1 iris recognition

system developed by Libor Masek [12], [13], which is

based on transformation to polar coordinates and Log-Gabor

wavelets.

This system performs a normalization of the segmented

iris region by using a technique based on Daugman’s rubber

sheet model [4]. The centre of the pupil is considered as

the reference point, and radial vectors pass through the iris

region. Since the pupil can be non-concentric to the iris, a

remapping formula for rescale points depending on the angle

around the circle is used. Normalization produces a 2D array

with horizontal dimensions of angular resolution and vertical

dimensions of radial resolution. This normalization step is as

shown in Figure 1.

Feature encoding is implemented by convolving the nor-

malized iris pattern with 1D Log-Gabor wavelets. The 2D

normalized pattern is broken up into a number of 1D signals,

and then these 1D signals are convolved with 1D Gabor

wavelets. The rows of the 2D normalized pattern are taken

as the 1D signal, each row corresponds to a circular ring on

the iris region. It uses the angular direction since maximum

independence occurs in this direction [12].

1The source code can be freely downloaded from www.csse.uwa.

edu.au/˜pk/studentprojects/libor/sourcecode.html

The output of filtering is then phase quantized to four

levels using the Daugman method [4], with each filtering

producing two bits of data. The output of phase quantization

is a grey code, so that when going from one quadrant to

another, only 1 bit changes. This will minimize the number

of bits disagreeing, if say two intra-class patterns are slightly

misaligned and thus will provide more accurate recognition

[12]. The encoding process produces a bitwise template

containing a number of bits of information.

For matching, the Hamming distance (HD) is chosen

as a metric for recognition, since bitwise comparisons are

necessary. In order to account for rotational inconsistencies,

when the Hamming distance of two templates is calculated,

one template is shifted left and right bitwise and a number

of Hamming distance values is calculated from successive

shifts [4]. This method corrects for misalignments in the nor-

malized iris pattern caused by rotational differences during

imaging. From the calculated distance values, the lowest one

is taken.

C. Results

First, the SIFT matcher is optimized in terms of its

different parameters. The experimental parameters to be set

are: the scale factor of the Gaussian function σ=1.6; the

number of scales s=3; the threshold D excluding low contrast

points; the threshold r excluding edge points (r=10); the

threshold of the ratio d1/d2 (set to 0.76) and the tolerances

εθ and εℓ for trimming of false matches. The indicated values

of the parameters have been extracted from Lowe [7]. We

have noted however that the threshold D indicated in [7]

discards too many SIFT keypoints of the iris region (D=0.03

when pixel values are in the range [0,1]). Thus, together with

εθ and εℓ, we have decided to find an optimal value also for

D.

Figure 8 shows the verification performance of our SIFT

implementation on the development set in terms of EER (%)

as we vary εθ and εℓ when D=0.25/255, D=0.5/255 and



Fig. 7. Example of segmented images together with their detected SIFT keypoints.

D=0.75/255. The optimal combination of parameters in these

three cases (i.e. those that results in the lowest EER) are

also summarized in Table I, together with the case where no

trimming of false matches is carried out. We observe that by

trimming out false matches using geometric constraints, the

EER is reduced to the fourth part.

Based on the results of Figure 8 and Table I, the best

combination of parameters is therefore D=0.25/255, εθ=18

and εℓ=14. Figure 9 depicts the performance of the SIFT

matcher for this case. We observe that the optimal value of D
in our SIFT implementation, D=0.25/255≃0.00098, is much

lower than 0.03 (as recommended in [7]). Concerning the

values of the tolerances εθ and εℓ, it can be seen in Figure 8

that the EER monotonically decreases as the two tolerances

are increased until a minimum in the EER is reached (the

exact values of εθ and εℓ at the minimum are indicated in

Table I). Once this minimum is reached, the EER is slightly

increased again with the tolerances.

We now compare the performance of our SIFT imple-

mentation with the baseline iris matcher of Section III-B.

Figure 10 comparatively shows the performance of the two

matchers using DET curves, both on the development and on

the test set. We also have performed a fusion of the SIFT and

baseline matchers using sum rule with tanh normalization

[15]:

s′ =
1

2

{

tanh

(

0.01

(

s − µs

σs

))

+ 1

}

(3)

where s is the raw similarity score, s′ denotes the normalized

similarity score, and µs and σs are respectively the estimated

mean and standard deviation of the genuine score distri-

bution. Table II summarizes the Equal Error Rates (EER)

computed from Figure 10. We observe that the fusion of the

two matchers results in better performance than either of the

two matchers,

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the use of the SIFT

operator for iris feature extraction and matching. There have

been a few studies using SIFT for face [8], [9] and fingerprint

[10] recognition, and some recent studies also for iris [5]. In

this work, we contribute with the analysis of the influence of
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Fig. 8. Development set. Verification results of the SIFT matcher in terms
of EER (%) depending on the threshold D and the tolerances of angle (εθ)
and distance (εℓ).

different SIFT parameters on the verification performance,

including trimming of false matches with geometric con-

straints, as proposed in [10] for the case of fingerprints.

Although the performance of our implementation is below

popular matching approaches based on transformation to

polar coordinates and Log-Gabor wavelets, we also show that

their fusion provides a performance improvement of 24%

in the EER. This is because the sources of information used

in the two matchers are different, providing complementary

sources of information.

Future work will be focused on the improvement of the

SIFT matcher by detecting eyelids, eyelashes and specular

D εθ εℓ EER

0.25 - - 36.85%

0.25 18 14 9.68%

0.5 14 16 9.92%

0.75 18 14 10.96%

1 16 14 14.03%

TABLE I

DEVELOPMENT SET - SIFT MATCHER. OPTIMAL COMBINATIONS OF THE

PARAMETERS D AND TOLERANCES OF ANGLE (εθ ) AND DISTANCE (εℓ).

THE COMBINATION RESULTING IN THE LOWEST EER IS MARKED IN

BOLD. THE FIRST ROW INDICATES THE CASE WHERE NO TRIMMING OF

FALSE MATCHES IS CARRIED OUT.

SIFT Baseline Fusion

Development set 9.68% 4.64% -

Test set 11.52% 3.89% 2.96%

TABLE II

EER OF SIFT, BASELINE AND FUSION MATCHERS.

reflections [6], thus discarding SIFT keypoints computed

in these regions. We are also working on the inclusion of

local iris quality measures [16] to account for the reliability

of extracted SIFT points, so if the quality is high for two

matched points, they will contribute more to the computation

of the matching score.

Current iris recognition systems based on accurate seg-

mentation and transformation to polar coordinates rely on

cooperative data, where the irises have centered gaze, little

eyelashes or eyelids occlusion, and illumination is fairly

constant [5]. The SIFT-based method does not require polar

transformation or highly accurate segmentation, and it is

invariant to illumination, scale, rotation and affine trans-

formations [7]. This makes the SIFT approach feasible for

biometric recognition of distant and moving people, e.g. the

“Iris on the Move” project [14], where a person is recognized

while walking at normal speed through an access control

point such as those common at airports. Currently this is

one of the research hottest topics within the international

biometric community [17], which drastically reduces the

need of user’s cooperation, and it will be another important

source of future work.
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