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Abstract: An overview of the iris image segmentation methodologies for biometric purposes is
presented. The main focus is on the analysis of the ability of segmentation algorithms to process
images with heterogeneous characteristics, simulating the dynamics of a non-cooperative
environment. The accuracy of the four selected methodologies on the UBIRIS database is tested
and, having concluded about their weak robustness when dealing with non-optimal images
regarding focus, reflections, brightness or eyelid obstruction, the authors introduce a new and
more robust iris image segmentation methodology. This new methodology could contribute to
the aim of non-cooperative biometric iris recognition, where the ability to process this type of
image is required.

1 Introduction

The use of biometric systems has been increasingly encour-
aged by both government and private entities in order to
replace or improve traditional security systems.

The iris is commonly recognised as one of the most
reliable biometric measures: it has a random morphogenesis
and no genetic penetrance. In 1987, Flom and Safir [1]
studied the problem and concluded that iris morphology
remains stable throughout human life and also estimated
the probability of the existence of two similar irises on dis-
tinct persons at 1 in 1072.

The emerging needs for a safer and quicker access (build-
ings, weapons, restricted areas) requires non-cooperative
techniques. In this paper, we consider a non-cooperative
technique where the user has no active participation in the
image-capture process and is not even aware of the recog-
nition process.

As an example, we can think of a building access where
users do not need to look through a small hole to have their
irises recognised, but instead, an image-capture system
captures the necessary information from their irises as
they approach the door. This is much less invasive and
will enable the dissemination of iris recognition systems
to everyday applications.

Obviously, these image-capture conditions tend to
acquire images with more heterogeneous characteristics
with respect to reflection areas, brightness and contrast or
focus conditions.

Having analysed the accuracy of some of the most cited
iris image segmentation methodologies, we have concluded
that they have small tolerance to image noise and thus
are inappropriate for the application on non-cooperative
recognition systems.

Our aim is to develope a new iris image segmentation
methodology with a more robust behaviour. In order to
do this, we use the UBIRIS [2] database, which contains
very heterogeneous images and images with several types
of noise, simulating the image capture without user
cooperation.

1.1 Non-cooperative recognition

Despite the fact that many of the iris recognition approaches
obtain minimal error rates, they do so under particularly
favourable conditions, having as a prerequisite the existence
of good quality images. These conditions are not easy to
obtain and usually require the active cooperation of sub-
jects, subjecting them to a slow and uncomfortable image-
capture process.

We can easily anticipate some of the advantages of a
non-cooperative iris recognition system.

† Security: As no cooperation is needed, the users do not
have to know the location of the image-capture framework.
Obviously, it is much more difficult to deceive a system
when the subject does not know when and where the
system is doing the recognition task.
† User commodity: The users’ cooperation on the image-
capture process lasts several seconds and it is often necess-
ary to repeat the process. The fact that the users will not
have to do this task will increase their commodity.
† Total recognised persons: Non-cooperative recognition
systems will have a higher functioning radius than that of
cooperative systems (usually less than 1 m). More time
for the recognition task will increase the number of
recognised persons.

It is obvious that this kind of system will require a comp-
lementary image-capture framework and computer vision
techniques that can identify the person’s silhouette, localise
face and eye regions of the subject and provide the
images from each of the subject’s eyes. These systems are
presently functioning for several other purposes and
should not constitute an obstacle for non-cooperative iris
recognition.

The dynamic conditions of such a non-cooperative
environment induces the captured images to have more
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heterogeneous characteristics regarding focus, contrast,
brightness, reflections and eyelid or eyelashes obstruction
parameters. It is important that the segmentation algorithms
can adapt to such conditions and do not decrease their accu-
racy significantly.

2 Iris image segmentation methodologies

Since 1987, when the first relevant methodology was pre-
sented by Flom and Safir [1], many distinct approaches
have been proposed. In 1993, Daugman [3] presented one
of the most relevant methodologies, constituting the basis
for many functioning systems. In the segmentation stage,
this author introduced an integrodifferential operator to
find both the iris inner and outer borders. This operator
remains actual and was proposed with some minor differ-
ences in 2004 by Nishino and Nayar [4].

In a similar form, Camus and Wildes [5] and Martin-
Roche et al. [6] propose integrodifferential operators that
search over an N3 space having as a objective the maxi-
misation of equations that identify the iris borders. Wildes
[7] proposed iris segmentation through a gradient-based
binary edge-map construction followed by circular Hough
transform. This is the most common methodology, being
proposed with several minor variants in [8–13].

Liam et al. [14] have proposed a simple method on the
basis of threshold and function maximisation in order to
obtain two ring parameters corresponding to the iris inner
and outer borders.

Du et al. [15] have proposed an iris detection method on
the basis of prior pupil identification. The image is then
transformed into polar coordinates and the iris outer
border is identified as the largest horizontal edge resultant
from Sobel filtering. This approach may fail in the case of
non-concentric iris and pupil, as well as in very dark iris
textures.

Morphologic operators were applied by Mira and Mayer
[16] to obtain iris borders. They detect the inner border by
applying threshold and image opening and closing and the
outer border by applying image threshold, closing and
opening sequences. On the basis of the assumption that the
image-captured intensity values can be well represented by
a mixture of three Gaussian distribution components,
Kim et al. [17] have proposed the use of the expectation–
maximisation algorithm [18] to estimate the respective distri-
bution parameters. They expect that ‘dark’, ‘intermediate’
and ‘bright’ distributions contain the pixels corresponding
to the pupil, iris and reflection areas.

The analysis of the iris recognition literature allowed us
to identify two major strategies for iris segmentation:
using a rigid or deformable template of the iris or its bound-
ary. In most cases, the boundary approach is very similar to
that of Wildes: it begins by the construction of an edge map
followed by the application of some geometric form fitting
algorithm. The template-based strategy usually involves the
maximisation of some equations and is in general more
specific.

Based on these facts, we selected four from these meth-
odologies: the classical boundary-based Wildes’ approach
and three of the template approaches (Daugman’s, Camus
and Wildes’ and Martin-Roche et al.’s). These were
chosen because of their relevance in the literature, the
results presented by the authors and by our belief that
they are representative of the majority of the earlier-
described methodologies.

The next sections detail the four selected methodologies,
which were implemented and tested on the UBIRIS
database.

2.1 Daugman’s method

This methodology [3] is clearly the most cited in iris recog-
nition literature. It is licensed to Iridian Technologies
who turned it into the basis for 99.5% of the present-day
commercial iris recognition systems. Proposed in 1992, it
was the first methodology effectively implemented in a
working biometric system.

Daugman [3] assumed both pupil and iris with a circular
form and applied an integrodifferential operator

max r;x0;y0
GsðrÞ �

@

@r

þ
r;x0;y0

Iðx; yÞ

2pr
ds

�����

����� ð1Þ

This operator searches over the image domain (x, y) for the
maximum in the blurred (by a Gaussian kernel Gs(r))
partial derivative with respect to increasing radius r, of
the normalised contour integral of I(x, y) along a circular
arc ds of radius r and centre coordinates (x0, y0). In practical
terms, this method searches in an N3 space for the circum-
ference centre and radius that have the highest derivative
value when compared with that of neighbour radius. This
process, as shown in Section 5.2, proved to be very effective
on images with clear intensity separability between iris,
pupil and sclera regions.

However, we observed that it frequently fails when
images do not have sufficient intensity separability
between iris and sclera regions. As possible optimisations,
we implemented two pre-process operations that enhanced
image contrast and contributed to the improvement of the
results (Section 5.2).

† Histogram equalisation: This operation improves the
contrast between each eye’s region, thus contributing to
the correct algorithm segmentation.
† Binarisation: Applying a threshold on an image before
the operator’s execution enables the maximisation of the
contrast between the regions belonging to the iris and the
remaining ones. This process has, however, one major dis-
advantage: it is highly dependent on the threshold chosen
and as image characteristics may change, the results may
seriously deteriorate. Apart from this fact, the binarisation
compromises one of this methodology’s biggest advan-
tages: the inexistence of user-defined parameters for the
segmentation task.

2.2 Wildes’ method

This methodology, proposed in 1997 by Wildes [7],
performs its contour fitting in two steps. First, the image
intensity information is converted into a binary edge map.
Second, the edge points vote to instantiate particular
contour parameter values.

The construction of the edge map is accomplished
through the gradient-based Canny edge detector. In order
to incorporate directional tuning, the image intensity deri-
vatives are weighted to favour ranges of orientation. For
example, on the iris/sclera border, the derivatives are
weighted to be selective for vertical edges.

The second step is made through the well-known circular
Hough transform where each edge point votes for particular
contour parameter values.

This methodology is clearly the most common in iris seg-
mentation approaches, having as a principal disadvantage
the dependence of threshold values on the edge-map con-
struction. This fact can obviously constitute one weak
point as far as the robustness is concerned and includes
the ability to deal with heterogeneous image characteristics.
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Regarding this methodology, we observed that the edge-
detector algorithm and the necessary tuned parameters are
critical factors for its accuracy. We tested this methodology
with three distinct and well-known edge-detector algor-
ithms: Canny, Shen and Castan and zero-crossing.

2.3 Camus and Wildes’ method

Camus and Wildes [5] described an algorithm for finding
a subject’s iris in a close-up image. In a way similar to
Daugman’s methodology [3], their algorithm searches
in an N3 space for the three circumference parameters
(centre (x, y) and radius z) by maximising the following
function

C ¼
Xn

u¼1

ðn� 1Þkgu;rk �
Xn

f¼uþ1

kgu;r � gf;rk �
Iu;r

n

 !
ð2Þ

where n is the total number of directions and Iu,r and gu,r are,
respectively, the image intensity and derivatives with
respect to the radius in the polar coordinate system.

This methodology (see Section 5.2) is very accurate on
images where the pupil and iris regions’ intensities are
clearly separated from the sclera ones and on images that
contain no reflections or other noise factors. When
dealing with noisy data, the algorithm’s accuracy deterio-
rates significantly.

2.4 Martin-Roche et al.’s method

This methodology, proposed in [6], operates in a way
similar to Daugman’s. It receives a grey-scale image,
applies the histogram stretch and tries to maximise the
average intensity differences of the five consecutive circum-
ferences, defined as

D ¼
X

m

X5

K¼1

ðIn;m � In�k;mÞ

 !
ð3Þ

where Ii,j ¼ I(x0þ iDr cos( jDQ), y0þ IDr sin( jDQ)). Dr and
DQ are the increments of radius and angle, respectively, and
I(x, y) is the image intensity.

In practical terms, this method finds three N3 circum-
ference parameters (centre (x, y) and radius r), where the
intensity difference between five successive circumferences
is maximal.

3 Proposed methodology

As described in Section 2, common iris segmentation
methodologies either apply an edge-detector operator for
the edge-map construction or analyse the intensity deriva-
tives with respect to the radius of consecutive circumfer-
ences. Both situations are dependent on the specific image
characteristics, its brightness and contrast, as well as the
existence of noise factors (reflections, eyelids or eyelashes,
iris obstruction, and so on).

The development of a new iris segmentation method-
ology with robust behaviour in the presence of hetero-
geneous and noisy images begins with the identification
of a feature set less dependent on particular image charac-
teristics and noise factors. This feature set should contain
enough information to separate the pixels belonging to the
iris from the remaining ones.

Moment functions are widely used in various realms of
computer vision and image processing. Numerous algor-
ithms and techniques have been developed using image
moments in the area of pattern recognition. Tuceryan [19]

found that the computed image moments could capture
important textural properties of images and some of the
tested images were very similar in terms of the texture to
those contained in UBIRIS.

For these reasons, we have evaluated the accuracy of the
segmentation process proposed by Tuceryan [19] on the
UBIRIS database and used this process as the basis for
the development of a more accurate and robust iris image
segmentation methodology.

3.1 Tuceryan’s methodology

Tuceryan [19], proposed a moment-based texture segmenta-
tion algorithm, using the moments in small windows of the
image as texture features and then applying a clustering
algorithm to segment the image. The second-order regular
geometric moments for each pixel in the image are com-
puted using

Mpq ¼
XW=2

�W=2

XW=2

�W=2

ðIðm; nÞxp
m yq

nÞ

 !
ð4Þ

where Mpq is the regular geometric moment of order pq,
I(m, n) the pixel image intensity, x, y the neighbourhood
window coordinates and W the width.

Tuceryan [19] concluded that these regular moments did
not have sufficient discriminant capacity and proposed
the application of the hyperbolic tangent as a non-linear
transducer followed by an averaging step

Fpqði; jÞ ¼
1

L2

X
ða;bÞ[Wij

tanhðsðMpqða; bÞ � �MÞÞ
� �

ð5Þ

where Fpq is the feature image of the Mpq moments
with mean M̄ and Wij is an L � L average window centred
at location (i, j). s is a parameter that controls the shape
of the logistic function and was determined, by trial and
error, as 0.01 for most cases.

At the classification stage, the well-known clustering
K-means algorithm is applied producing as output the n
clusters-labelled image.

3.2 Our methodology

Our segmentation algorithm is given in the block diagram
of Fig. 1. The essential point consists in making the
edge-map construction less dependent on the specific
image characteristics. A normalised (clustered) intermedi-
ate image is produced that will be used for the edge-map
construction.

The process begins with the image-feature extraction
where three discrete values are extracted for each image
pixel, followed by the application of a clustering algorithm
that will label (classify) each pixel and produce the
intermediate image.

Original
image

Feature
extraction

Fuzzy
clustering

Normalised
image

Segmented
iris

Circular Hough
transform

Edge map

Canny edge
detector

Fig. 1 Proposed methodology block diagram
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This image is then used by the edge-detector algorithm
and, as it has more homogeneous characteristics, facilitates
the tuning of the parameters required by the edge-detector
algorithm. A more accurate edge map enables a higher
accuracy of the circular Hough transform in its circumfer-
ence detection task.

3.2.1 Feature extraction: We did several tests to select
the best feature set and evaluate which set could simul-
taneously and clearly identify the iris regions and minimise
the noisy information related to eyelashes and eyelids
(Fig. 2).

We concluded that three discrete components fx, y, zg,
being (x, y) the coordinates of the pixel position on the
image and z the correspondent pixel image intensity, can
characterise each pixel and enable a correct segmentation.
This feature set, hereinafter named ‘Pixel positionþ
intensity’, preserves information about the spatial relations
in the image as well as about the individual properties of
each pixel.

The moments F20 and F02 proved to correctly identify the
iris border but also produced considerable noise regarding
the eyelid regions. This noise is an important obstacle to
the posterior circumference detection stage.

3.2.2 Clustering algorithm: For the clustering (classifi-
cation) algorithm, the most important feature is its capacity
to classify, in the same class, all the pixels belonging to the
iris and all the remaining ones in a distinct one. For this
purpose, we evaluated four unsupervised clustering and
classification algorithms:

Kohonen’s self-organising maps: Also called topological
ordered maps, the goal of this algorithm is to represent all
points in the source space by points in the target space,
such that distance and proximity relationships are preserved
as much as possible. The task is this: having an input space f
and a sequence of input points, to create a mapping from f to
the target space y such that points neighbouring in the source
space are mapped to points that are neighbouring in y. The
map is usually learned by a fully connected neural
network where each cell represents a point in the target
space. When a pattern from f is presented, each cell in the
target space computes its net activation and one of the
cells is activated. All weights from this cell and its neigh-
bours are then adjusted in relation to the input pattern.

K-means: Having a predefined number of k clusters and n
data points, each one with dimension d, the algorithm
begins by randomly initialising each coordinate of the k
clusters. The distance between data points and clusters is
computed and each input corresponds to one activated
cluster. The weights of this cluster are adjusted in relation

to the input so that at the end of each iteration, the distance
between data points and clusters is minimal. This process
is repeated iteratively until the cluster weights are not
adjusted. At this point, the k clusters are returned as the
algorithm output.

Fuzzy K-means: In every iteration of the classical
k-means procedure, each data point is assumed to belong
exactly and completely to one cluster. Relaxing this con-
dition, we can think that each sample has a fuzzy member-
ship to each of the k clusters. These memberships are
equivalent to the probabilities P̂(wijxj, û ), where û is the
parameter vector for the membership functions. The fuzzy
k-means clustering algorithm seeks a minimum of a heuris-
tic global cost function Jfuz [20]

Jfuz ¼
Xc

i¼1

Xn

j¼1

ðP̂ðwijxj;ûÞ
b
kxj � mik

2Þ

 !
ð6Þ

where b is a free parameter chosen to adjust the blending of
different clusters. In practical terms, for each input pre-
sented, all the clusters will have to adjust their weights,
regarding the distance between the input and the cluster
weights, which are the probabilities that the input belongs
to each cluster.

Expectation–maximisation: The basic idea of this algorithm
is to iteratively estimate the likelihood, given the data that
are present. Suppose xi is the ith observation of the
random variable X. Let fj(xjuj), 1 � j � L, be a set of L
density functions, each having its parameter set uj. The
density function of the random variable X can be modelled
as a weighted sum of the L density functions as

f ðxjuÞ ¼
XL

j¼1

ðpj fjðxjujÞÞ ð7Þ

where pj, 1 � j � L, are the weights. The aim of the
maximum-likelihood (ML) estimation is to find the set of
u and p that maximises the likelihood function P(x) with
respect to the given data xi

PðxÞ ¼
YN
i¼1

XL

j¼1

ðpj fjðxjujÞÞ

 !
ð8Þ

The observed data are supposed to be a subset of the com-
plete data y. The expectation–maximisation algorithm
starts by using an initial estimate û 0 before performing
the following two steps at each iteration:

expectation step:

Qðu; û ju pÞ ¼ Eðlog f ð yjuÞjx; û
p
Þ; and

maximisation step:

û
pþ1
¼ arg maxu Qðu jû

p
Þ

Table 1 presents the results obtained for every feature set
and the clustering (classification) algorithm tested. The
information about the iris image data set and the way the
results were obtained is detailed, respectively, in Sections
4.1 and 5.2.

These results led us to select the fuzzy K-means algorithm
and the three discrete features: (x, y) corresponding to the
pixel position and z to its intensity. As can be seen, consider-
ing all the evaluated algorithms, this configuration presents
the smallest degradation between the first and second
capture-session images, thus presenting a more tolerant beha-
viour and better capacity to deal with non-optimal data.

Pixel position + pixel

intensity
6 moments Pixel position + 6

moments

Moments F20 + F02 Pixel position +

moment F20

Pixel position +

moment F10

a b c

d e f

Fig. 2 Tested feature sets
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4 Iris databases

Apart from UBIRIS, there are presently four public and
freely available iris image databases:

CASIA [21]. This is the most widely used iris image data-
base, having two distinct versions. The first version has
one major disadvantage: the authors pre-processed the
images such that the pupil region is identified and filled
with black pixels. Some iris segmentation approaches
profit from this pre-processing and improve their segmenta-
tion results. The second version does not have this disad-
vantage and introduces several noise factors, especially
relative to eyelids and eyelashes obstruction and focus
quality. However, we observed that almost all images
appeared to be captured at similar lighting conditions, redu-
cing its heterogeneity and the usefulness for the purpose of
evaluating the robustness of segmentation algorithms.

Multimedia University (MMU) [22]. Images from this data-
base present few noise factors and their characteristics are
also very homogeneous. A fixed image-capture process
must have been followed, clearly simulating a cooperative
environment.

University of Bath [23]. Images from this database are quite
similar to the ones contained in MMU. They have very
similar characteristics and few noise factors, almost exclu-
sively related with small eyelid or eyelashes obstructions.

Lions Institute [24]. These are by far the most homogeneous
iris database images; thus it is less useful to our work pur-
poses. All images were captured with an optometric frame-
work resulting in optimal images with extremely similar
characteristics.

4.1 UBIRIS database

The UBIRIS [2] database was built during September 2004.
It comprised 1877 images captured from 241 persons in
two distinct sessions: 1214 images in the first and 663 in
the second.

For the first image-capture session (the enrolment), the
noise factors were minimised, especially those relative to
reflections, luminosity and contrast. In the second session,
several noise factors were introduced, enabling the appear-
ance of heterogeneous images regarding reflections,
contrast, luminosity, eyelid and eyelash iris obstruction
and focus characteristics.

All images from both sessions were manually classified
with respect to three parameters (‘focus’, ‘reflections’ and
‘visible iris’) in a three values scale (‘good’, ‘average’
and ‘bad’).

Fig. 3 contains examples of UBIRIS images: (3a) and
(3b) are good quality images, (3c), (3d ), (3e) and (3f ) are

non-optimal images: poorly focused, with eyelid obstruc-
tion and with large reflection areas.

Table 2 contains the statistical information about the
quality of the images from both sessions. Images from the
first session typically have good quality, corresponding
to images captured with the subject’s cooperation. The
second session contains a much higher number of non-
optimal images, trying to simulate the non-cooperative
capture, often obtaining images poorly focused, or with
large reflection areas or with small visible iris areas due
to eyelids or eyelashes obstruction.

5 Experiments

In this section, we justify the choice of the UBIRIS database
and compare the results obtained between the method-
ologies described in Section 2 and our proposal.

5.1 Experiments’ database

By examining the databases presented in Section 4 and their
images, we concluded that they all simulate cooperative iris
recognition processes, with fixed image-capture conditions
and parameters. This fact explains why a large majority of
their images present very homogeneous characteristics
and few noise factors.

When compared with the other public iris image data-
bases, the images from UBIRIS have much more hetero-
geneous characteristics. In addition, a significant part of
the irises are obstructed by eyelids or eyelashes and some
of the images have larg e reflec tion areas ( Fig. 3f ); thus
introducing several parameters that can constitute obstacles
to correct iris segmentation.

Table 1: Variants of the proposed algorithm

Algorithm Features Session 1, % Session 2, %

K-means Pixels positionþ intensity 97.69 96.83

K-means Moments F20þ F02 92.33 89.14

SOM Pixels positionþ intensity 97.69 96.68

SOM Moments F20þ F02 95.14 90.95

Fuzzy K-means Pixels positionþ intensity 98.02 97.88

Fuzzy K-means Moments F20þ F02 93.90 90.04

Expectation–maximisation Pixels positionþ intensity 96.86 95.17

Expectation–maximisation Moments F20þ F02 92.17 89.14

Good quality iris

image

Good quality iris

image

Poor focus iris

image

Iris image with eyelid

obstruction

Iris image with a

significant reflection area

Iris image with

extremely large reflection

area

a b c

d e f

Fig. 3 Examples from UBIRIS images
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Our work is focused on the analysis of the accuracy of
the iris segmentation algorithms as image quality and
characteristics change, simulating two distinct cooperative
(enrolment stage) and non-cooperative (recognition stage)
image-capture processes. The images’ heterogeneity and
the several noise factors were the main factors that led
us to choose the UBIRIS database as the basis for our
experiments.

5.2 Results and discussion

Table 3 presents the results obtained by each described
methodology. The first column identifies the method, the
second specifies the eventual parameter modifications with
respect to the original methodology, the third and fourth
contain the accuracy results, respectively, on images from
UBIRIS first and second sessions. These results correspond
to 99% confidence interval and are in percentage. The
fifth column shows accuracy deterioration from the first
to second image-capture session and the last shows
the averaged computation time for each methodology
(Section 5.3).

These results were obtained by visual inspection of each
segmented image. We consider a correct segmentation
when the circumference parameters corresponding to the
pupilar and scleric borders fall exactly into the respective
borders as we can see on Figs. 4a and 4b. Figs. 4c and 4d
exemplify incorrect segmentation processes because of
eyelid obstruction or large reflection areas.

For our purposes, the most relevant result from Table 3 is
the accuracy degradation as the image quality changes. We
observed that the proposed methodology is clearly less
dependent on image conditions, presenting the smallest
accuracy degradation in the presence of noise factors. As
can be seen, the observed accuracy degradation on the
first and second session images was just about 0.14%,

contrasting with all remaining methodologies, specially
the methodologies proposed by Martin-Roche et al. [6],
Daugman [3] and Camus and Wildes [5]. It should be
noticed that our methodology is the one that presented the
highest accuracy on images from session 2, indicating that
it is well adapted to deal with noisy images.

Wildes’ [7] methodology presented the best results in
absolute terms, having 98.68% accuracy on the first
session images. However, as the image quality decreases,
its accuracy degraded more than 2%. This fact may
indicate that, as we incorporate other noise factors, its
accuracy will be affected, thus discouraging its use in a
non-cooperative architecture framework. The two imple-
mented variants of this method presented worst results
than the original one.

Daugman’s [3] methodology has one important advan-
tage: it is not dependent on any parameter value. This fact
may, in theory, potentiate its robustness, but the results
showed that its accuracy is directly proportional to the
image quality and the existence of sufficient intensity
value separability between iris and sclera regions.
Especially on irises with high-intensity values (blue or
green eyes) where the intensity difference between the iris
and sclera parts is not as large, the maximal difference
between consecutive circumferences tends to identify
regions tangent to the pupil region.

Table 2: UBIRIS database statistics

Quality Session 1 (%: good,

average, bad)

Session 2 (%: good,

average, bad)

Focus (82.94, 13.67, 3.78) (69.68, 19.45, 10.85)

Reflections area (94.56, 2.80, 2.63) (24.13, 38.61, 37.25)

Visible iris area (89.29, 7.16, 3.45) (22.32, 69.07, 8.59)
Correct iris segmentation Correct iris segmentation

Incorrect segmentation

induced by eyelid obstruction

Incorrect segmentation

induced by reflections

a b

c d

Fig. 4 Segmented images

Table 3: Iris segmentation results

Methodology Parameters Session 1, % Session 2, % Degradation, % Time, s

Daugman Original methodology 95.22+ 0.015 88.23 + 0.032 6.99 2.73

Daugman Histogram equalisation

pre-process

95.79+ 0.014 91.10 + 0.028 4.69 3.01

Daugman Threshold pre-process (128) 96.54+ 0.013 95.32 + 0.021 1.22 2.92

Wildes Original methodology 98.68+ 0.008 96.68 + 0.017 2.00 1.95

Wildes Shen and Castan edge detector 96.29+ 0.013 95.47 + 0.020 0.82 2.49

Wildes Zero-crossing edge detector 94.64+ 0.016 92.76 + 0.025 1.88 2.51

Camus and Wildes Original methodology, number of

directions ¼ 8

96.78+ 0.013 89.29 + 0.030 7.49 3.12

Martin-Roche et al. Original methodology 77.18+ 0.030 71.19 + 0.045 5.99 2.91

Tuceryan Total clusters ¼ 5 90.28+ 0.021 86.72 + 0.033 3.56 4.81

Proposed methodology Fuzzy K-meansþ (x, y) ¼ position,

z ¼ intensity

98.02+ 0.010 97.88 + 0.015 0.14 2.30
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Similar approaches to this methodology, such as the
Camus and Wildes [5] and Martin-Roche et al. [6] ones,
present similar error rates. These methodologies proved
their effectiveness on good quality images but deteriorate
significantly in their accuracy when images contain large
reflection regions or eyelids obstruct a significant part of
the iris.

Regarding the Tuceryan [19] methodology, the fact that it
was not specifically proposed for iris recognition can prob-
ably explain why their average accuracy was about 7%
worse than the specific iris segmentation methods. Apart
from this fact, the accuracy degradation (around 4%) was
in both cases more relevant when compared with that in
other approaches. As Fig. 2 shows, we concluded that the
geometric moments do not have sufficiently discriminant
capacity to distinguish the iris regions; thus inducing,
frequently, an incorrect segmentation.

5.3 Computation time

All the algorithms were implemented in Cþþ, following an
object-oriented paradigm and running in an image-processing
framework developed by ourselves. This framework is
clearly not optimised for execution speed as the algorithm’s
implementation was made without these concerns, but
instead with a user-friendly objective.

The ‘Time’ column from Table 3 contains the average
execution time from each of the segmentation processes
tested. These time values were obtained by averaging 100
segmentation processes on 100 distinct UBIRIS images.
Regarding these values, we observed that the classical edge
detection followed by the circumference fitting (Wildes)
algorithm is more efficient than all the remaining ones.

Our methodology computation time is about 17%
superior to that of the Wildes’ algorithm. This 17% is attrib-
uted to the feature extraction and clustering process. We
think that with proper algorithm optimisation, this compu-
tation time gap (about 0.3 s) will become irrelevant.

6 Conclusions

We have described the problems associated with the
segmentation of iris images with poor quality. We presented
some of the most cited methodologies in the iris segmen-
tation literature and used the UBIRIS [2] database to
show that they are dependent on the specific image-
capture conditions, yielding a low robustness level.

On the basis of this fact, we proposed a new iris segmenta-
tion methodology that consists of the selection of three dis-
crete features followed by the application of the well-known
fuzzy-clustering algorithm. This produces an intermediate
image that tends to be more homogeneous even on images
with very different focus, brightness or contrast character-
istics. Results showed that for these non-optimal images,
the creation of an intermediate labelled image improves the
segmentation accuracy and is therefore adequate for the
application on a non-cooperative iris recognition system.
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