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In January 2012, Boström and colleagues identi�ed a new muscle tissue secreted peptide, which they named irisin, to highlight its
role as a messenger that comes from skeletal muscle to other parts of the body. Irisin is a cleaved and secreted fragment of FNDC5
(also known as FRCP2 and PeP), a member of �bronectin type III repeat containing gene family. Major interest in this protein
arose because of its great therapeutic potential in diabetes and perhaps also therapy for obesity. Here we review the most important
aspects of irisin’s action and discuss its involvement in energy and metabolic homeostasis and whether the bene�cial eects of
exercise in these disease states could be mediated by this protein. In addition the eects of irisin at the central nervous system
(CNS) are highlighted. It is concluded that although current and upcoming research on irisin is very promising it is still necessary
to deepen in several aspects in order to clarify its full potential as a meaningful drug target in human disease states.

1. Introduction

Obesity is at present the most common nutritional disease
in industrialized countries, constituting a priority health
problem. It is associated with the development of cardiovas-
cular disease, diabetes mellitus type II, increased incidence
of certain forms of cancer, and respiratory complications
from other diseases, which leads to higher rates of mortality
and morbidity, reducing directly or indirectly the quality
and life expectancy of suerers [1, 2]. Lifestyle modi�cation,
speci�cally changes in diet, physical activity, and exercise,
currently continues to be the best option for treatment of
obesity. In this sense, the bene�ts of exercise have been
extensively documented [3]. Moreover, it has recently been
reported that especially during or immediately a�er physi-
cal activity, skeletal muscle releases into circulation several
hormones. �ese hormones, named myokines, can in�uence
metabolism and modify cytokine production in dierent
tissues and organs. On the basis of this, the concept of skeletal
musclemust be reconsidered and being truly considered as an
endocrine organ [4, 5].

Since human brown adipose tissue (BAT), especially in
adults, was rediscovered several years ago by using positron
emission tomography (PET) [6–9], it has been postulated
as a major candidate for the treatment of obesity. �is is
based on the fact that brown adipose cells can dissipate
energy in the form of heat leading to weight loss. �is
process takes place through a specialized mitochondrial
protein called uncoupling protein 1 (UCP1). �e uncoupling
activity ofUCP1 is explained by its ability to transport protons
across the inner mitochondrial membrane, avoiding ATP
synthesis and dissipating energy as heat [10]. Regulation of
UCP1 is mainly at transcriptional level, where peroxisome
proliferator-activated receptor Υ coactivator 1� (PGC1�)
plays a key role [11].

Studies in immortal preadipocyte lines from the brown
adipose tissue of mice lacking PGC1� corroborated their
importance in thermogenesis [12]. Another important char-
acteristic is its role in mitochondrial biogenesis; in fact
the increased expression of PGC1� is parallel to increased
mitochondrial DNA and gene expression of OXPHOS system
(oxidative phosphorylation) in BAT [13, 14]. AlthoughPGC1�
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is mainly expressed in BAT, it is also expressed at higher
levels in red, oxidative muscle. In fact, its expression is
increased by exercise in mice, in rats, and in human beings
[15]. Exercise rapidly and robustly increases the expres-
sion of PGC1�, but this eect is transient as both mRNA
and protein levels of PGC1� quickly revert to preexercise
values [16]. Exercise also activates AMP-activated protein
kinase (AMPK), a master regulator of cellular metabolism.
AMPK directly phosphorylates PGC1�, which is required for
PGC1�-dependent induction of the PGC1� promoter [17].
While brief training produces only a transient rise in PGC1�,
endurance training results in persistent PGC1� elevation
[18].Moreover, mice with transgenically increased PGC-1� in
muscle showed improved metabolic responses as age related
obesity and insulin insensitivity [19]. When the adipose
tissue of these transgenic mice was analysed, it was observed
that subcutaneous fat inguinal had signi�cantly increased
thermogenic gene program. �ese “brite” (brown-in-white)
adipocytes display several classical brown adipocyte charac-
teristics, as elevated levels of UCP1 mRNA and protein [20].
Further, other reports showed that exercise also enhances
certain brown adipocyte-speci�c gene expression in the BAT,
aswell aswhite adipose tissue (WAT), suggesting that exercise
training may induce important alteration in BAT and/or
BAT-like phenotypic changes in WAT [21]. In this context it
has been proposed that irisin, a recently discovered myokine,
may be the molecule that links exercise with increased
thermogenesis. In fact, irisin is named for Iris, the Greek
goddess who served as courier among the Gods [20].

2. Irisin, A Bridge between
Exercise and Thermogenesis

2.1. First Experimental Studies. Recently, Spielgman’s group
described that transgenic PGC-1� mice had greater levels of
�bronectin type III domain containing (FNDC5) than wild-
type mice [20]. FNDC5 (also known FRCP2 and PeP) is a
type of transmembrane protein cloned by two groups in 2002.
It has a signal peptide, two �bronectin domains and one
hydrophobic domain inserted in the cell membrane [22, 23].
In fact, at present some authors question if FNDC5 might
be a transmembrane receptor [24]. FNDC5 is proteolytically
cleaved and secreted. Western blot of media fractions of
cells overexpressing FNDC5 with antibodies against wild-
type Fndc5 identi�ed multiple bands; from 32 kDa to 20 kDa
[20]. However, several aspects regarding proteolysis of this
protein were not fully clari�ed yet. So, it seems that these
possible discrepancies in molecular weight might be due
to glycosylation in the culture media, while this is not
observed in plasma mice. Moreover, the theoretically soluble
secreted form, named irisin, would have a molecular weight
of 12 kDa [20, 25] (Figure 1). A remarkable aspect about irisin
is that the amino acid sequence is 100% identical among
most mammalian species, which suggests a highly conserved
function [20, 26].

Boström and colleagues demonstrated that irisin has
potent eects on the browning of certain white adipose
tissues, both in culture and in vivo. So, when they applied

FNDC5 to primary subcutaneous white adipocytes during
dierentiation a great increase in oxygen consumption was
observed which suggests higher energy expenditure. More-
over, the increase in uncoupled respiration was accompanied
by an important induction of UCP1 mRNA and other known
brown fat genes. However, genes characteristic to WAT
were downregulated. Surprisingly, FNDC5 showed almost
no eects on the classical brown fat cells isolated from the
interscapular depot [20].

�is evidence opened up some questions about the
physiological role of irisin. In the same study, in vivo, it
was demonstrated that injection intravenously of adenoviral
vectors expressing full-length Fndc5 resulted in Ucp1 mRNA
increased in the subcutaneous depot. Moreover, a moderate
increase irisin blood levels caused a signi�cant improvement
in energy expenditure, body weight, and insulin resistance in
mice that were fed a high fat diet. Finally, it was demonstrated
that irisin was required for the eect of exercise in the brown-
ing of subcutaneous white fat and concluded that the rise
in irisin is mediated by augmented concentrations of PGC1�
in muscle, while PPAR-� (peroxisome proliferator-activated
receptor-�) acts as downstream target of this hormone [20].

2.2. Interplay with Other Myokines. �ere is an extensive
literature about dierent exercise-related signals that can reg-
ulate the expression and/or secretion of the diverse myokines
[4, 5, 27, 28]. In this context, it has recently been published
that there is a close interaction between irisin and myo-
statin. Myostatin, besides being a critical autocrine/paracrine
inhibitor of skeletal muscle growth, has been shown to play
an important role in metabolism [29]. In fact, it has been

described as myostatin-knockout mice (Mstn−/−) that show
an increase muscle mass and a concomitant reduction of fat
mass. Moreover, these mice show WAT with characteristics
of BAT, an eect mediated by the AMPK-PGC1�-FNDC5
pathway in muscle [30].

Other studies have tried to elucidate the irisin role and
other myokines in dierent physiological conditions. When
male rats were subjected to calorie restriction (CR; ∼60%
ad libitum) there were no signi�cant diet-related dierences
in plasma levels of myonectin, myostatin, or irisin, although
there were signi�cant changes in fat and lean mass, and
also in insulin resistance [31]. �ese results may indicate
that alterations in plasma concentration of these proteins
are not essential for the CR-related improvement in insulin
sensitivity in rats; however, it does not rule out that these
plasma proteins may be relevant for some of caloric restric-
tion’s metabolic eects. On the other hand, Sánchez and
collaborators have studied the possible eects of free fatty
acids (FFA) alone and combined with adrenaline and AICAR
(an activator of AMPK that acts as an exercise mimetic
precursor) in the production of the myokines IL6, IL15, and
irisin in mouse muscle cells in vitro [32]. �ey observed that
FFA, adrenaline, and AICAR have a great in�uence in the
IL6 expression and secretion, a little inhibitory eect on IL15
expression and almost no eect on the expression of FNDC5.
In fact, the authors only found that FNDC5 had a tendency
to be reduced with FFA and AICAR at isolated speci�c time
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Figure 1: Expression of FNDC5 (�bronectin type III domain containing 5), also known as FRCP2 and PeP, is stimulated inmuscle by PGC1-�
in response to exercise. It is a signal peptide with two �bronectin domains in its amino (N)-terminal part and a hydrophobic domain inserted
in the lipidic bilayer at carboxy (C)-terminal domain. �e �rst 29 aa of the mouse FNDC5 are a signal peptide, followed immediately by
the single FNIII domain of 94 aa. �e next 28 aa are of unknown structure and function and contain the putative cleavage site for irisin.
�is is followed by a 19 aa transmembrane domain and a 39 aa cytoplasmic domain. FNDC5 is thus a type I transmembrane protein with its
FNIII domain extracellular, similar to some cytokine receptors. �is structure is synthesized as a type I membrane protein and followed by
proteolytic cleavage realising amino (N)-terminal part of the protein into the extracellular to circulation.

points. �us, it would be possible that more signals may
be required in vivo for inducing FNDC5 expression. In this
sense, recent evidence using human rhabdomyosarcoma cells
showed that treatment for 24 and 48 hours with omega 3 fatty
acids signi�cantly induced irisin expression [33]. Finally, it
has also been found that just as FNDC5, heart-derived natri-
uretic peptides activate white adipose thermogenic programs
[34]. Taken together, these results may suggest that tissues
such as skeletal and heart muscle, involved in high energy-
expending activity, send signals to adipose tissue [35, 36].

2.3. Irisin Is Also an Adipokine. Current data by Roca-Rivada
and coworkers proposed that irisin is not only secreted by
muscle tissue. In fact, they demonstrated that irisin is a
new adipokine with an important autocrine and endocrine
function. Moreover, they showed that FNDC5/irisin has a
dierent pattern of secretion depending on the anatomical
location of adipose tissue. �us, subcutaneous adipose tissue
secretes more much FNDC5/irisin than visceral adipose
tissue, re�ecting one more time that visceral fat is more
implicated in metabolic complications, while subcutaneous
fat has a possible bene�cial role.�ey also showed that short-
term periods of exercise training induced FNDC5 secretion
by WAT, that this secretion was signi�cantly reduced in
fasting animals, and that WAT of obese animals had an
increase secretion of this hormone suggesting a type of
resistance [25]. Another interesting feature, also reported by
those authors, indicates that FNDC5/irisin has a secretion
pro�le similar to other adipokines like leptin. Moreover, it
is suggested that this hormone might be implicated in the
regulation of circulating FNDC5/irisin levels. In fact, Zucker

obese rats with no functional leptin receptor showed signif-
icantly diminished levels, while DIO (diet induce obesity)
rats showed a signi�cant increase. Ultimately, all these results
suggest an interactions between muscle and adipose tissue
interaction a regulatory feedback mechanism.

In this same context, Roberts et al. showed that
obese/diabetic prone Otsuka Long-Evans Tokushima Fatty
(OLETF) rats have more muscle expression FNDC5 than
lean Long Evans TokushimaOtsuka (LETO); however, LETO
rats have higher circulating irisin levels. �e authors also
observed that triceps FNDC5 mRNA expression was corre-
lated with fat mass and with plasma leptin; however, in vitro
leptin treatment had no eect on FNDC5 mRNA expression
in myotubes [37]. Given that the eect of leptin treatment
depends on endogenous levels of this hormone and on the
physiological state [38], many studies are still needed to
determinate a possible interaction between leptin and irisin
in the so-called muscle-adipose tissue axis.

3. Irisin, Potential Roles in the Central
Nervous System

Besides interaction between skeletal muscle and adipose tis-
sue, it has been described that FNDC5/irisinmight have a role
in the central nervous system. In fact, it has already described
previously that PGC1-�, an upstream of FNDC5, bene�ts
tissues that do not have a primary metabolic function, such
as the brain [39–41]. In this context, immunohistochemical
studies have recently revealed that rat and mice cerebellar
Purkinje cells expressed irisin and also FNDC5 [42]. Fur-
thermore, the same authors hypothesize about a novel neural
pathway, where irisin produced in cerebellummight regulate
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adipocyte metabolism via several intermediary synapses in
the medulla and spinal cord, an interesting idea that still
requires to be con�rmed.

Supporting the role of FNDC5/irisin in the nervous
system, it should be noted another study where it is demon-
strated that FNDC5 is required for the adequate neural
dierentiation of mouse embryonic stem cells (mESCs) [43].
�e authors observed that both Fndc5 knockdowns inmESCs
during their dierentiation a�er postneuronal progenitor
formation and the neuronal dierentiation were reduced.
Finally, Moon et al. showed that hippocampal neurogenesis
is regulated by irisin in a dose-dependent manner. So, while
physiological concentrations of irisin (5–10 nmol/L) had no
eect on mouse H19-7 hippocampal neuronal cells pro-
liferation, pharmacological concentrations (50–100 nmol/L)
increased proliferation when they were compared to control.
�is increase seems to occur trough signal transducer and
activator of transcription (STAT)3 but not AMPK and/or
extracellular signal-regulated kinase (ERK) signalling path-
ways [44].

Overall this evidence suggests a central role for irisin,
In this regard, considering that the hippocampus is one of
the principal regions aected by Alzheimer’s disease and
that exercise causes neurogenesis in humans reducing risk
of Alzheimer’s [45], Parkinson’s, and some other neurode-
generative diseases [26, 46], irisin might be the link between
exercise and healthy brain. Another interesting question that
needs to be addressed is whether irisin may be expressed and
play a role in other brain areas involved in the regulation of
energy balance, such as the hypothalamus and the brainstem.

4. Irisin, Studies in Humans

4.1. Human Exercise Gene. As stated above, irisin has a
highly conserved function, and as in rodents, in humans this
hormone is also predominantly expressed in muscle [47].
While, available data indicates that this is the main source
of production, it was also found that both subcutaneous and
visceral adipose tissue expressed and secreted FNDC5/irisin
[25, 48]. On other hand, circulating irisin was detected in the
serum or plasma of all subjects studied, whereas circulating
FNDC5 was detected in only a minority of the subjects
[47], which could be explained by a dierent processing in
a minority group of humans.

�roughout the past two years, several studies in humans
have tried to clarify the role of FNDC5/irisin in physiological
conditions and in disease states. Spielgman’s group showed
that endurance exercise training for 10 weeks in healthy
adult humans increased plasma irisin levels compared to the
baseline state [20]; however, there are some discrepancies
about this. While Huh et al. also observed that circulating
irisin levels were signi�cantly upregulated 30min a�er acute
exercise [47], another study have questioned those results.
So, other study has not been able to reproduce FNDC5
gene activation by aerobic exercise in younger subjects or
in a resistance training study in 20–80 year olds [49]. �ese
authors question therefore whether irisin is a human exercise
gene. �ese discrepancies might be explained as that an

increase in irisin levels occurs in states where more energy is
needed, such as untrained individuals, while among trained
individuals it is not necessary [47]. In the same direction,
a recent study con�rms that neither longer-term nor single
exercise markedly increases skeletal muscle FNDC5 expres-
sion or serum irisin [50].

It seems, hence, that exercisemight have an eect on irisin
levels depending on physiological condition. In this sense, a
new study describes that patients subjected to hemodialysis
seem to have lower plasma irisin than healthy subjects and
also show exercise training resistance; so despite increasing
muscle mass, they not have higher irisin levels [51].

4.2. Metabolic Diseases. When analyzing the correlation
between body max index (BMI) and irisin levels, dierences
were also found. Some studies observed a positive correlation
with BMI [47, 52, 53], while other reported null [49] or even
a negative correlation [48]. It would be necessary a deeper
investigation in this �eld, and a possible resistance to this
protein should be characterized, as animal studies suggest
[25]. In addition, bariatric surgery-induced weight loss has
been reported to decrease irisin levels, independently of BMI
[47]. However the functional signi�cance of this �nding
needs further exploring.

Similarly, it has been established by some groups a
relation between diabetes mellitus type 2 (DMT2) and irisin
levels, although it is also reported that irisin expression is
not related to diabetes status in humans [49]. Most studies
show lower irisin levels in patients with DMT2 [48, 54, 55].
Fernandez-Real’s group suggests that a lesser production of
irisin in muscle/adipose tissue in obese and patients with
DMT2 could be responsible of the obesity-associated lower
brown or beige adipocytes in human adipose tissue. So, they
consider increasing irisin levels and browning adipose tissue
as a potential target for metabolic diseases’ treatment [48].

In this same context, another controversy has been
reported. �e study of single nucleotide polymorphisms
(SNPs) in the human Fndc5 locus, encoding the irisin
precursor, showed that a common genetic variation in this
locus determines insulin sensitivity [56].Moreover, data from
human myotubes revealed a negative association between
FNDC5 expression and in vivomeasures of insulin sensitivity.
�is result appears con�icting with the mouse data from
Boström et al. who reported reduced insulin resistance in
high fat-fed mice a�er adenoviral Fndc5 overexpression [20].
Considering the association of DMT2 and cardiovascular
disease, a role for irisin is also tempting to be speculated. In
this sense the FNDC5 expression in a skeletal muscle biopsy
from heart failure (HF) patients, it was observed that this
expression relates to functional capacity in a human HF and
that a decrease in FNDC5 expression might reduce aerobic
performance in HF patients [57].

Circulating irisin has been also found to be directly asso-
ciated with muscle mass and estradiol levels and inversely
associated with age in middle-aged women. Also it is
negatively correlated with age, insulin, cholesterol, and
adiponectin levels [47, 52, 58], as well as intrahepatic triglyc-
eride contents in obese adults [59]. While, another paper
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Figure 2: Skeletal muscle releases to circulation several hormones denomined myokines acting as endocrine organ. �us during exercise
PGC1� is activated inducing FNDC5 release which is cleaved to irisin. Irisin can act on dierent tissues, thereby brown adipose tissue
activates UCP1 in mitochondria triggering transport protons chain in the mitochondrial membrane, resulting ATP increased and dissipating
energy in form of heat. �is process increases energy expenditure, reduces body weight, and improves metabolic parameters such as insulin
sensitivity. Irisin onwhite adipose tissue stimulates BAT-like phenotypes changes, increasing PGC1� expression and therebyUCP1 and oxygen
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process named browning. For all of this, irisin has been proposed as a possible novel treatment in diabetes and obesity. Other target of irisin
is nervous system where preliminary studies suggest that it could act on adipocyte metabolism through a novel neural pathway and on the
other hand irisin induces neural proliferation and adequate neural dierentiation, so it could also be a therapeutic target for neurodegenerative
diseases such as Alzheimer or Parkinson.

suggests that in a population of postmenopausal women with
BMI between 24 and 45, irisin levels do not correlate with
24 h energy expenditure (EE); however, for a subpopulation
with EE greater than predicted, irisin levels and EE are highly
correlative [60].

Similar to physical activity, drugs might also increase
irisin levels and thus aect lipidmetabolism and improve risk
among dyslipidemic and/or obesity individuals. Given recent
data, everything seems to indicate that between these drugs,
statins could have an important role in this sense [61]. In
this context, recently, Gouni-Berthold and collaborators have
described that simvastatin, a hypolipidemic drug member of
the statins, increases irisin concentrations both in vivo as in
vitro [62]. Although it could be postulated that this increase
could be bene�cial, for example, by in�uencing adipose tissue
metabolism and insulin resistance, it will be necessary to
determine if irisin levels are result of myocyte damage or/and
amechanism of statin-induced cellular stress protection [62].

Another diseasewith altered energy expenditure andwith
high prevalence ofmetabolic imbalance and abnormal energy
homeostasis is also chronic kidney disease (CKD). It was
observed that patients with CKD have lower irisin levels at
rest, independently of high-density lipoprotein cholesterol
levels. �e mechanism underlying the decrease in irisin in
CKD is unknown, even though it seems that indoxyl sulphate,
which is a protein-bound uremic toxin, decreases FNDC5
expression in skeletal muscle cells and irisin level in the cell
culture medium [58]. Authors consider that these results
show good evidence on how uremia may aect irisin levels.
Although this study has some limitations, it is suggested that
irisin may be a novel therapeutic agent for treating metabolic
diseases in CKD patients.

5. Future Prospects

When Böstrom and colleagues described irisin, rapidly, it
was seen its great therapeutic potential. Irisin was seen as
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possible treatment for diabetes and perhaps also therapy
for obesity. Moreover, it also was considered a possibility
to treat patients with Alzheimer’s, Parkinson’s, and some
other neurodegenerative diseases. However, new studies have
started to question the initial expectations [24, 63]. So, while
clear-cut data have been reported in rodents, the thermogenic
eect of irisin in humans remains controversial, and it is
not clear if exercise has an impact on irisin levels [49]. In
fact, recently, Raschke and coworkers described that neither
FNDC5 gene is activated by contraction in humans nor
has eect on “brite” dierentiation of human preadipocytes
[63]; even they propose that irisin function for mice is lost
in humans. �us, it seems obvious that further studies are
needed to elucidate, in depth, this �eld.

First more studies would be necessary to determinate
what the precise role of dierent forms of FNDC5/irisin is
and if there is a dierent mechanism of proteolysis as it
already was suggested [47]. On the other hand, it is absolutely
necessary to characterize the receptor and the signalling
pathway, which will allow a better understanding of irisin
function. Just as with other hormones it seems to be a
tolerance or resistance mechanism to irisin [25, 60]. So, the
factors that contribute to irisin tolerance and/or resistance
also would be de�ned. Similarly more extensive studies,
with dierent cohorts, assessing genetic variations in the
irisin gene and its relationships to obesity and associated
comorbidities across life span are eagerly awaited. Another
important aspect that we need to consider is that human BAT
is closely related to rodent beige fat, rather than classical BAT;
so if we want to study the irisin eect in human BAT, a rodent
model with beige fat would be necessary [26]. Intensive
research eorts are needed to use BAT as a target organ for
treatment of metabolic diseases.

In conclusion, although current and upcoming research
on irisin is very promising and nowadays we already know
so much about it (Figure 2), it is still necessary to deepen
in several aspects in order to clarify its full potential as a
meaningful drug target in human disease states.
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[4] B. K. Pedersen, T. C. A. Åkerström, A. R. Nielsen, and C. P.
Fischer, “Role of myokines in exercise andmetabolism,” Journal
of Applied Physiology, vol. 103, no. 3, pp. 1093–1098, 2007.

[5] B. K. Pedersen andM. A. Febbraio, “Muscles, exercise and obes-
ity: skeletal muscle as a secretory organ,” Nature Reviews
Endocrinology, vol. 8, pp. 457–465, 2012.

[6] A. M. Cypess, S. Lehman, G.Williams et al., “Identi�cation and
importance of brown adipose tissue in adult humans,” New
England Journal ofMedicine, vol. 360, no. 15, pp. 1509–1517, 2009.

[7] J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected evi-
dence for active brown adipose tissue in adult humans,” Ameri-
can Journal of Physiology, vol. 293, no. 2, pp. E444–E452, 2007.

[8] W.D. vanMarken Lichtenbelt, J.W.Vanhommerig, N.M. Smul-
ders et al., “Cold-activated brown adipose tissue in healthy
men,” New England Journal of Medicine, vol. 360, no. 15, pp.
1500–1508, 2009.

[9] K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown
adipose tissue in healthy adults,” New England Journal of
Medicine, vol. 360, no. 15, pp. 1518–1525, 2009.

[10] B. Cannon and J. Nedergaard, “Brown adipose tissue: function
and physiological signi�cance,” Physiological Reviews, vol. 84,
no. 1, pp. 277–359, 2004.

[11] P. Puigserver, Z.Wu,C.W. Park, R.Graves,M.Wright, andB.M.
Spiegelman, “A cold-inducible coactivator of nuclear receptors
linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–
839, 1998.

[12] M.Uldry,W. Yang, J. St-Pierre, J. Lin, P. Seale, and B.M. Spiegel-
man, “Complementary action of the PGC-1 coactivators in
mitochondrial biogenesis and brown fat dierentiation,” Cell
Metabolism, vol. 3, no. 5, pp. 333–341, 2006.

[13] J. A. Villena, M. C. Carmona, M. Rodriguez de la Concepción
et al., “Mitochondrial biogenesis in brown adipose tissue is asso-
ciated with dierential expression of transcription regulatory
factors,” Cellular and Molecular Life Sciences, vol. 59, no. 11, pp.
1934–1944, 2002.

[14] Z.Wu, P. Puigserver, U. Andersson et al., “Mechanisms controll-
ing mitochondrial biogenesis and respiration through the ther-
mogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124,
1999.

[15] K. Baar, A. R. Wende, T. E. Jones et al., “Adaptations of
skeletal muscle to exercise: rapid increase in the transcriptional
coactivator PGC-1,” FASEB Journal, vol. 16, no. 14, pp. 1879–
1886, 2002.

[16] H. Pilegaard, B. Saltin, and D. P. Neufer, “Exercise induces tran-
sient transcriptional activation of the PGC-1� gene in human
skeletal muscle,” Journal of Physiology, vol. 546, no. 3, pp. 851–
858, 2003.
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