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Abstract

In this paper, we propose an inverse reinforcement learn-

ing method for architecture search (IRLAS), which trains an

agent to learn to search network structures that are topolog-

ically inspired by human-designed network. Most existing

architecture search approaches totally neglect the topolog-

ical characteristics of architectures, which results in com-

plicated architecture with a high inference latency. Moti-

vated by the fact that human-designed networks are elegant

in topology with a fast inference speed, we propose a mir-

ror stimuli function inspired by biological cognition theory

to extract the abstract topological knowledge of an expert

human-design network (ResNet). To avoid raising a too

strong prior over the search space, we introduce inverse

reinforcement learning to train the mirror stimuli func-

tion and exploit it as a heuristic guidance for architecture

search, easily generalized to different architecture search

algorithms. On CIFAR-10, the best architecture searched

by our proposed IRLAS achieves 2.60% error rate. For Im-

ageNet mobile setting, our model achieves a state-of-the-art

top-1 accuracy 75.28%, while being 2∼4× faster than most

auto-generated architectures. A fast version of this model

achieves 10% faster than MobileNetV2, while maintaining

a higher accuracy.

1. Introduction

The past several years have witnessed the remark-

able success of convolutional neural networks in com-

puter vision applications. Thanks to the advances in net-

work architectures, e.g. ResNet [11], Inception [28] and

DenseNet [15], the performances on a number of key tasks,

such as image classification, object detection, and semantic

segmentation, have been taken to an amazing level. How-

ever, every step along the way of network design improve-

Figure 1. Topologies of different architectures. Human-designed

architectures have a more simple and elegant topology than ex-

isting auto-generated architectures. Our IRLAS aims to search

topologically elegant architectures guided by human-designed net-

works. (a) ResNeXt [32]; (b) NASNet [37]; (c) Best performed

architecture found by our IRLAS.

ment requires extensive efforts from experienced experts

and takes a long period of time. This already constitutes

a significant obstacle to further progress.

Naturally, automatically finding suitable network archi-

tectures for a given task becomes an alternative option and

is gaining ground in recent years. Along this direction,

a number of network search methods have been devel-

oped, including evolution [26, 31], surrogate model based

search [18, 21], and reinforcement learning [36, 37, 34, 4].

Whereas these methods have shown promising results and

found new architectures that surpass those crafted by ex-

perts, they are still subject to a serious limitation – auto-

generated networks usually have a rather high inference la-

tency, making them difficult to be deployed on practical sys-

tem with limited computational capabilities. An important

cause to this issue is that auto-generated structures are often

excessively complicated, which, as observed in [20], tends

to adversely influence the run-time efficiency. While there

have been attempts [29] to incorporate latency information
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to guide the search, the problem has not been effectively

solved – the search algorithms themselves still follow a pre-

defined way for network motif construction, e.g. recursively

expanding a tree structure as in NASNet [37], without en-

forcing any explicit guidance to the network topology.

In this work, we aim to explore a new approach that ex-

plicitly takes the topological structure into account. Our ef-

forts are motivated by the observation that human-designed

networks are usually topologically simple, as shown in Fig-

ure 1, especially when compared to auto-generated ones,

and often stride a better balance between accuracy and effi-

ciency. These designs are often grounded on the rich expe-

riences obtained through many years of joint efforts by the

community, which are valuable resources and deserve to be

leveraged during the searching process.

Specifically, we propose an inverse reinforcement learn-

ing method for architecture search (IRLAS). At the heart of

this method is a mirror stimuli function learned by inverse

reinforcement learning. This function is expected to reward

those architectures that are topologically similar to the net-

works designed by experts. During the searching process,

an agent resorts to this function to provide structural guid-

ance, so as to generate networks with desirable architec-

tures, similar to those crafted by experts. This method has

two benefits: (1) While the search receives guidance from

the mirror stimuli function, it is not restricted. The agent

is allowed to explore instead of just copying the experts.

(2) The mirror stimuli function is generic and is orthogonal

to the design of search space and strategy. Hence, it can

be readily generalized to different search settings. On both

CIFAR-10 [16] and ImageNet [8], IRLAS is able to find

new architectures that yield high accuracies while maintain-

ing low inference latency.

Our contributions are summarized as follows: 1) We pro-

pose a mirror stimuli function that can provide topological

guidance to architecture search, based on the knowledge

learned from the expert-designed networks. This function

can be easily generalized to different architecture search al-

gorithms. 2) We introduce inverse reinforcement learning

algorithm to train the mirror stimuli function, which helps

the agent to efficiently explore the large search space with-

out being overly restricted. 3) The network searched by our

IRLAS is topologically similar to the given expert network

and shows competitive accuracy and high inference speed,

compared to both state-of-the-art human-designed and auto-

searched networks. On CIFAR-10, the best architecture

searched by our proposed IRLAS achieves 2.60% error rate.

For ImageNet mobile setting, our model achieves a state-

of-the-art top-1 accuracy 75.28%, while being 2∼4× faster

than most auto-generated architectures. A fast version of

this model achieves 10% faster than MobileNetV2, while

maintaining a higher accuracy.

2. Related Work

2.1. Neural Architecture Search

Neural architecture search focuses on automatically

searching effective neural topologies in a given architec-

ture space. Existing architecture search methods can be

mainly classified into three categories: evolutionary, surro-

gate model based search and reinforcement learning. Evo-

lutionary methods [10, 31, 24] aim to simultaneously evolve

the topology of a neural network along with its weights and

hyperparameters to evolve a population of networks. Early

evolutionary approaches utilized genetic algorithms to op-

timize both the architecture and its weights, while recent

studies used gradient-based methods and evolutionary algo-

rithms to optimize the weights and architecture respectively.

Surrogate model based search methods [18, 5, 21] utilize

sequential model-based optimization as a technique for pa-

rameter optimization. Typical methods like PNAS [18] per-

formed a progressive scan of the neural architecture search

space, which was constrained according to the state-of-the-

art of previous iterations. EPNAS in [21] further increased

the search efficiency by sharing weights among sampled ar-

chitectures. However, these methods generate architectures

greedily by picking the top K at each iteration, which may

result in a sub-optimum over the search space.

Reinforcement learning (RL) methods [4, 36, 34, 37, 24]

formulate the generation of a neural architecture as an

agent’s action, whose space is identical to the architecture

search space. The agent’s reward is the performance of

the trained architecture on unseen data. Differences be-

tween different RL-based approaches lie in the representa-

tion of agent’s policy and how to optimize it. For exam-

ple, [36] used a recurrent neural network (RNN) to sam-

ple a sequence of string which encoded the neural archi-

tecture. Policy gradient algorithms including REINFORCE

and Proximal Policy Optimization (PPO) were used to train

the agent. [4] and [34] used Q-learning to train a policy

that sequentially chose a layer’s type and its corresponding

hyperparameters. There are some other RL-based methods

that transform existing architectures incrementally to avoid

generating entire networks from scratch, such as [6]. How-

ever, these approaches could not visit the same architec-

ture twice so that strong generalization over the architec-

ture space was required from the policy. Instead of directly

using an existing architecture as an initialization, our IR-

LAS aims to learn a mirror stimuli function, and utilizes it

in the searching process as a heuristic guidance without any

restraints for the search space.

There also exists recent efforts [19] introducing a real-

valued architecture parameter, which was jointly trained

with weight parameters. Different from other methods, this

kind of algorithm does not involve architecture sampling

during searching process. Our mirror stimuli function can
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Figure 2. The pipeline of our IRLAS. We propose a mirror stimuli function to extract the abstract representation for topological charac-

teristic of the expert. Topology structures of networks are converted to state feature code as the input of mirror stimuli function. During

the agent’s searching process, the mirror stimuli function is utilized as a heuristic guidance to generate desirable human-designed-like

networks. Inverse reinforcement learning is utilized to train the mirror stimuli function, which helps the agent to efficiently explore the

large search space without being overly restricted.

also be generalized to this brunch of methods.

2.2. Imitation Learning

As our proposed IRLAS attempts to generate architec-

tures that are topologically similar to human-designed net-

works, the learning for the agent involves imitation learning

problem. Imitation Learning (IL) enables an agent to learn

from demonstrations of an expert, independent of any spe-

cific knowledge in the proposed task. There exists two dif-

ferent areas for IL: policy imitation and inverse reinforce-

ment learning. Policy imitation, which is also known as

behavioral cloning, targets directly learning the policy map-

ping from perceived environment or preprocessed features

to the agent’s actions. For the settings of this paper, since

the number of human-designed networks is limited, it is

hard to obtain sufficient number of expert’s state-action tu-

ples for supervised learning. As a result, the direct policy

imitation cannot be used for our purpose.

Inverse reinforcement learning (IRL) refers to the prob-

lem of deriving a reward function from observed behavior.

As it is a common presupposition that reward function is a

succinct, robust and transferable definition of a task, IRL

provides a more effective form of IL than policy imitation.

Early studies in IRL [3, 35, 23] assumed that the expert was

trying to optimize an unknown reward function that could

be expressed as a linear combination of pre-determined fea-

tures. [7] extended this approach to a limited set of non-

linear rewards and learned to build composites of logical

conjunctions for atomic features. Other flexible non-linear

function approximators such as Gaussian Processes further

extended the modeling capacity of IRL models [17]. In this

paper, we assume the reward function of the expert network

as a linear parametrization of state features. Experiments

show that this simple assumption is effective enough to ex-

tract the topological knowledge of the human-designed ar-

chitectures.

3. Approach

In this section, we first present the problem formulation

of architecture search. Then we propose the mirror stim-

uli function inspired by biological cognition and its training

procedure via inverse reinforcement learning. Finally we

detail the search space and the searching algorithm. The

pipeline of our IRLAS is shown in Figure 2.

3.1. Problem Formulation

Like modern CNNs, our automatic neural network pro-

cess designs the topological structure of block instead of

the entire network. This block-wise design is more flexible

for different datasets and tasks with powerful generalization

ability. The task of the agent is to sequentially sample layers

from the pool of layer candidates to form the block. Then

the block structure is stacked sequentially to form the com-

plete network. For different datasets, we manually choose

different number of down-sampling operations due to dif-

ferent input image size and choose different repeat times of

the block to meet the demand for limitation of parameters

or FLOPs.

In this paper, we consider the design process of net-

work topology as a variable-length decision sequence for

the choice of operation. And this sequential process can be

formulated as a Markov decision process (MDP). The pol-

icy π : S → A, where S is the state space and A is the

action space, determines the agent’s behavioral preference
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of generating architectures. The state s ∈ S is the status of

current layer. The action a ∈ A is the decision for the sub-

sequent layer. Thus, an architecture m sampled by the agent

can be determined by a state-action trajectory according to

the policy π, i.e. m = {(st, at)}t=1...T .

The training of the agent is to maximize the expected

reward over all possible architectures,

Jπ = Eπ[R(m)], (1)

where R(·) is the reward function. A common definition of

R(m) is the validation accuracy of the corresponding net-

work. This formulation of the reward function is based on

an assumption that the evaluation for an architecture is only

determined by its validation performance, while totally ne-

glect the topology information.

3.2. Topological Knowledge

As the human-designed architectures are demonstrated

to be effective in practice, we attempt to utilize such existing

abundant topological knowledge as efficacious guidance for

architecture search. However, it is a challenging problem to

find an effective method to formalize the abstract topologi-

cal knowledge and design an appropriate way to further ex-

ploit it in the search process. For example, shortcut connec-

tion of the block in ResNet is a quotable structure for archi-

tecture generating. Human can easily understand the topo-

logical structure simply by visualization, while the agent

cannot. It remains harder for the agent to learn to search

ResNet-like architectures if it even cannot understand the

topology. This naturally raises two basic problems: 1) How

to encode network architecture to extract the abstract topo-

logical knowledge as an available input for the agent? 2)

How to utilize this knowledge to guide the agent to design

desirable architectures?

For the first problem, we need to define a feature embed-

ding for network architectures. To encode the architecture,

we carefully choose a state feature function φ : S → R
k×1,

which consists of: operation type, kernel size, and the

indexes of two predecessor of the current layer (for layer

with only one predecessor, one of the indexes is set to zero).

Despite the simplicity, this state feature function provides a

complete characterization of the network architecture, in-

cluding the information about the computation carried out

by individual layers as well as how the layers are connected.

We further exploit feature count to unify the information

of each state feature to get the feature embedding for the

whole architecture. Given an architecture’s sequential tra-

jectory m = {(st, at)}t=1...T , the feature count is defined

as:

µ =
T∑

t=1

γtφ(st), (2)

where γ denotes a discounted scalar. Thus, the sequential

order is also included by the discounted γ over layer index.

The feature count is utilized as an appropriate encoding for

the topological knowledge of a given network.

As for the other question of how the agent uses the

topological knowledge as a guidance, this encompasses the

classical exploration-exploitation trade-off. We attempt the

agent to search architectures that are topologically similar

to the expert network, while efficiently explore the archi-

tecture search space. This requires the searching algorithm

exhibiting no preferences on a specific architecture as we do

not aim the agent to reproduce human-designed networks.

Direct policy imitating between the feature counts of sam-

pled architecture and expert network will raise a strong prior

on the search space and force the agent to ‘mimic’ the ex-

pert [3, 2], which does not meet our expectation.

3.3. Mirror Stimuli Function

To address this problem, we design a mirror stim-

uli function, denoting as Ftopology , which aims to softly
guide the agent while preventing a hard and strong constrain

on the search space. The design of the mirror stimuli func-

tion is inspired by the mirror neuron system in primate’s

premotor cortex. This system is responsible for the linkage

of self-generated and observed demonstrations. The mirror

neuron fires both when an animal acts and when the animal

observes the same action performed by another, which is an

important scheme for learning new skills by imitation. In

our problem, the mirror stimuli function has a similar func-

tionality as the mirror neuron. Given the architecture sam-

pled by the agent as the self-generated demonstration, the

expert network as the observed demonstration, our mirror

stimuli function will output a signal to judge the topological

similarity between these two networks. The higher output

represents higher similarity, where the highest for the exact

expert network.

The mirror stimuli function is defined as a linear function

of feature count:

Ftopology(m) = wT · µ, (3)

where w ∈ R
k×1. Such a linear parametric form is easy to

optimize, while effective enough to use as the evaluation of

topology, as further shown in our experiment.

By substituting Equation 2 to Equation 3, we can get

Ftopology(m) =
T∑

t=1

γt · wT · φ(st). (4)

Thus, the problem of solving the parameter w could be re-

garded as the problem of finding a time-step reward func-

tion r(st) = wT · φ(st), whose corresponding policy has a

maximum value at the sequence of expert network (i.e., the

value of Ftopology(m
∗), m∗ = {(s∗t , a

∗
t )}t=1...T denotes
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Algorithm 1 Max-Margin Optimization for Inverse Reinforce-

ment Learning

set i = 1, randomly pick policy π̂0, compute M̂0;

repeat

Compute δ(i) in optimization problem of Equation 8 with

{M̂} = {M̂j , j = 0...i− 1}, get w(i), δ(i);

Using standard RL algorithm, find the optimal policy as π̂i

with reward function r(i)(s) = (w(i))T · φ(s);
Compute M̂i;

i = i+ 1;

until δ(i) ≤ ǫ

return w;

the expert network). This refers to the standard inverse re-

inforcement learning problem.

To find such an reward function, we use the feature

match algorithm proposed in [3]. For the expert network,

the architecture is generated following an expert policy π∗,

which has a maximum value for the following expression:

Jπ∗ = Eπ∗ [

T∑

t=1

γtr(st)] = wT · Eπ∗ [

T∑

t=1

γtφ(st)]

= wT · Eπ∗ [µ] = wT ·Mπ∗ .

(5)

As we have one expert network, Mπ∗ is estimated as

Mπ∗ = Eπ∗ [µ] ≈ µ∗ =
∑T

t=1
γtφ(s∗t ).

To get the weight parameter w of the unknown reward

function r(st), we need to find a policy π̂ whose perfor-

mance is close to that of the expert’s:

|Jπ̂ − Jπ∗ | = |wT ·Mπ̂ − wT ·Mπ∗ | ≤ ǫ. (6)

This process could be regarded as ‘imitating’ the ob-

served behavior in the mirror neuron system, which makes

the self-generated demonstration (regarded as Jπ̂) similar

to the observed demonstration (regarded as Jπ∗ ). So the

problem is reduced to finding a policy π̂ that induces the

expectation of feature count Mπ̂ close to Mπ∗ . This fea-

ture matching problem could be solved by max-margin op-

timization, derived as,

max
w:‖w‖2≤1

min
∀µ̂

wT ·Mπ∗ − wT ·Mπ̂. (7)

Thus the weight parameter w is optimized following:

max
δ,w

δ

s.t. wT ·Mπ∗ ≥ wT ·Mπ̂ + δ, ∀ π̂

‖w‖2 ≤ 1.

(8)

The detailed algorithm is illustrated in Algorithm 1.

During the agent’s training stage, we add the output of

mirror stimuli function as an additional reward term. The

complete reward function in Section 3.1 is calculated as:

R(m) = Faccuracy(m) + λFtopology(m), (9)

where Faccuracy(m) denotes model m’s accuracy percent-

age on target task, λ denotes a balance scalar.

By optimizing this multi-objective search problem, the

agent is guided by both the topological similarity and the

accuracy. Thus, the agent can efficiently explore the search

space to generate high-speed, topologically elegant archi-

tectures along with high accuracy.

3.4. Search Space and Training Strategy

In this section we introduce the search space and train-

ing strategy of our IRLAS. We will further discuss the gen-

eralization of our mirror stimuli function to other typical

architecture search approaches in Section 3.5. In our IR-

LAS, the search space consists of operations based on their

prevalence in the CNN literature. The considered oper-

ations are: Depthwise convolution with kernel size 1×1,

3×3, 5×5; Max pooling with kernel size 3×3, 5×5; Aver-

age pooling with kernel size 3×3, 5×5; Identity; Elemental

add with two input layers; and Concat with two input lay-

ers. Note that the depthwise convolution operation refers

to pre-activation convolution containing ReLU, convolution

and batch normalization. All the layers without successor

in the searched block are concatenated together as the final

output.

For the searching stage, we utilize Q-learning method to

train the agent to take actions that maximize the cumulative

reward, which is formulated as Equation 9. Q-learning it-

eratively updates the action-selection policy following the

Bellman Equation:

Q(st, at) = rt + γmax
a
′

Q(st+1, a
′

), (10)

where rt denotes the intermediate reward observed for the

current state st. Since rt could not be explicitly measured,

reward shaping method is used, derived as rt = R(m)/T ,

where T denotes the state length referring to the number

of layers. The Bellman Equation is achieved following

Temporal-Difference control algorithm:

Q(st, at) =(1− η)Q(st, at)

+ η[rt+1 + γmax
a
′

Q(st+1, a
′

)],
(11)

where η denotes the learning rate.

The whole learning procedure is summarized as follows:

The agent first samples a network architecture, which is

taken as input of the mirror stimuli function. Then the gen-

erated network is trained on a certain task to get the valida-

tion accuracy. The reward, which is the combination of the

accuracy and the output value of the mirror stimuli function,

is used to update the Q-value. The above process circulates

for iterations and the agent learns to sample block structure

with higher accuracy and more elegant topology iteratively.
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3.5. Generalization of Mirror Stimuli Function

It is worthy to point out that our mirror stimuli function

can be easily generalized to different architecture search al-

gorithms. For algorithms that involve architecture sampling

and performance evaluation for the sampled architecture,

including reinforcement learning based methods and evolu-

tionary methods, we can simply utilize the output of Equa-

tion 9 as an alternative of evaluation, while the other search-

ing steps remain the same to the original algorithm. The

only difference lies in the expression of state feature func-

tion φ(s), which need to be modified due to different candi-

date operations in the search space of different algorithms.

Thus, the topological information is considered during the

searching process.

For differentiable architecture search algorithm, typi-

cally DARTS [19], the architecture is encoded by a set of

continuous variables α = {α{i,j}} ((i, j) denotes a pair of

nodes, i.e. a path in the architecture). Thus, the weight

parameters and architecture parameters could be trained

jointly via standard gradient descent. To introduce topolog-

ical information to the training procedure in differentiable

architecture search algorithms, we add an additional loss

term Ltopology calculated by mirror stimuli function to the

original cross entropy loss. To convert the continuous α
to discreted architectures, we consider the softmax out-

put of α as a probabilistic distribution of all possible ar-

chitectures, denoted as {pk}, and sample according to the

distribution to get state feature φ(s). Since the conversion

from architecture parameters α to state feature φ(s) is non-

differentiable, the output of mirror stimuli function cannot

be backpropagated. Here, we consider the solution based

on REINFORCE algorithm [30], so the loss term Ltopology

is calculated and updated as:

Ltopology =

K∑

k=1

pkFtopology(mk)

∇Ltopology ≈
1

K

K∑

k=1

Ftopology(mk)∇log(pk),

(12)

where K is the number of sampled architectures.

4. Experiments and Results

4.1. Implementation Details

In this section, we introduce the implementation details

of our IRLAS. We use a distributed asynchronous frame-

work as proposed in [34], which enables efficient network

generation on multiple machines with multiple GPUs. With

this framework, our IRLAS can sample and train networks

in parallel to speed up the whole training process. For the

inverse reinforcement learning procedure, ResNet, whose

convolution operation is modified to depthwise convolution,

Table 1. IRLAS’s results compared with state-of-the-art methods

on CIFAR-10 dataset. “Error” is the top-1 misclassification rate

on the CIFAR-10 test set, “Param” is the number of model param-

eters.
Method Param Error(%)

Resnet [11] 1.7M 6.61

Resnet (pre-activation) [12] 10.2M 4.62

Wide ResNet [33] 36.5M 4.17

DenseNet (k=12) [15] 1.0M 5.24

DenseNet (k=12) [15] 7.0M 4.10

DenseNet (k=24) [15] 27.2M 3.74

DenseNet-BC (k=40) [15] 25.6M 3.46

MetaQNN (top model) [4] 11.2M 6.92

NAS v1 [36] 4.2M 5.50

EAS [6] 23.4M 4.23

Block-QNN-A, N=4 [34] - 3.60

Block-QNN-S, N=2 [34] 6.1M 3.30

NASNet-A (6 @ 768) [37] 3.3M 2.65

NASNet-B (4 @ 1152) [37] 2.6M 3.73

NASNet-C (4 @ 640) [37] 3.1M 3.59

PNASNet-5 [18] 3.2M 3.41

ENAS [22] 4.6M 2.89

AmoebaNet-A [24] 3.2M 3.34

DARTS [19] 3.4M 2.83

IRLAS 3.91M 2.60

IRLAS-differential 3.43M 2.71

is chosen as the expert network to calculate the weight w in

the mirror stimuli function. The training procedure is about

3 hours on CPU.

For our IRLAS, we choose Q-value table as the agent.

We use Q-learning with epsilon-greedy and experience re-

play buffer. At each training iteration, the agent samples 64

structures with their corresponding rewards from the mem-

ory to update Q-values following Equation 11. For the hy-

perparameters of Q-learning process, the learning rate η is

set to 0.01, the discount factor γ is 0.9 and the balance scalar

λ is 30. The mini-batch size is set to 64 and the maximum

layer index for a block is set to 24. The agent is trained for

180 iterations, which totally samples 11,500 blocks. Each

sampled architecture is trained with fixed 12 epochs with

Adam optimizer to get evaluation of Faccuracy .

We also generalize our mirror stimuli function to the dif-

ferent architecture search algorithm. We choose DARTS

[19] as the basic algorithm. The additional loss term

Ltopology is scaled by 0.5 and added to the original cross-

entropy loss. The number of the sampled architectures K
is set to 5. All the other training details and hyperparam-

eters follow the original paper. For both of the conditions,

the architecture searching processes are proposed on dataset

CIFAR-10 [16].

4.2. Results

Results on CIFAR-10 After the searching process, we se-

lect the searched optimal block structure and train the net-
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work on CIFAR-10 until convergence. In this phase, the

training data is augmented with randomly cropping size of

32 × 32, horizontal flipping and Cutout [9]. The cosine

learning rate scheme is utilized with the initial learning rate

of 0.2. The momentum rate is set to 0.9 and weight decay

is set to 0.0005. All the networks are trained for 600 epochs

with 256 batch size.

For the task of image classification on CIFAR-10, we set

the total number of stacked blocks as 10. The results are re-

ported in Table 1 along with other models. We see that our

proposed IRLAS achieves a 2.60% test error, which shows a

state-of-the-art performance over both human-designed net-

works and auto-generated networks. For the differential set-

ting, the result is reported in Table 1 as IRLAS-differential.

Compared to the result reported in original paper (2.83% er-

ror rate), the searched architecture facilitated by our mirror

stimuli function achieves a higher accuracy.

Results on ImageNet For the ImageNet task, we trans-

fer the model searched on CIFAR-10 by increasing the total

number of stacked blocks and the filter channel size. We

consider the mobile setting to compare inference speed. The

training is conducted with a mini-batch size of 256 with in-

put image size 224× 224. Randomly cropping and flipping

are used to augment data. We choose SGD strategy for opti-

mization with cosine learning rate scheme. The accuracy on

test images is evaluated with center crop. We use the true in-

ference latency for fair comparison, which is validated for

16 batch size on TensorRT [1] framework with one Titan

Xp.

The results are illustrated in Table 2. Our IRLAS-mobile

achieves a state-of-the-art accuracy over both the human-

designed and auto-generated architectures. As for the infer-

ence latency, our IRLAS-mobile can achieve 2∼4× fewer

inference latency compared with most auto-generated ar-

chitectures benefiting from the elegant topology facilitated

by our mirror stimuli function. We also further squeeze

the number of stacked blocks of IRLAS-mobile and in-

crease conduct a IRLAS-mobile-fast model with a infer-

ence speed of 9ms, making our model even faster than

human-designed network MobileNetV2. Note that Mnas-

Net [29] was searched directly on ImageNet dataset and

need to validate time latency during searching, which is a

very resource-exhausted process due to the high training

cost on such a large scale dataset. As the shuffle operation,

channel split operation and inverted block backbone used

in ShuffleNetV2 and MobileNet-224 are not adopted in our

search space, we believe our inference speed can be further

boosted by introducing them to our searching process.

4.3. Analysis of Inverse Reinforcement Learning

In this section, we conduct an analysis of inverse rein-

forcement learning algorithm. As we introduce inverse re-

Table 2. ImageNet classification results in the mobile setting. The

input image size is 224×224. The inference latency is validated

with 16 batch size on TensorRT framework.
Method Latency Acc (%)

Inception V1 [27] - 69.8

MobileNet-224 [14] 6ms 70.6

ShuffleNet [13] 10ms 70.9

MobileNetV2 1.4 [25] 10ms 74.7

ShuffleNetV2 2× [20] 6ms 74.9

NASNet-A(4 @ 1056) [37] 23ms 74.0

AmoebaNet-A [24] 33ms 74.5

PNASNet [18] 25ms 74.2

DARTS [19] 55ms 73.1

MnasNet [29] 11ms 74.79

IRLAS-mobile 12ms 75.28

IRLAS-mobile-fast 9ms 75.15

inforcement learning to avoid the agent to exhibt preference

on the expert network, we compare the output value changes

of our mirror stimuli function with those of the feature count

µ by modifying a specific architecture. Here we choose

the expert architecture ResNet, and modify it in three ways:

Modify1, adding a conv3×3 operation before the residual

function; Modify2, adding a conv3× 3 operation after the

residual function; Modify3, removing the short-cut con-

nection. The results are illustrated in Figure 6 (a). Since

Modify1 and Modify2 have a minor change in topology

than Modify3, our mirror stimuli function is able to out-

put relative value change, where the feature count is very

sensitive to tiny changes. As a result, comparing to direct

feature count, our mirror stimuli function is a more reason-

able guidance to avoid the agent to just mimic the expert

network, which helps the agent to explore the search space

without being overly restricted.

4.4. Search Effiency

In this section, we perform an analysis on search

effiency. Note that the overall searching cost is largely de-

pends on the design of search strategy, which is orthogo-

nal to the design of our mirror stimuli function. To illus-

trate the efficiency improvement introduced by our mirror

stimuli function, we conducted two experiments based on

two search algorithms of different kinds: one is BlockQNN

[34], the other is DARTS [19]. For each experiment, the

baseline followed the searching process proposed in orig-

inal paper, compared with the searching facilitated by our

mirror stimuli function. We evaluate the effiency of by mir-

ror stimuli function by comparing the relative improvement

of convergence speed, instead of the absolute search time.

Convergence curves are reported in Figure 5. For both of the

conditions, our methods converge faster, benefiting from the

guidance provided by the expert network’s topology. The

results further demonstrate that our mirror stimuli function

is able to be generalized to different search algorithms and

improve the search effiency.
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Figure 3. Topologies of top-4 block architectures searched without mirror stimuli function.

Figure 4. Topologies of top-4 block architectures searched with mirror stimuli function.

Figure 5. Convergence curves for the searching processes compar-

ing with searching without mirror stimuli function.

4.5. Ablation Study

In this section, we perform analysis to illustrate how mir-

ror stimuli function affects the topology of final searched

architecture. We first illustrate topologies of top-4 block ar-

chitectures searched without and with mirror stimuli func-

tion in Figure 3 and Figure 4 (b). It is obvious that archi-

tectures searched without mirror stimuli function are com-

plicated, including numerous operations and connections,

while our searched models are much more simple and ele-

gant. Furthermore, our searched models are more topolog-

ically similar to ResNet, each containing a shortcut follow-

ing add operation to form the residual function.

We further conduct IRLAS with three different λ: 0, 30,

60. All three searching experiments followed the same pro-

cedure described in Section 3.4. For each experiment, top-4

models were chosen and transfered to meet the ImageNet

mobile setting, with about 5M parameters. These models

were then trained from scratch on ImageNet, following set-

tings in Section 4.2. The final inference latency and accu-

racy of these models are illustrated in Figure 6. It can be no-

Figure 6. (a) Comparison the output value changes of mirror stim-

uli function and feature count for three modified models. (b) Re-

sults of inference latency and accuracy on ImageNet of 4 top mod-

els from each experiment with different λ.

ticed that the inference speed of searched architectures can

be drastically improved by utilizing mirror stimuli function,

about 1× faster. For λ = 60, the prior topological knowl-

edge of expert network is too strong for searching, which

results in accuracy drop. λ = 30 is regarded as a choice to

balance the trade-off between accuracy and speed.

5. Conclusion

In this paper, we have proposed an inverse reinforce-

ment learning method for architecture search. Based on the

knowledge learned from the expert-designed networks, our

mirror stimuli function can provide topological guidance to

architecture search, which can be easily generalized to dif-

ferent architecture search algorithms. Inverse reinforcement

learning method has been introduced to train this function.

Experiment results have shown that our IRLAS achieves to

search high-speed architectures with high accuracy. How

to extract representation of multiple networks to further im-

prove the performance will be our future work.
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