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Abstract

Iron is required for appropriate behavioral organization. Iron deficiency results in poor brain 

myelination and impaired monoamine metabolism. Glutamate and GABA homeostasis is modified 

by changes in brain iron status. Such changes not only produce deficits in memory/learning 

capacity and motor skills, but also emotional and psychological problems. An accumulating body 

of evidence indicates that both energy metabolism and neurotransmitter homeostasis influence 

emotional behavior, and both functions are influenced by brain iron status. Like other 

neurobehavioral aspects, the influence of iron metabolism on mechanisms of emotional behavior 

are multifactorial: brain region-specific control of behavior, regulation of neurotransmitters and 

associated proteins, temporal and regional differences in iron requirements, oxidative stress 

responses to excess iron, sex differences in metabolism, and interactions between iron and other 

metals. To better understand the role that brain iron plays in emotional behavior and mental health, 

this review discusses the pathologies associated with anxiety and other emotional disorders with 

respect to body iron status.

Keywords

anxiety; dopamine; emotional behavior; GABA; glutamate; neurotransmitter; norepinephrine; 
oxidative stress; prefrontal cortex; serotonin

1. Introduction

Iron is required for numerous vital functions, including oxygen transport, cellular 

respiration, immune function, nitric oxide metabolism and DNA synthesis [1]. Iron 

deficiency is the most prevalent single nutrient deficiency worldwide [1,2] and results in 

anemia, decreased immune function, retarded growth, and impaired thermoregulation [1,3]. 

The metal also plays a critical role in proper brain morphology, neurochemistry, and 
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bioenergetics [4]. Poor brain myelination resulting from iron deficiency in early 

development has long-lasting effects on behavioral functions [5-9]. Iron is vital in 

neurochemical circuits including monoaminergic systems [10-20] and glutamate and γ-

aminobutyric acid (GABA) homeostasis [21]. Energy metabolism is also altered by brain 

iron status [21]. For example, cytochrome c oxidase is reduced in prenatal iron deficiency, 

leading to impaired hippocampal metabolic function [22]. Iron is a cofactor for tyrosine 

hydroxylase and tryptophan hydroxylase, enzymes that are responsible for dopamine and 

serotonin synthesis, respectively. Monoamine oxidase activity is also lower in humans and 

rats with iron deficiency anemia [23-26]. Since monoamines and GABA are involved in the 

regulation of mood, neuronal activity and anxiety [26-28], it is reasonable to assume that 

emotional behaviors are strongly affected by brain iron levels, and especially by iron 

deficiency conditions. Since many studies have evaluated the role of iron in motor 

coordination and learning/memory function, the current review focuses on emotional 

behavior in the context of iron status and the potential underlying molecular mechanisms.

2. Brain iron

Brain iron concentrations are highest in the substantia nigra, globus pallidus, nucleus 

caudate, red nucleus and putamen [29]. The rapid accumulation of iron in these areas is 

required for the development of the brain and may significantly contribute to behavioral 

organization [29]. Within the brain, iron is particularly concentrated in the basal ganglia, an 

area highly influenced by dopamine and GABA metabolism [26-28]. Therefore, the 

functions of this brain region are very susceptible to changes in iron status. Not only is the 

distribution of iron region-specific, the sensitivity of various brain regions to iron deficiency 

differs during different stages of neurodevelopment [30,31]; during the mid and late 

neonatal periods in rodents (equivalent to human ages 6-12 months), iron content 

significantly decreases by 25% in the cortex, striatum and hindbrain after a short period of 

feeding a low-iron diet, whereas the thalamus shows only a 5% reduction [1]. During 

postweaning iron deficiency, the thalamus becomes more sensitive to dietary iron, 

suggesting that there is a prioritization of brain iron distribution during development [1].

3. Iron deficiency

Given the susceptibility of the developing brain along with the huge prevalence of iron 

deficiency, it is important to understand the role of iron in behavioral and mental health. 

There is strong evidence that iron deficiency causes developmental delays in young children 

[32]. Iron deficiency is also associated with cognitive alterations in adolescents [33]. 

Although the condition of iron deficiency can be later corrected by supplementation, 

behavioral alterations persist [10]. Iron-deficient children have increased anxiety and/or 

depression with social and attentional problems [34]. An accumulating body of evidence has 

demonstrated that iron deficiency is closely associated with altered brain homeostasis in 

both myelination and neurotransmission, especially monoamine metabolism [1]. Studies 

using rodent models of iron deficiency have also revealed a strong relationship between 

behavioral abnormalities and altered dopamine metabolism in the striatum [10,35]. Finally, 

early iron deficiency can also influence the glutamatergic system and energy metabolism 

[22,36,37].
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Human studies link anxiety-driven behavior to poor iron status. For example, increased 

fearfulness is found in anemic infants despite iron therapy [38]. Infants with marginal iron 

deficiency also have increased fearfulness [39]. However, mixed results have been reported 

for behavior in iron-deficient rats; anxiety is elevated [40] or unchanged in adult rats that 

were formerly iron-deficient [41]. Beard et al [40] examined anxiety-related behaviors in a 

light/dark box study of iron-deficient rats at 6-wk of age. This group found that iron-

deficient rats moved four times more rapidly into the dark compartment, but the time spent 

in the dark compared with the light compartment was not different from that of control rats. 

The iron-deficient rats also spent less time in the center of in open field box, indicating 

increased fearfulness and anxiety [40]. The authors argue that the young rat is a model 

organism for behavioral studies to explore the influence of iron deficiency on brain function, 

particularly given the similarity of behaviors observed in iron-deficient children [38,42]. 

When examined by elevated plus maze, young male rats with dietary iron deficiency 

demonstrate reduced time in and entry to the open arms [20], supporting the idea that iron 

deficiency increases anxiety.

Ultrasonic vocalization also has been used to test anxiety in rat pups born to iron-deficient or 

control dams [41]. Maternal iron deficiency was associated with more distress calls, 

consistent with the idea that postnatal iron deficiency induces anxiety-like behaviors [40]. 

When supplemented with dietary iron on PND 10, the formerly iron-deficient rats did not 

show anxious responses on PND 99, suggesting that iron repletion can normalize anxiety-

like behavior [41]. This observation contrasts with findings that early iron deficiency during 

the pre-weaning period followed by iron repletion results in persistent hypoactivity in an 

open field on PND 21 or PND 49 [17,40,43]. Eseh and Zimmerman offer potential 

explanations [41]. First, these differences may be explained by inadequate time for 

compensatory neural processes. Second, it is possible that different neural systems (e.g., 

dopamine and GABA) have different requirements or timing for plasticity. Finally, it must 

be recognized that results obtained using different methods, different levels of dietary iron, 

and at different developmental time periods will be inherently difficult to reconcile. For 

example, a decrease in stereotypic movements induced by postnatal iron deficiency was 

reversed by 4 weeks of iron repletion in one study [17], but not completely in another [44].

It is generally thought that the critical time window for altered emotional behaviors due to 

iron deficiency may be later than gestation or within the first 10 days of life in rats, 

equivalent in brain development to a full human gestation [41]. Neural damage during 

gestation may recover, whereas continued iron deficiency past a critical point could produce 

a lack of effect on the recuperative or compensatory process needed to reverse anxiogenic 

effects [41]. It is notable that iron-deficient rats given iron therapy at PND 10 still weigh 

significantly less than the controls on both PND 55 and PND 75 [41]. Whether the small size 

of the low iron group is due to decreased food intake or altered metabolism (or both) has yet 

to be fully examined. Ultimately, it is critical to keep in mind that the period of development 

during which nutritional deficiency occurs can later produce both behavioral and 

physiological consequences [45] – whether iron repletion can reverse the behavioral 

influence of iron deficiency and the mechanism(s) underlying restoration to normalcy 

remain important questions to be studied [46].
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4. Iron overload

Excess iron in the brain is implicated in the development and pathogenesis of 

neurodegenerative disorders [47-51]. Iron levels in the brain increase with age [52-54]; this 

has been shown to occur mainly in brain regions that are affected in the disease states, 

including Alzheimer's, Parkinson's, and Huntington's diseases [54]. Increased iron levels 

promote the generation of reactive oxygen species, leading to cellular and tissue damage 

[55,56]. With respect to emotional behaviors, iron overload appears to alter anxiety-like 

behavior and mood [57-59]. Anxious responses, determined by the elevated plus maze, are 

observed in adult rats receiving daily intraperitoneal injections of iron [59]. Other behavioral 

impairments have been found in rats fed carbonyl iron diet containing 20,000 ppm iron [57]. 

These findings support the idea that imbalanced iron metabolism plays a pivotal role in 

modulating anxiety and emotional behaviors.

Neuronal damage due to iron overload may be incurred during the postnatal period and 

aging because the rate of iron influx into the brain is increased in both early and late stages 

of life [60-62]. Iron overload has been clearly shown to disrupt neurotransmitter 

homeostasis. Iron infusions into the substantia nigra perturb monoaminergic systems, 

especially the dopaminergic pathway, to promote impaired motor function resembling 

Parkinson's disease [63-65]. The effects of iron overload on learning and memory deficits 

are also well documented during postnatal development in mice [66-70]. However, there are 

only a few studies that have characterized the influence of iron loading on emotional 

behavior. In humans, iron supplementation in anemic women has been reported to alter 

emotional processes such as anxiety or depression [58]. Intraperitoneal injection of iron 

affects the emotional behavior of Wistar rats [59]; in the elevated plus maze, these iron-

loaded rats spent more time in the closed arms and entered the open arms less frequently 

than controls, indicating that iron-treated rats display elevated anxiety. In addition, the total 

entries into the closed arms and activity in the maze were significantly reduced in iron 

overload rats compared with controls, reflecting a reduced activity and exploratory drive. 

Moreover, iron-loaded rats have a lower locomotion and reared less frequently in the open 

field [59]. These results demonstrate increased anxiety/emotional reactivity upon iron 

overload, which is similar to the behavioral phenotype of iron deficiency [10,19,40,71]. 

Since activity or exploration drive are also affected by iron overload during postnatal 

development [68], behavioral methods that are more anxiety-specific and less exploration/

activity-dependent (e.g., conditioned place avoidance, social interaction or taste aversion 

tests) have been suggested to more reliably examine the effect of iron overload on anxiety 

[59].

The influence of iron loading on emotional behavior is dose-dependent. In contrast to 

intranigral iron dose of 3.0 mg/kg body weight, rats intranigrally injected with 1.5 mg 

iron/kg did not show a significant difference in behavioral functions compared with control 

rats [59]. It can be speculated that the organism, particularly the adults, can compensate for a 

small dose of iron supplementation [59]. Other studies reported similar results [57,68]. 

Sobotka et al [57] demonstrated a significant accumulation of iron in the brain only at the 

highest dose of iron overload (i.e., 20,000 ppm in diet for 12 weeks) but not at lower doses 

(350 and 3,500 ppm). A mechanism that protects the brain against iron overload until a 
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certain point, and that cannot compensate when the load exceeds this limit, has been 

proposed [59].

5. Potential mechanisms underlying the influence of iron status on 

emotional behavior

Despite a large body of evidence about iron's effect on behavioral functions from 

experiments using iron-deficient rodent models and observations from iron-deficient infants 

and children, the molecular information about the role of iron in emotional behavior is 

scarce. A correlation study has found interesting relationships among iron, dopaminergic 

system and anxiety-like behavior. Nosepokes and rate of habituation are associated with 

prefrontal cortical iron concentrations, whereas spontaneous activities, including locomotion 

and repeated movements, are better correlated with iron levels and dopamine receptor 

density in the ventral midbrain [40]. The regression analysis also revealed that iron levels in 

the ventral midbrain and prefrontal cortex are important for anxiety-like behaviors. It should 

be noted that other potential mechanisms could be involved in iron deficiency-related 

emotional behaviors and that other neurotransmitters could play significant roles in these 

behaviors. For example, iron deficiency alters serotoninergic [72] and GABAergic functions 

[73]. It is also possible that these effects are not due to direct effect by iron but may be a 

consequence of other factors such as metal interactions. These mechanisms are discussed 

below and represented in Figure 1.

5.1. Dopamine

A large body of evidence has indicated that impaired emotional behaviors are associated 

with iron deficiency through altered dopamine metabolism [14,20,74,75]. In general, there is 

a universal negative effect of iron deficiency on dopamine functions [11,76,77], which are 

specific to brain region and the stage of neural development.

Dopamine receptor 1 (D1R) expression is down-regulated in the caudate putamen and 

prefrontal cortex of iron-deficient rats [78]. In contrast, Beard et al [40] did not observe any 

effect of iron deficiency on D1R in both brain areas, possibly due to different specificity of 

ligands for D1R. Iron deficiency decreases the density of D2R in rat striatum [78] and 

prefrontal cortex as measured by radioactive tracer binding [40]. Western blot analysis, 

however, revealed no difference in D2R in the prefrontal cortex between iron-deficient and 

control rats [20]. While this discrepancy may reflect different approaches used to detect 

D2R, the region-specific response of iron deficiency to dopamine receptor density could also 

be due to different sensitivity to dietary iron deficiency [30,31]. Another possibility is the 

differential expression of receptor subtypes in different brain regions along with less specific 

ligands. For example, the ratio of D4R to D2/3R is greater in the prefrontal cortex than in 

the striatum [79]. Hence the greater binding of ligand with poor subtype specificity could 

result in different interpretations.

Since D2R autoreceptor regulates dopamine clearance in the synaptic cleft via dopamine 

transporter (DAT) [80,81], the negative effect of iron deficiency on D2R could result in 

decreased DAT activity and increased striatal dopamine [80]. A positive correlation between 
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D2R density and DAT density appears to support this possibility [78]. It has been proposed 

that iron deficiency-related “desensitization” could occur such that more dopamine is needed 

to stimulate DAT [78]. Iron deficiency decreases DAT density in the striatum and nucleus 

accumbens [16]. Effects of cocaine on DAT are reduced upon iron deficiency, implying 

changes in both DAT density and functioning [16]. In contrast, DAT levels are unchanged in 

the prefrontal cortex upon iron deficiency [20]. These observations may reflect brain region-

specific regulation of the transporter by iron and/or different methods of measurement [20].

Iron is a cofactor for tyrosine hydroxylase, a critical enzyme in dopamine production; 

whether its activity is specifically affected in the prefrontal cortex and striatum during iron 

deficiency should be better explored [82]. Extracellular dopamine is elevated in the caudate 

putamen and nucleus accumbens upon iron deficiency [14-16,75], most likely due to 

decreased DAT density [15], and returns to normal levels when brain iron levels are 

corrected [15,75]. In contrast, extracellular concentrations of dopamine in the prefrontal 

cortex, determined from microdialysis samples, are lower in iron-deficient rats compared 

with control rats, whereas the amphetamine-evoked response is similar between iron-

deficient and control rats, suggesting that the reduced basal dopamine in the prefrontal 

cortex could be reflected by elevated anxiety upon iron deficiency [20]. Alternatively, the 

amount of neurotransmitter available for evoked release may be limiting in the prefrontal 

cortex of iron-deficient rats [20].

5.2. Serotonin and norepinephrine

Alterations in serotonin signaling might also be responsible for emotional behaviors since it 

has an important role in mediating affective behaviors. However, conflicting results exist on 

the effects of iron deficiency on serotonin levels in rats. Iron deficiency may decrease levels 

of serotonin due to a down-regulation of synthetic enzymes in juveniles [13]. On the other 

hand, serotonin levels are elevated upon iron deficiency in adults, possibly reflecting a 

down-regulation of serotonin metabolism [83]. Serotonin transporter densities are reportedly 

reduced in the striatum of iron-deficient mice [72]. Likewise, moderate and severe 

gestational iron deficiency reduces serotonin uptake by brain synaptic vesicles in offspring, 

and this effect can be normalized with 4 weeks of iron repletion [84]. In other studies, 

however, iron deficiency had no effect on serotonin levels or metabolism in newborns or 

adults [12] and serotonin levels in the prefrontal cortex of the iron-deficient rats did not 

differ from controls [20].

Extracellular norepinephrine (NE) concentrations are elevated under iron deficiency states 

whereas tissue levels are unchanged compared with controls [43,76,77]. Bianco et al found 

increased caudate NE concentration and further demonstrated that the activity of dopamine-

β-hydroxylase, the enzyme to produce NE from dopamine, is elevated by 75% in caudate 

homogenates from iron-deficient rats [85]. This evidence suggests a shift to increase NE 

production upon brain iron deficiency, possibly compensating for altered dopamine response 

[85]. In addition, the brain NE transporter is down-regulated in iron deficiency [18]. The 

observations in serotonin and NE homeostasis are not necessarily conflicting but may hint at 

underlying mechanisms of the iron-monoamine relationship since the distribution of 
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neurotransmitters between intracellular and extracellular pools appears to be the primary site 

of influence of brain iron deficiency [1].

Ceruloplasmin (Cp) is a ferroxidase that converts Fe2+ to Fe3+ and contributes to cellular 

iron efflux. Texel et al have demonstrated that Cp-deficient mice exhibit increased iron 

deposition in the liver and spleen, whereas brain iron is reduced, especially in the 

hippocampus, which is accompanied by increased anxiety-like behavior with no changes in 

motor function or learning and memory [86]. This increased anxiety is associated with 

elevated levels of plasma corticosterone and decreased levels of serotonin and NE, as well as 

brain-derived neurotrophic factor (BDNF) and its receptor [86]. Altered hippocampal BDNF 

signaling is linked to changes in serotonin and NE levels. BDNF promotes the survival and 

differentiation of serotonin neurons [87], while NE increases BDNF and receptor activation 

[88]. Reduced BDNF and increased corticosterone are associated with increased anxiety 

[89,90]. Also, mice with hippocampus-specific deletion of BDNF display anxious behavior 

[91]. Tran et al have shown that BDNF is reduced in iron-deficient rats [92,93]. Since iron is 

a cofactor for the rate-limiting enzymes involved in serotonin and NE synthesis, decreased 

iron in the hippocampus due to Cp deficiency could result in impaired production of these 

monoamines and down-regulate BDNF signaling, which together promote an anxiety 

phenotype. These results indicate that redox properties of iron could contribute to emotional 

behavior by altering monoamine metabolism and BDNF homeostasis [86].

5.3. Glutamate

There are few studies about the role of iron and glutamate/GABA concerning emotional 

behavior. Iron deficiency in both prenatal and postnatal periods is associated with decreased 

activities of glutamate decarboxylase, glutamate dehydrogenase and GABA transaminase 

[73,94]. Brain glutamate levels are elevated in iron-deficient rats [37], suggesting either 

increased synthesis or decreased release from the neurons. Since excitatory glutamatergic 

neurotransmission accounts for >80% of the total energy expenditure in the brain [95], Rao 

et al postulated that glutamate-mediated neurotransmission is decreased due to inefficient 

energy metabolism in perinatal iron deficiency, leading to high intracellular glutamate levels 

[37]. Furthermore, glutamate binding to synaptic membranes is reduced in iron-deficient 

brains [96]. This evidence supports the idea that emotional responses are attenuation of 

glutamatergic signaling under low iron conditions.

5.4. Gaba

Altered GABA metabolism is associated with decreased iron concentrations 

[27,28,37,73,77,94,96]. Iron deficiency results in elevated concentrations of GABA in 

several brain regions, including hippocampus, striatum and globus pallidus [37,97]. The 

elevated GABA levels suggest an increased inhibitory drive for reducing the overall 

neurotransmission rates and brain activity due to insufficient energy [37]. In addition, iron 

deficiency enhances GABA binding to synaptic membranes [96]. Activities of GABA shunt 

enzymes (e.g., glutamate dehydrogenase and GABA transaminase) are reduced in rats made 

iron-deficient during pregnancy and lactation, and this effect is not restored by iron repletion 

of dams [94]. Notably, these enzymes are also decreased in postweaning iron deficiency, but 

this loss can be corrected upon iron supplementation [98,99].
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5.5. Oxidative stress

Iron overload enhances reactive oxygen species [55], and iron-treated rats show increased 

iron in brain regions involved in emotional processes, including the frontal cortex, basal 

ganglia, hippocampus, and cerebellum [59]. To account for the effects of iron exposure on 

behavior, Maaroufi et al [59] proposed the hypothesis that increased oxidative stress due to 

iron overload impairs monoamine functions. Administration of a small amount of iron for 

only a few days (3.0 mg/kg for 5 consecutive days) promotes iron accumulation in the 

substantia nigra of an adult brain, where iron may generate cytotoxic free radicals. Such 

oxidative stress can impair dopaminergic signaling and monoamine function, consequently 

leading to the behavioral impairment [100,101]. However, while several studies have shown 

an association between brain iron loading and oxidative stress in neurodegenerative 

disorders [47-51], the exact role of iron overload in emotional behavior remains to be 

determined.

6. Sex differences in iron metabolism and emotional behavior

There is a significant influence of sex on anxiety behavior in adulthood; females are less 

anxious than males based on elevated plus maze results [41]. Other studies reached similar 

conclusions [102,103]. Estrogen effects on dopaminergic function in the context of iron 

deficiency have been reported [78], possibly by transcriptional regulation of DAT and 

receptors [19]. Estrogen also modifies D2R expression [104,105]. Sex differences also exist 

in spatial memory performance [106].

Latency to startle response is attenuated in female, but not in male, iron-deficient rats [19]. 

The expression of monoamine transporters and D1R is also different between male and 

female [18,72]. In males, iron-deficient rats have lower DAT levels in several brain regions, 

including caudate putamen and nucleus accumbens. However, female rats do not show a 

difference in DAT levels between iron deficiency and control diets. D1R is another 

example: while iron-deficient rats show a significant reduction in D1R in nucleus 

accumbens and substantia nigra, female rats increase D1R compared with control of the 

respective gender [19]. Overall, it appears that male mice are more sensitive to the effect of 

iron deficiency than are female mice [72]. Studies using rats also showed a similar pattern 

[19]. Finally, it has been noted that brain iron levels are also dependent upon gender and 

iron diet [43].

7. Other metals

Although iron has been most studied in emotional behavior and neurotransmitter 

metabolism, abnormal levels of other metals, whether essential or not, also significantly 

contribute to mental disorders and here we briefly discuss several metals.

7.1. Zinc and selenium

As an essential metal, zinc plays an important role in brain function and energy metabolism. 

The metal is involved in controlling emotional behavior, and mood disorders and depression 

are associated with reduced zinc concentrations in serum [107] while zinc supplementation 

improves anger and depression [108]. Likewise, zinc-deficient rats display anxiety-like 
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behavior [109] and zinc treatment provides anxiolytic activity in rodents [110]. The role of 

zinc in cognitive and emotional behavior mediated by glutamate and glucocorticoid 

signaling under stressful circumstances has been reviewed [111]. Selenium, a metalloid 

mineral, provides anti-oxidant activity to protect the body from oxidative stress. Human 

studies show that selenium supplementation improves mood [112-114].

7.2. Manganese and copper

Manganese is required for several critical enzymes, including superoxide dismutase, 

glutamine synthetase and arginase [115,116]. When over-deposited in the brain, however, 

manganese promotes neurotoxicity characterized by memory loss, impaired motor 

coordination and psychotic behavior resembling Parkinson's disease [117-119]. Impaired 

dopamine and cholinergic systems participate in manganese-mediated psychological 

disorders [120-122]. Similarly, abnormal tissue accumulation of copper, observed in 

Wilson's disease, is also associated with impaired emotional behavior and neurological 

problems [123,124].

7.3. Lead and mercury

Heavy metals have long been recognized as neurotoxicants. Emotional problems associated 

with lead exposures in neonates [125] or adults [126] affect mental health, although not 

always [127]. Social and emotional dysfunction in children correlate with pre- and postnatal 

lead exposures [128]. Studies in mice show lead-associated behavioral effects could be 

mediated, at least in part, by increased corticosterone levels [129]. Other possibilities 

include disruption of monoamine metabolism in the basal ganglia [130] and formation of 

hydroxyl radicals [131].

Behavioral deficits are reported in rats upon perinatal methylmercury exposures [132]. In 

humans, chronic subtoxic levels of inorganic mercury produced heightened distress, anxiety 

and psychoticism without alterations in general intellectual functioning and motor skills 

[133]. In studies using zebrafish, Maximino et al have proposed that oxidative stress induced 

by methylmercury produces mitochondrial dysfunction and inhibits tryptophan hydroxylase, 

thereby altering serotoninergic systems [134].

8. Conclusions

A strong body of evidence demonstrates altered metabolism of iron and other metals 

modifies emotional behaviors. Conversely, people with psychological disorders appear to 

have reduced iron status; for example, serum iron levels are lower in schizophrenics than in 

controls [135]. Subjects with major depression have lower hematocrit and serum transferrin 

[136]. Interestingly, these patients also display lower zinc levels [137]. Moreover, the 

amount of selenium in the diet is inversely associated with reports of anxiety, depression, 

and tiredness, which are improved by selenium supplementation [113]. These findings 

suggest a possibility that individuals with mood symptoms may have insufficient vitamins 

and minerals [113] and therefore may need more micronutrient supplementation than 

healthy subjects [138].
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Effects of iron in emotional behavior are determined by many physiological/biological 

properties and spatial/temporal factors; these include intracellular and extracellular 

concentrations of neurotransmitters, brain iron levels, different brain regions (e.g., density 

and affinity of neurotransmitter receptors/transporters/enzymes), regulation of these 

molecules, iron exposure period and timing, route of exposure, animal species, sex, 

nutritional status and disease state. Different methods of behavioral measurements and the 

influence of other metals produce different behavioral outcomes. More systematic and 

controlled studies are warranted to better understand the underlying mechanism of iron-

associated emotional behavior and mental health. It is necessary to improve our 

understanding of the pathologies associated with anxiety and other psychiatric disorders to 

develop therapies to alleviate emotional dysfunction.
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D1R dopamine receptor 1
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PND postnatal day
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Figure 1. Potential mechanisms of iron-dependent emotional behavior
Shown are proposed mechanisms of anxiety and emotional behavior with a focus on iron 

metabolism. Effects of factors that can control iron metabolism and emotional behavior are 

indicated by dotted arrows.
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