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Any independent life requires iron to survive. Whereas iron
deficiency causes oxygen insufficiency, excess iron is a risk for
cancer, generating a double-edged sword. Iron metabolism is
strictly regulated via specific systems, including iron-responsive
element (IRE)/iron regulatory proteins (IRPs) and the corresponding
ubiquitin ligase FBXL5. Here we briefly reflect the history of
bioiron research and describe major recent advancements.
Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis,
is providing huge impact on science. Carcinogenesis is a process
to acquire ferroptosis-resistance and ferroptosis is preferred in
cancer therapy due to immunogenicity. Poly(rC)-binding proteins
1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone
proteins. The mechanism how cells retrieve stored iron in ferritin
cores was unraveled as ferritinophagy, a form of autophagy.
Of note, ferroptosis may exploit ferritinophagy during the
progression. Recently, we discovered that cellular ferritin
secretion is through extracellular vesicles (EVs) escorted by CD63
under the regulation of IRE/IRP system. Furthermore, this process
was abused in asbestos-induced mesothelial carcinogenesis. In
summary, cellular iron metabolism is tightly regulated by multi-
system organizations as surplus iron is shared through ferritin in
EVs among neighbor and distant cells in need. However, various
noxious stimuli dramatically promote cellular iron uptake/storage,
which may result in ferroptosis.
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T he origin of our laboratory starts in 1982, when Shinya
Toyokuni started research activity as a medical student

under the guidance of Dr. Shigeru Okada and Prof. Osamu
Midorikawa in the Department of Pathology, Faculty of Medicine,
Kyoto University, Kyoto, Japan. At that time, researchers of
experimental pathology have been trying to generate disease
models by administering a variety of chemicals to animals via
different routes, when genome information and genetically
engineered animals were not available. The department’s interest
had been the role of metals in diseases. Affected by the academic
environments, Shinya Toyokuni became interested in the role of
chelators in modifying the biological effects of heavy metals in
vivo, and published the first work as a PhD student on a copper
toxicosis model by repeated intraperitoneal administration of
cupric nitrilotriacetate, in which pathology of Wilson disease was
reproduced.(1) Shinya Toyokuni thereafter started the work on
rodent renal carcinogenesis model by ferric nitrilotriacetate
(Fe-NTA), which was discovered with serendipity in 1982 by
Dr. Shigeru Okada and Prof. Osamu Midorikawa.(2–8) This renal
carcinogenesis model attracted Shinya Toyokuni so much that
our laboratory still works on this model even 40 years after the
discovery. This model has produced at least 64 papers thus far in
our laboratory since Shinya Toyokuni started his own laboratory
in 1992. Importantly, this model has generated and is still
generating numerous novel concepts by the members of our
laboratory as described below.

Fe-NTA-induced Renal Carcinogenesis Model as
Ferroptosis-resistance

The value of this model generated in wild-type rodents may be
still underestimated even now. It has taken several decades for us
to understand the entire molecular mechanisms of carcino‐
genesis, which is summarized in Fig. 1 and Table 1. Intraperi‐
toneal injection of Fe-NTA (molecular weight 243.96) causes
Fenton reaction specifically in the renal proximal tubules, which
depends on the complete filtration through the glomeruli and
protein-deficient reductive intraluminal renal tubular environ‐
ment.(9) The most important point is the adaptive response of the
somatic cells, here renal proximal tubular cells, against repeated
oxidative stress, which forces to make decision on a delicate
balance between the individual death due to renal failure or
cellular evolution to overcome persistent oxidative stress. Kidney
is a vital organ which selectively excrete toxic metabolites and
modulate water and salt mass in the body. We have recognized
that the rodent individuals unconsciously select cellular evolution
rather than immediate death even if the evolution may eventually
kill the host.

Intraperitoneal (ip) injection of Fe-NTA induces renal
proximal tubular necrosis via Fenton reaction, which starts as
early as 30 min after the injection.(10–13) Fe-NTA has been used to
load Fe(III) to transferrin, a major Fe(III) transporting protein in
the serum.(14) NTA is an aminopolycarboxylic acid like ethylene‐
diamine tetraacetic acid (EDTA) and can generate an iron
chelate, which is soluble at neutral pH(15) and is still redox-
active.(16–18) Fe-NTA is indeed a most potent Fenton reagent at the
near physiological conditions.(16,19) After the ip administration,
most of the Fe-NTA is excreted through urine within 3 h(20)

(Fig. 1). However, after repeated daily ip administration of 3
weeks, we rarely observe necrosis but finds numerous atypical
proximal tubular cells with huge bizarre nucleus, which we call
karyomegalic cells.(3,4,10,21) We now know that the cells which
survived 3 weeks’ severe oxidative stress through Fenton reac‐
tion already exhibit genetic alterations, including deletion of
p16Ink4a tumor suppressor gene.(22–24) Of note, at this subacute
stage, renal tubular cells accumulate iron in the cytoplasm.(2)

In the 1980’s and 1990’s, we performed many morphological
and functional studies on this model (Fig. 1 and Table 1). Espe‐
cially, the acute model was extremely reproducible as an animal
model,(21,25–28) and major type of cell death mode in the renal
proximal tubules was necrosis.(10,11) We recognized in 2014
that renal tubular necrosis by Fe-NTA must be classified as
ferroptosis after the proposal of a novel cell death mode
designated as ferroptosis.(29) There was the first International
Conference on ferroptosis in the Banbury Center, Cold Spring
Harbor Laboratory on April 2–5, 2017 as a closed meeting,
where Shinya Toyokuni was invited and presented the Fe-NTA-
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induced renal carcinogenesis model.(30) No independent life on
earth can survive without iron, which constitutes a basis for the
persistent electron flow through the organelles, cytosol and the
entire cells. On the other hand, sulfur or sulfhydryls work as
antioxidants, where iron and sulfhydryls are usually competing
each other except for Fe-S cluster.(7,8,31) The definition of
ferroptosis is catalytic Fe(II)-dependent regulated necrosis
accompanied by lipid peroxidation.(30) Our revised understanding
of ferroptosis is simpler in that an sharply increased ratio of
catalytic Fe(II) to sulfhydryls leads to necrotic form of cell
death associated with lipid peroxidation.(32) In this way, Fe-NTA-
induced renal carcinogenesis generated a condition of ferroptosis-
resistance.(32,33)
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Fig. 1. Ferric nitrilotriacetate (Fe-NTA)-induced renal carcinogenesis.
(A) Summary of molecular mechanisms how repeated intraperitoneal
(ip) administration of Fe-NTA causes specifically renal cell carcinoma.
DMT1, divalent metal transporter 1 (Slc11A2). Refer to text for details.
(B) Macroscopic view of a representative case of renal cell carcinoma in
a rat induced by Fe-NTA. Arrows show the renal cell carcinoma origi‐
nating in the left kidney and invading the surrounding tissue. K, right
kidney; L, liver; Lu, lung with pulmonary metastasis. (C) Histology of
the same renal cell carcinoma (Fuhrman grade 4(150); bar = 200 μm, 50
μm in the inset).

Screening of Oxidative Stress Biomarkers through the
Acute Phase of Fe-NTA Model

Since the 1990’s, we have been using the acute phase of
Fe-NTA-induced renal carcinogenesis (3 h after ip administration)
to screen for practical oxidative stress biomarkers. Among the
oxidative DNA base modifications, 8-hydroxy-2'-deoxyguanosine
(8-OHdG) was the most sensitive(25) and we have produced a
monoclonal antibody against 8-OHdG (N45.1), thus specific for
the DNA form.(27) N45.1 recognizes not only the hydroxyl (−OH)/
keto(=O) structure at C8 of 8-OHdG but also 2'-deoxy structure
of 2'-deoxyribose, which can differentiate RNA form of 8-OH-
guanosine in immunohistochemistry and immunoprecipitation(34)

(Fig. 2). The latter in association with the genome information
opened up a novel research area called oxygenomics,(35–39) which
is still growing insidiously.(40,41) Oxygenomics indeed provides
us with a variety of genomic information, such as intranuclear
location and expression of genes linked with oxidative stress
(Fig. 2). We believe that oxygenomics approach would be more
recognized with the advancement of artificial intelligence.

Oxidized lipids as lipid peroxidation products were also good
candidates for oxidative stress biomarkers. Final products of lipid
peroxidation are aldehydes in most of the reactions in vitro and in
vivo. We found that 4-hydroxy-2-nonenal (HNE) was the most
sensitive as a maker through the screening of the Fe-NTA
model.(26,42) Whereas aldehydes themselves including HNE are
not retained in the formalin-fixed paraffin-embedded (FFPE)
specimens because of their lipophilicity, HNE was reactive
enough to initiate Michael addition reaction with His/Lys/Cys
residues of various proteins to generate specific hemiacetal struc‐
ture,(43–45) which could be fixed in FFPE specimens based on
large molecular weight with relative hydrophilicity.(42,46) Thus, we
could produce 5 clones of mouse monoclonal antibodies against
HNE-modified proteins, which showed distinct recognition of
the epitopes.(47,48) We used HNE-modified albumin in 1995 for
the screening of the most sensitive clone, which was HNEJ-2
with a specificity to the His adducts (Fig. 3). HNE-2 has been
commercialized and contributed a lot to the understanding of
pathologies in various diseases (Table 2) because immuno‐
histochemical analyses under microscope can locate the target
cells for oxidative stress among a variety of cells of more than
200 different kinds. In the 1990’s we did not expect at all that
other clones than HNEJ-2 would be helpful for the detection of
ferroptosis in 2021.(13)

Mysterious Link Between p16 and Carcinogenesis

Cancer is one of the present-day leading causes of human
mortality worldwide as well as in Japan since 1981 (https://
ganjoho.jp/public/qa_links/report/statistics/2021_en.html). For a
long time till the 1950’s, tuberculosis, a bacterial infectious
disease, was the top cause of death all over the world, which
was successfully interrupted by the discovery of antibiotics,
such as streptomycin(49) and isoniazid.(50,51) However, we have not
succeeded in decreasing cancer incidence thus far, and advanced-
stage cancers are still difficult to be cured even with the latest
treatment strategies.

In the textbook we see a long list of etiology of cancer, which
usually starts from smoking and include excess alcohol drinking,
excess red meat, specific virus/bacterial infections, obesity and
insufficiency of fruits/vegetables and exercise. Are there really
fully responsible for all the cancers? Cancer has been recognized
from the Greek Era at the latest. We now think that even the long
list is just the tip of iceberg.(52) We are now proposing that
carcinogenesis is at least responsible from the long use of iron
and oxygen for the average of 80 years.(33) Iron and oxygen
present a high affinity each other.(53) No life on the earth can
survive without iron.(54)
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In this context, Fe-NTA-induced renal carcinogenesis as
already described is intriguing as a carcinogenesis model purely
by repeated Fenton reaction.(2–7,55) We evaluated the induced
renal cell carcinoma (RCC) with genetic analysis and later with
array-based comparative genome hybridization, which revealed
that homozygous deletion of p16Ink4a tumor suppressor gene and
amplification of c-Met oncogene (receptor for hepatocyte growth
factor) are the common mutations.(22,24) These two genes are

Nucleus

Oxidative stress

Low
High

Nuclear   center

8-OHdG

Gene-density high

Transcriptionally active

Fig. 2. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and oxygenomics.
Summary of the recent results on the 8-OHdG distribution in vivo in
the renal tubular cells in the untreated normal condition and under
oxidative stress after Fe-NTA administration in association with
intranuclear localization, gene density and transcriptional activity.
Refer to text for details.
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Fig. 3. Monoclonal antibodies against 4-hydroxy-2-nonenal (HNE)-
modified proteins. A major lipid peroxidation end product, HNE, still
can react with amino acid residues, histidine, cysteine and lysine, in
proteins to generate Michael adducts. We have produced several
mouse monoclonal antibodies to recognize this structure of Michael
adducts. Whereas HNEJ-2 recognizes specifically histidine adducts,
HNEJ-1 shows high affinity for all the histidine, cysteine and lysine
adducts, which we recently found appropriate to detect ferroptosis in
formalin-fixed paraffin-embedded sections.(13)

Table 1. Seminal findings associated with Fe-NTA-induced renal carcinogenesis

1971 Bates and Wernicke Use of Fe-NTA to load iron to transferrin(14)

1979 Awai et al. Use of Fe-NTA ip injection in rats/rabbits as a model of hemochromatosis(20)

1982 Okada and Midorikawa Discovery of Fe-NTA-induced renal carcinogenesis in rats (in Japanese)(2)

1985 Hamazaki et al. Renal tubular injury after single ip administration of Fe-NTA at the acute phase(10)

1986 Ebina et al. Fe-NTA-induced renal carcinogenesis in rats(3)

1987 Li et al. Fe-NTA-induced renal carcinogenesis in mice(4)

1987 Okada et al. TBARS increased after after ip administration of Fe-NTA in rats, which was prevented by pre-administration
of vitamin E(114)

1990 Toyokuni et al. Males mice are more susceptible to renal lipid peroxidation by Fe-NTA than females(12)

1992 Toyokuni and Sagripanti Fe-NTA as the most efficient catalyst for Fenton reaction at neutral pH to cause DNA single/double strand
breaks(16)

1994 Toyokuni et al. HNE-modified detected in the renal tubules by immunohistochemistry(42)

1994 Toyokuni et al. 8-OHdG as the most increased oxidative DNA modification 3 h after single ip administration of Fe-NTA(25)

1995 Toyokuni et al. Monoclonal antibodies against HNE-modified proteins established(47)

1997 Toyokuni et al. HNE as the most increased aldehydes 3 h after single ip administration of Fe-NTA(26)

1997 Toyokuni et al. Monoclonal antibody against 8-OHdG established(27)

1999 Tanaka et al. p16Ink4a identified as a major target tumor suppressor gene in Fe-NTA-induced carcinogenesis with genetic
analysis(22)

2002 Hiroyasu et al. Allelic loss of p16Ink4a occurs 3 weeks after the start of Fe-NTA-induced carcinogenesis protocol(23)

2006 Akatsuka et al. Concept of oxygenomics established(34)

2012 Akatsuka et al. aCGH analysis of Fe-NTA-induced RCCs revealed similarity of genomic alterations to those of human cancer(24)

2022 Cheng et al. Mouse strain difference in susceptibility to Fe-NTA-induced renal carcinogenesis depends on ferroptosis-
resistance(112)

2022 Kong et al. Rat Brca1(L63X/+) provides promotional effect on carcinogenesis through chromosomal amplification and
ferroptosis-resistance(151)
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among the most popular targets in various human cancers.(56,57)

Regarding the allelic loss of p16Ink4a tumor suppressor gene, this
phenomenon was frequently observed in many cell lines which
were cultured over a long period in the 1990’s. It was thus once
thought as an artifactual mutation.(58,59) However, homozygous
deletion of p16Ink4a tumor suppressor gene was found to be
frequently observed in malignant mesothelioma of human cases
(epithelioid subtype ~60%, sarcomatoid subtype ~100%), which
established the biological role in human carcinogenesis.(60,61)

Of note, the pathogenesis of asbestos-induced malignant
mesothelioma is highly iron-dependent.(62) Furthermore,
melanoma-prone kindreds were reported, which identified
p16Ink4a tumor suppressor gene as responsible.(63,64)

When we first recognized that p16Ink4a tumor suppressor gene
is one of the responsible genes in Fe-NTA-induced renal carcino‐
genesis, we thought that this is a mysterious link.(65) The gene
locus of p16Ink4a tumor suppressor gene encodes two genes, thus
two proteins by alternative splicing, INK4A and ARF, which is a
cell cycle brake and apoptosis promoter, respectively. This is
probably one of the most important portions of the genome,
which release the cell cycle brake with no apoptotic pathways,
promoting carcinogenesis two steps with one stone, if this
portion is homozygously deleted.(66) Accordingly, we believe that
some fraction of human cancer is caused by the long use of iron
and oxygen, where iron becomes excess with aging.(33,52) The
association of p16Ink4a tumor suppressor gene deletion with iron-
induced carcinogenesis has been a mysterious link for a long
time. Now we have at least reached a hypothesis that Fe-NTA-
induced renal carcinogenesis represent a model of usual human
carcinogenesis as a process to acquire ferroptosis-resistance.(32)

Iron Chaperones

Regarding the chemical character, Fe(II) is an initiator of
Fenton reaction [Fe(II) + H2O2 → Fe(III) + •OH + OH−] to
generate hydroxyl radicals, and thus is an indispensable but
dangerous molecule.(53) However, Fe(II) has to go through
cellular cytosol to its final destination organelles. Therefore, how
Fe(II) is transported through cytosol was a long-time mystery.
The first important finding was that poly repeated cytidine (rC)
binding protein 1 (PCBP1) can chaperone Fe(II) to load iron to

ferritin core eventually as Fe(III).(67) Fe(III) is almost insoluble at
neutral pH and so is a safe iron for storage.(53)

Izumi Yanatori performed a series of experiments in the 2010’s
to screen a major cytosolic Fe(II) chaperone by the use of
yeast two-hybrid system to identify poly repeated cytidine (rC)
binding protein 2 (PCBP2). Indeed, PCBP2 can accommodate
Fe(II) from divalent metal transporter 1 (DMT1, SLC11A2)(68) or
heme oxygenase 1/cytochrome p450 complex(69) and pass Fe(II)
to ferroportin (SLC40A1), a sole iron exporter from the cell.(70)

These findings, including ours, hold a huge biological signifi‐
cance in that DMT1 takes out delivered iron to cytosol through
transferrin receptor/endosome/lysosome system and heme oxyge‐
nase 1/cytochrome p450 complex metabolizes recovered heme
from hemoglobin of aged red blood cells or wornout proteins
retaining heme cofactor to retrieve iron. Figure 4 shows the
current understanding of iron metabolism in higher species.
Thus, cytosolic Fe(II) transport system has been established.(71,72)

As the name suggests PCBP1/2 have been discovered to play
multiple roles in the nucleus such as translation regulation(73,74)

and recognition of heavily oxidized RNAs.(75,76) PCBP1, one
exon gene, shares ~80% homology in amino acids to PCBP1,
suggesting that PCBP1 is derived from PCBP2 by retrotransposi‐
tion. Both PCBP1 and PCBP2 accommodate 3 molecules of
Fe(II), which would be redox inactive.(72,77–79) As already
mentioned, affinity of PCBP1/2 to other iron metabolism-
associated proteins are antagonizing. Namely, PCBP1 transports
Fe(II) to ferritin for storage(67) whereas PCBP2 collects and trans‐
ports Fe(II) for use at organelles or to ship out extracellularly.
It is interesting to mention here that PCBP2 play a role as
oncogene(80,81) whereas PCBP1 as tumor suppressor gene(80,82) in
various human cancers (Table 3). It is understandable in that
cancer cells require and use a large amount of iron for endless
proliferation, invasion and metastasis and that current endpoint
for cancer therapy includes ferroptosis.(81,83,84)

Ferritinophagy

Ferritin cores consist of 24 building-block units consisting of
ferritin heavy chains (FTH) and ferritin light chains (FTL).
Single ferritin core can store iron as Fe(III) hydroxide/phosphate
up to ~4,200 molecules, and thus is a huge storage for safe redox-

Table 2. HNE as a marker of oxidative stress in formalin-fixed paraffin-embedded (FFPE) specimens of various pathologies

1994 Toyokuni et al. Fe-NTA-induced renal proximal tubular injury in rats(42,48)

1994 Okamoto et al. Human renal cell carcinoma(115)

1994 Uchida et al. Atherosclerosis(116)

1997 Ma et al. Long-Evans Cinnamon rat, Cu-induced liver injury(117)

1998 Ohhira et al. Human alcoholic liver disease(118)

1998 Minamiyama et al. Endotoxemic hepatic injury in rats(119)

1999 Um et al. Ischemia-reperfusion of rat island skin flap(120)

1999 Ihara et al. Pancreatic β-cells in rat type 2 diabetes mellitus model (Goto-Kakizaki rat)(121)

1999 Kondo et al. Human colorectal carcinoma(122)

2000 Kageyama et al. Chronic hepatitis C(123)

2000 Yamamoto et al. CCl4-induced liver injury in rats(124)

2000 Kawamura et al. Liver of primary biliary cirrhosis(125)

2000 Toyokuni et al. Serum albumin in human type 2 diabetes mellitus(126)

2000 Yamagami et al. Ischemia-reperfusion in rat liver(127)

2002 Nakamura et al. Human myocardial biopsy from dilated cardiomyopathy(128)

2004 Schäbitz et al. Rat focal cerebral ischemia(128)

2014 Okazaki et al. Direct exposure of non-thermal plasma to liver(129)

2016 Tsuzuki et al. Human term placenta(130)

2021 Zheng et al. Embryonal erythropoiesis and aging in rats(13)

Selected findings are described.

4 doi: 10.3164/jcbn.22-43



inactive iron.(84) Only FTH can oxidize Fe(II) transported via
PCBP1 to Fe(III).(67,85,86) Ferritin is also a commonly used serum
marker to evaluate iron storage status. In this case, protein
portion of ferritin is detected by specific antibodies, and it is
generally recognized that iron content in serum ferritin is low.(87)

In excess of cellular iron, the master posttranscriptional
regulatory system, iron responsive element/iron regulatory
protein (IRE/IRP) system, senses the iron condition through Fe-S
cluster, namely mitochondrial status (IRP1), or oxidation status
(IRP2), increasing ferritin and decreasing transferrin receptor and
DMT1.(88) However, how cells retrieve iron from ferritin cores
were unknown till 2014.

Autophagy is a common process in cells, sometimes physio‐
logical and sometimes pathological.(89,90) Basically, this “eating
itself” generates essential molecules to live by digesting
preexisting larger molecules, whether aged or sometimes newly
synthesized. In comparison, proteasomes need ubiquitin ligation
through specific ubiquitin ligases and are more specific for single
molecules. Withdrawal of deposited iron is performed by a
specific adaptor protein, nuclear receptor coactivator 4 (NCOA4)
and autophagic process,(91) which merges with lysosomes where
retrieved Fe(III) is reduced to Fe(II) via six-transmembrane
epithelial antigen of prostate 3 (STEAP3) metalloreductase. This
process is now called ferritinophagy, and is regulated by iron
status.

As mentioned in the previous section, carcinogenic process of

malignant mesothelioma is dependent on iron excess via asbestos
exposure.(62,92,93) Thus, mesothelioma cells can hold a larger
amounts of catalytic Fe(II) in the cytosol in comparison to non-
tumorous cells.(94–96) This means the inaugulation of ferroptosis-
resistance. We have reported that high expression of carbonic
anhydrase IX is one of those processes.(97,98) Not the least,
abundant catalytic Fe(II) in the cytosol can be a common charac‐
teristics of cancer cells in general because they have to utilize
iron quickly for persistent proliferation. DNA replication (ribonu‐
cleotide reductase), oxidative phosphorylation (cytochrome
oxidase) and antioxidative function (catalase) all need iron as
cofactors. This abundant Fe(II) can be the target for therapy
directed for cancer cell-specific ferroptosis. Non-thermal plasma
activated lactate Ringer’s solution (PAL) is one of them at the
preclinical stage. PAL causes ferroptosis specifically in mesothe‐
lioma cells in comparison to mesothelial cells. During this
process, we observed autophagic process with nitric oxide-
associated oxidants in lysosomes. This autophagy, presumably
lysophagy, is eventually pathologic, leading to ferroptosis.(96)

Iron and Extracellular Vesicles

In 2021 we reported a finding of the association between iron
metabolism and extracellular vesicles (EVs). It is established that
various kinds of cells secrete cellular contents as EVs.(99) EVs are
classified by their diameter and the formation mechanism into
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three classes of exosomes (30–120 nm), microvesicles (100–
1,000 nm) and apoptotic bodies (800–5,000 nm).(100) EVs are
the scientific basis for the diagnosis of cancer from one droplet of
blood, which is already in clinical use. We here refer to EVs as
exosomes and some small portion of microvesicles. We found
that a typical exsome marker CD63 is under the regulation of
IRE/IRP posttranscriptional system by the use of human
fibroblast cell IMR90 (Fig. 5).(101) Loading of iron as Fe(III)
ammonium citrate significantly increased CD63 protein with
IRE-IRP system, where de-repression of CD63 translation
started. At the same time significantly increased EVs containing
iron-loaded ferritin were released to the media. The IRE
sequence in 5' untranslated region was identified in all the higher
primates including humans, but not necessarily all the species
such as mice and rats. This is an in vitro analysis, so further
study is necessary on the ferritin section to the serum. However,
we believe that this is an important process for the cells to share
excess iron among neighbor and distant cells only of the single
individual with a safe form of iron as ferritin. Receptors for these
EVs containing iron-loaded ferritin have not been unequivocally
identified yet.

However, this iron sharing system using EVs may cause some
unexpected outcomes to provide the surrounding population of
cells with deleterious effects, such as in the case of asbestos
exposure. Macrophages are important phagocytic cells, born in
the bone marrow as monocytes, recognize foreign antigens with
phagocytosis, pass the antigenic information to lymphocytes and
work also as a scavenger of iron left by aged or dead cells. Thus,
macrophage is located also in the center of iron metabolism in
addition to hepatocytes where the iron metabolism is a semi-
closed system during the entire life.(32,66)

The target cells in asbestos-induced carcinogenesis are

mesothelial cells. There are many reports, including our own, on
the direct effect of asbestos.(62,93,102–107) We recently found an
indirect effect of asbestos mediating macrophages to mesothelial
cells. When asbestos comes to the mesothelium, submesothelial
macrophages intrinsically collect most of the exposed asbestos
fibers. However, the macrophages cannot digest asbestos fibers,
leading to ferroptosis with massive iron inside.(108,109) At this
stage, the macrophages emit EVs, which we coined as
ferroptosis-dependent EVs (FedEVs). FedEVs contain a high
amount of iron-loaded ferritin and of note are taken up by the
mesothelial cells present at the surface of somatic cavities,
eventually causing oxidative DNA damage.(110) Thus, iron
sharing system may lead to harmful effects under the situation
of monopoly, where the individual tries not to release any
subtle amount of iron to the other infected species or their
equivalents.(111)

Physiological Ferroptosis

Starting from the early 2018, we reevaluated the five clones
(HNEJ-1~5) of monoclonal antibody against HNE-modified
proteins.(42,47) We had a strong belief that some of the clones may
be more useful to visualize ferroptosis in FFPE specimens. In our
experience, immunohistochemistry is a very strong method to
localize and understand responsible pathologies in in vivo
situations.(7,46) One of our interests in recent years has been to
define physiological ferroptosis if present. The five clones
showed distinct characteristics and affinity to HNE-associated
Michael adducts.(47,48) Thus, we have used many models of
ferroptotic as well as non-ferroptotic cell death including
apoptosis, and reached the conclusion that HNEJ-1, equally
reacting to Cys-, His- and Lys-Michael adducts, is the best to

Table 3. Contrasting role of poly (rC) binding proteins (PCBPs) in cancer

PCBP1

2010 Zhang et al. Inhibits invasion of human hepatoma cell line HepG2(131)

2012 Shi et al. Downregulation of PCBP1 correlates with malignant transformation of hydatidiform mole(131)

2015 Wagener et al. Recurrently mutated in Burkitt lymphoma(132)

2015 Zhang et al. HOTAIR long non-coding RNA promotes gastric cancer metastasis through suppression of PCBP1(133)

2015 Liu et al. High expression of PCBP1 with better prognosis of non-small cell lung cancer through preventing EMT(134)

2015 Chen et al. Central to maintenance of prostate cancer stem cells(135)

2016 Horiguchi et al. miR-7977 in extracellular vesicle suppress PCBP1 in myeloid neoplasms to cause hematopoietic dysfunction(136)

2016 Zhang et al. Negative regulator of thyroid carcinoma(137)

2018 Zhang et al. Functions as a tumor suppressor gene in prostate cancer(137)

2022 Lin et al. C12orf48 inhibits gastric cancer growth via PCBP1 upregulation(138)

2022 Lee et al. PCBP1 represses ferritinophagy-mediated ferroptosis in head and neck cancer(138)

PCBP2 (hnRNP E2)

2002 Perrotti et al. C/EBPalfa is suppressed at the translational level by PCBP hnRNP E2 in BCR-ABL chronic myelogenous
leukemia(139)

2010 Eiring et al. miR-328 antagonize hnRNP E2 to impair survival of leukemia(140)

2015 Tang et al. miRNA-214 targets PCBP2 to suppress growth of glioma cells(141)

2015 Xia et al. PCBP2 regulates hepatic insulin sensitivity via HIF-1alpha and STAT3 pathway in HepG2 cells(142)

2016 Wan et al. PCBP2-dependent c-myc expression as a binding partner of β2-adrenergic receptor in pancreatic ductal adeno‐
carcinoma(143)

2016 Ye et al. Promotes progression of squamous cell carcinoma(144)

2016 Zhang et al. Overexpression contributes to poor prognosis of human hepatocellular carcinoma(145)

2020 Wen et al. LINC02535 co-functions with PCBP2 to regulate DNA damage repair in cervical cancer(146)

2021 Li et al. Silencing normalizes desmoplastic stroma and chemoresistance in pancreatic cancer(147)

2021 Hou et al. circRNA GRHPR interact with PCBP2 to promote proliferation in non small-cell lung cancer(147)

2021 Ma et al. LincRNA AC104958.2 stabilized by PCBP2 promotes proliferation and invasion of hepatocellular carcinoma(148)

PCBP4

2015 Ito et al. Suppression reduced cisplatin resistance in human maxillary cancer cells(149)

Selected findings are described.
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visualize ferroptotic process in FFPE specimens.(13) The only
weak point of this antibody is of mice origin. Therefore, careful
interpretation would be necessary for the application of HNEJ-1
to the cases of wild-type and genetically engineered mice models.

Recently, we have performed a series of rat experiments using
HNEJ-1 to define physiological ferroptosis (Fig. 6). We observed
that ferroptotic cells are increased with aging in various organs,
including kidney, spleen, ovary, uterus, and skin. The other

interesting finding was that ferroptotic process was involved in
embryonic hematopoiesis.(13) Ferroptotic process was observed in
the endodermal component of visceral yolk sac at E9.5 of rats
and in the nucleated erythrocytes at E13.5 and E15.5. Of note,
prevention of ferroptosis by lipoxstatin caused the significant
retention of nucleated erythrocytes with anemia. These observa‐
tions demonstrate the existence of physiological ferroptotic
processes.(13)

Iron
Sufficient

CD63 mRNA

IRE

IRP1/2

CD63

De-repression

Ferritin

MVB

NCOA4

Human cells

Ferritin-rich
exosome
Secretion

Fe-rich ferritin
loading

Iron delivery to nearby 
and distant cells

A

B Macrophage

Asbestos exposure Catalytic Fe(II) Ferroptosis

Fig. 5. Extracellular vesicles and iron metabolism. (A) Human cells hold IRE sequence at the 5' region of mRNA for CD63, which is a major marker
molecule of exosomes. In case of iron sufficiency, human cells secrete exosomes loaded with untranslated iron-filled ferritin to share the excess
iron with the nearby or distant cells of the same individual. IRE, iron-responsive element on mRNA; IRP, iron-responsive protein; MVB, multivesic‐
ular body; NCOA4, nuclear receptor coactivator 4. (B) Asbestos exposure to macrophages causes ferroptosis as a pathological condition. During this
process, exosomes loaded with iron-filled ferritin are secreted, which causes iron overload in the mesothelial cells, the target of asbestos-induced
carcinogenesis. Refer to text for details.

Physiological Ferroptosis

Embryo Infant Adult Senescence
(Aging)

Fe

Low Atmospheric Pressure

Program initiated Relatively high

Ferroptosis Erythropoiesis
(enucleation process) Scattered in various organs

(side effects of long use of Fe and O2)

O2

Fig. 6. Ferroptotic process in physiological contexts. We recently found ferroptotic process in embryonal erythropoiesis and aging in rats, which
appear to be associated with iron and oxygen metabolisms. Refer to text for details. This figure is partially hypothetical.
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Conclusion

Our laboratory started from investigating Fe-NTA-induced
renal carcinogenesis model in the 1980’s. This model using wild-
type rodents has been solid enough to mimic human carcino‐
genesis and contributed tremendously to the concept of carcino‐
genesis as a process to gain ferroptosis resistance.(7,32,33) Recently,
we showed using various strains that ferroptosis resistance
determines the susceptibility to Fe-NTA-induced renal carcino‐
genesis in mice.(112) These findings support the idea of excess
iron as a risk for cancer.(66,113) In humans, risk factors associated
with carcinogens are identified for certain cancers, such as
smoking with lung/laryngeal cancer and asbestos with malignant
mesothelioma, but for a major portion of them are not identified.
Cancer in the latter category may owe largely to the side effects
of long use of iron and oxygen.(33)

No life on earth can survive without iron. Because of this
preciousness of iron, each individual has no active pathway to
damp iron outside in higher animals. Each cell tries to keep as
much iron as possible with various mechanisms (monopoly)
when other species invade (infection and inflammation).(32) In the
peaceful period, cells within the same individual can share iron
via EVs containing iron-loaded ferritin. We for the first time
reported that CD63 encoding a major marker of exosome is
under the regulation of IRE/IRP posttranscriptional system
specific for iron metabolism.(101) Physiological ferroptosis is
observed during embryonal hematopoiesis and aging.(13) We
sincerely hope that this review article would stimulate interest in
iron metabolism and redox biology of the young investigators
worldwide.
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