
Journal of General Microbiology (1992), 138, 2475-2483. Printed in Great Britain 

Review Article 

2475 

Iron assimilation and storage in prokaryotes 

J E AN-FRANCOIS BRI AT* 

Laboratoire de Biologie Moliculaire Vigitale, Centre National de la Recherche ScientiJique et Universiti Joseph Fourier, 
BP 53X, F-38041 Grenoble Cidex, France 

Introduction 

Iron is an essential element for most living organisms. Its 
roles in microbial physiology are numerous. Iron is a 
constituent of all haem enzymes, which include cyto- 
chromes and hydroperoxidases. The common type of 

ribonucleotide reductase contains iron, and non-iron 
nitrogenases require an iron protein in a complex for 

their activity (Robson et al., 1986). However, exceptions 
do exist; for example, certain lactobacilli devoid of haem 
and containing a cobalt form of ribonucleotide reductase 

appear to have no iron requirement for their growth 
(Archibald, 1983). 

Iron, the fourth most-represented element in the 

earth’s crust, is abundant in the environment and should 
not be a limiting factor for bacterial growth. However, in 

the presence of oxygen and at a non-acidic pH, iron is 
particularly insoluble and tends to precipitate as ferric 

hydroxides. Therefore, bacteria have evolved various 
powerful systems to overcome this low solubility of 
external iron (Lankford, 1973). Besides its insolubility, 

another problem associated with the metabolism of iron 
resides in its ability to react with reduced forms of 

oxygen (hydrogen peroxide and superoxide), leading to 
the production of deleterious free radicals responsible for 

lipid peroxidation, as well as for alterations in protein 
and nucleic acids (Flitter et al., 1983). Therefore, in order 
to avoid such toxicity, iron homeostasis is strictly 
controlled and results from a co-ordinated integration of 
assimilation, utilization and storage of this element. Iron 
uptake is an obvious step to be regulated in response to 

variations in environmental iron concentration, and has 
been actively studied in the last decade. The first part of 
this paper is a non-exhaustive overview of iron assimila- 
tion and its control in prokaryotes. The storage of iron 
within bacteria is also important, particularly in properly 

tuning the flux of iron required by iron-proteins involved 
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in metabolic reactions. The breakdown and turnover of 
iron-proteins could lead to an increase in the pool of 

intracellular free ionic iron that would need to be 
detoxified. On the other hand, stored iron could be used 

for the construction of active iron-containing enzymes 
during an increase in growth rate. It is widely accepted 
that the amount of an element ‘must be regulated by 
controlled absorbtion’ (Underwood, 197 1) and thus 
could explain why much less attention has been accorded 

to the function of iron storage in bacteria. A review of 
iron storage in prokaryotes comprises the second part of 
this paper. Finally, an interesting situation concerning 

iron uptake and storage by eukaryotic organelles 
(mitochondria in all cells and plastids in plants), thought 

to have evolved from prokaryotic progenitors (Gray, 
1989), is covered at the end of this review. 

Iron assimilation by prokaryotes 

Because a tremendous amount of information is avail- 

able in the literature concerning this topic, a rapid 
overview will be presented prior to focussing on 
regulation at the molecular level. 

At high levels of environmental iron (> 10 PM), low- 
affinity systems are responsible for passive iron uptake 
and they are poorly understood. High-affinity transport 
systems operate when iron is limited in the environment 

and these systems have been extensively studied over the 
past 30 years. This interest comes probably in part 
because of the importance that iron acquisition by 
microbial pathogens from the host plays during infection 
(Byers, 1987; Crosa, 1989; Byers et al., 1991). Among 

these high-affinity transport systems, often associated 
(but not always) with pathogenicity, siderophores (Lank- 
ford, 1973) represent low molecular mass carriers (400 to 
1000 Da), marked by a very high affinity for ferric iron. 
Siderophores have highly divergent structures but can be 

classified into two main groups : phenolates, with 
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enterobactin as a classic member, and hydroxamates, 

with aerobactin as an example. Siderophores are 
secreted into the environment of cells where they bind 
ferric iron. Ferrisiderophore assimilation is achieved by 

specific receptors at the cell surface associated with other 
periplasmic and cytoplasmic membrane proteins (Bagg 
& Neilands, 1987~) ;  iron reaches the cytoplasm either by 

internalization of the ferrisiderophore itself or of the iron 
alone. 

Besides these highly specific siderophore systems, 

some microbes have developed the ability to take up iron 
directly from naturally occuring iron-binding acids like 

pyruvate, malate, isocitrate and citrate (Archibald & De 
Voe, 1980), the latter being by far the most studied of 

these systems (see below). In mycobacteria, under iron- 
deficient conditions, iron can be transported into cells as 

ferric salicylate (Messenger et al., 1986); the role of this 
system, however, is restricted because it does not operate 

in the presence of phosphate (Ratledge et al., 1974). 

Siderophore-mediated iron assimilation 

Iron starvation leads to the synthesis of native sidero- 
phores by bacteria and to the concomitant induction of 

the specific transport system responsible for ferrisidero- 
phore reception and internalization. Beside specific 
transport systems, other systems for transport of exoge- 

nous siderophores can also be induced. 
In this section, siderophore-mediated uptake systems 

of Escherichia coli will be reviewed, prior to a brief look at 
this process in other bacteria. Siderophore biosynthesis 

requires the expression of different genes, often orga- 
nized in an operon. Enterobactin synthesis needs the 
products of genes entA,B,C to produce 2,3-hydroxyben- 

zoic acid from chorismic acid, and the products of genes 
entD,E,F,G to catalyse production of one enterobactin 
molecule from three molecules of 2,3-di hydrobenzoic 

acid and L-serine (reviewed in Crosa, 1989). All these 
genes are located on the chromosome. In the case of 
aerobactin, the pColV-K30 plasmid [Gibson & Magrath, 
1969; reviewed in Crosa (1989) and in Bagg & Neilands 

(1987a)l harbours genes in an operon responsible for the 
synthesis of this hydroxamate siderophore. The genes 
iucA, B, C, D encode, respectively, synt he tase, acetylase, 
synthetase and oxygenase. In addition, the gene iutA, 

also belonging to the aerobactin operon, codes for the 
specific receptor of ferrienterobactin. Instead of being 
plasmid-encoded, the aerobactin system is encoded on 

the chromosome in some invasive E. coli (Valvano & 

Crosa, 1984, 1988; Valvano et al., 1986). The assimila- 
tion of all phenolate and hydroxamate siderophores in E. 

coli requires two proteins, TonB and ExbB, thought to 
reside within the cytoplasmic membrane (Postle & 

Good, 1983). Their necessity for iron uptake has been 

made evident by mutations in tonB (Hantke & Braun, 

1978) and exbB (Eick-Helmerich et al., 1987; Hantke & 

Zimmermann, 1981). Genetic data have also shown that 
the TonB protein interacts with outer-membrane recep- 

tors (Hantke & Braun, 1978; Braun et al., 1987). These 
outer-membrane receptors confer specificity to the iron 
transport systems. In other words, for each ferrisidero- 

phore, a specific receptor is found in the outer 
membrane : ferrichrome is recognized by FhuA, copro- 
gen and ferric rhodotorulate by FhuE, ferric aerobactin 
by IutA and ferric enterobactin by FepA (reviewed by 

Bagg & Neilands, 1987a). Then, a set of proteins are 

required to define a permease responsible for the 
translocation and internalization of the ferrisiderophore. 
Two groups of proteins are involved. The first is 
composed of the proteins FhuC,D,B, and this system is 

responsible for translocation accross the inner mem- 
brane of all ferric hydroxamates. These proteins share all 

the characteristics of periplasmic transport systems 
(Ames, 1986; Braun et al., 1983; Burkhardt & Braun, 
1987; Coulton etal., 1987; Fecker & Braun, 1983; Koster 
& Braun, 1989). The FhuD protein is probably the 
ferrihydroxamate-binding protein. FhuC faces the cyto- 
sol and shares a strong sequence homology with ATP- 

binding proteins (Burkhardt & Braun, 1987; Coulton et 

al., 1987) suggesting its involvement in energy coupling. 

FhuB is the transmembrane component responsible for 
the translocation of ferri hydroxamates across the 
membrane. 

The second protein system to be described is respon- 

sible for ferric-phenolate siderophore uptake (reviewed 
in Earhart, 1987). It also has similarities with periplas- 
mic permease (Ames, 1986) and requires FepB, a 

periplasmic protein which binds phenolate siderophores 
(Pierce et al., 1983; Pierce & Earhart, 1986; Elkins & 

Earhart, 1989), FepC, an inner-membrane ATP-binding 

protein (Pierce & Earhart, 1986; Ozenberger et al., 1987; 
Shea & McIntosh, 1991) and two hydrophobic proteins, 
FepD and FepG, encoded in the same operon asfepC 
(JepDGC) (Chenault & Earhart, 1991 ; Shea & McIntosh, 

199 1). 
Siderophore production for iron assimilation is not a 

trait restricted to E. coli. Many other bacteria use this 
method for acquisition of iron. The more well-defined 
system concerns essentially bacteria pathogenic for 

plants and animals. Siderophore production by Pseudo- 
monas strains has been widely studied: two molecules, 
pseudobactin and pyochelin are synthesized (reviewed in 

Crosa, 1989). The ferric-pseudobactin receptor, PupA, 
from Pseudomonas putida WCS 358, has been character- 
ized recently (Bitter et al., 1991). Mycobacteria, includ- 
ing Mycobacteriurn leprae, are able to produce myobac- 
tin, a lipid-soluble siderophore (Hall & Ratledge, 1984) 
and exochelin, which is found in the culture medium of 
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starved Myobacterium smegmatis (Macham & Ratledge, 
1975; Ratledge, 1984). Most of the mesophilic Aero- 

monas species produce amonabactin and/or enterobactin 

(Barghouti et al., 1989). Recently, an amonabactin 
biosynthetic gene (amoA) from Aeromonas hydrophila, 

has been cloned and sequenced (Barghouti et al., 1991), 
revealing its homology with E. coli entC. Ferrioxamines, 

a group of hydroxamate siderophores, are produced by 
members of the genera Erwinia and Hafnia. They are also 
taken up efficiently by bacteria which not produce them, 

such as E. coli, Yersinia enterocolitica and Serratia 

marscesens. FoxA, a receptor protein for ferrioxamine, 
has recently been characterized in Y. enterocolitica 

(Baumler & Hantke, 1992b) and a lipoprotein, PCPyE, 

which facilitates uptake of this siderophore, has been 
cloned and sequenced (Baumler & Hantke, 1992~).  This 

protein is homologous to PCPHi, a lipoprotein of 
Haemophilus injluenzae (Deich et al.,  1988). 

The marine fish pathogen Vibrio anguillarum has its 

virulence mediated by the pJMl plasmid (Crosa, 1980, 
and reviewed in Crosa, 1989). The siderophore produced 
by this bacterium is known as anguibactin and resem- 
bles pyochelin. The molecular characterization of the 

iron transport system encoded by pJMl has recently 
been reported (Koster et al., 1991). It shares remarkable 
homology with other iron transport systems described in 
members of the Enterobacteriaceae. However, besides the 

probable existence of a Fur-li ke negative repressor (see 
below) in V. anguillarum, a trans-acting factor, Taf, is 

also required for the transcriptional activation and full 
expression of the iron transport system found on pJMl 
(Tolmasky & Crosa, 1984; Tolmasky et al., 1988). 

Phytopathogenic bacteria also produce siderophores 

for iron assimilation (Loper & Buyer, 1991). Although 
their role in virulence is largely unknown, there is one 
case, Erwinia chrysanthemi, for which production of the 

catechol siderophore chrysobactin (Persmark et al., 

1989) contributes to systemic virulence (Enard et al.,  

1988). Erwinia carotovora subsp. carotovora W3C105 has 
recently been shown to produce aerobactin and a ferric 
aerobactin receptor encoded by a chromosomal frag- 
ment; however, a functional aerobactin acquisition 
system is not necessary for the pathogenicity of this 
bacterium (Ishimaru & Loper, 1992). 

Iron-dicitrate transport system 

Besides siderophore-mediated iron assimilation, organic 
acids are also able to bind external iron and facilitate its 
assimilation by bacteria. Of these organic acids, citrate- 
dependent iron uptake by E. coli K12 has received much 
attention over the last 10 years (Hussein et al., 198 1). The 

fec operon is responsible for iron-dicitrate uptake. It has 
been cloned and sequenced (Staudenmaier et al., 1989). 

The FecA protein is the outer-membrane receptor. FecB 

is a protein found in the periplasmic space, while FecC 
and D are very hydrophilic proteins found in the 

cytoplasmic membrane. FecE is also a cytoplasmic- 
membrane protein, sharing two regions of sequence 
homology with nucleotide-binding proteins. The TonB 
protein is also required for transport of iron(II1)-dicitrate 

(Zimmermann et al., 1984). Therefore, it appears that the 
organization of the iron(II1)-dicitrate transport system in 
E. coli is very reminiscent of that described above for 
ferrisiderophore uptake. However, the iron-dicitrate 
transport system has the pecularity of being induced by 

both iron and citrate (Hussein et al., 1981 ; Zimmermann 
et al., 1984). A large amount of iron in the medium 
suppresses the system, because it is under control of the 

Fur repressor (see below), like the ferrisiderophore 
systems. The regulatory mechanisms of the iron-dicitrate 
system have recently been reviewed (Braun & Hantke, 

199 1). Iron(II1)-dicitrate is the inducer and does not need 
to be internalized to switch-on the fec operon. It just 

requires to be transported across the outer membrane 
via the action of the FecA and TonB proteins. The 
inducer could bind to a transmembrane signalling 

protein, which could be the product of fecR encoded 
upstream of the fec operon. An activator, encoded by 
f e d ,  also found upstream of fee, could be bound to this 
transmembrane protein in the uninduced state, and be 

released by iron(I1I)-dicitrate, leading to its binding onto 
the operator found upstream offecA, and consequently to 
initiation of transcription of the fec operon. 

E.  coli is not the only bacterium that uses citrate as a 
shuttle for iron assimilation. Mycobacterium smegmatis 

(Messenger & Ratledge, 1982), Neisseria meningitidis 

(Archibald & De Voe, 1980) and Pseudomonas aeruginosa 

(Harding & Royt, 1990) can also do so. However, P .  

aeruginosa also uses citrate as a carbon source while in E. 

coli and N .  meningitidis, dissociation of the metal and 
ligand occurs within the cell envelope and only iron 
enters the cell. 

Other systems for iron assimilation 

The utilization of siderophores and organic acids as iron 
chelators for assimilation of this element are not the only 

iron uptake mechanisms used by prokaryotes. Certain 
pathogenic bacteria, such as Neisseria gonorrhoeae and 

Neisseria meningitidis, possess receptor proteins for 
lactoferrin or transferrin (iron transporter proteins in 
eukaryotes) allowing the use of their iron (Mickelsen & 

Sparling, 1981). In the serum of vertebrates, free 

haemoglobin and haem are not abundant because they 
are complexed by haptoglobin and haemopexin. Certain 
haemolytic bacteria are able to acquire iron from these 
complexes (Francis et al.,  1985; Dyer et al., 1987, Stull, 
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1987 ; Zakaria-Meehan et al., 1988). Haernophilus influen- 

zae, an important human pathogen, is also dependent on 
an iron supply for virulence, but does not produce 

siderophores under iron-deficient conditions, nor is it 
able to use iron from siderophores produced by other 
bacteria (Morton & Williams, 1990; Pidcock et al., 1988; 

Williams et al., 1990). Instead, H. inJuenzae uses haem, 
complexed to albumin, haemopexin and haptoglobin, 
and iron from ferric-transferrin and ferric-lactoferrin as 
iron sources. These iron complexes bind to outer- 
membrane proteins (Morton & Williams, 1990; 

Schryvers, 1989; Hanson & Hansen, 1991). Furthermore, 
two iron-repressed periplasmic proteins have been 

identified recently (Harkness et al., 1992). One of them is 
homologous to Fbp, the major iron-binding protein of N. 

gonorrhoeae and N .  rneningitidis. Motile aeromonads 

capable of infecting fishes also use haem present in the 
host as an iron source (Massad et al., 1992). Aerornonas 

species produce various cytolytic toxins, some of which 
are important in virulence (Chakraborty et al., 1987; 
Howard & Buckley, 1986) ), and this could be a way to 

access iron in haem by disrupting the cells (Byers et al., 

1991). Recently, in Serratia rnarcescens, a system was 
reported for iron assimilation which requires neither 

siderophore nor receptor protein production and which 
is independent of the TonB/ExbB functions (Zimmer- 
mann et al., 1989). 

Fur: a key regulatory protein in the control of iron uptake 

The high-affinity iron transport systems described above 
are generally activated under iron starvation conditions, 
as proposed many years ago (Garibaldi & Neilands, 
1956). The evidence for an iron-binding repressor, 

inhibiting siderophore synthesis at high intracellular iron 
concentration, comes from a mutant of Salmonella 

typhimurium which constitutively overexpresses iron- 
regulated outer-membrane proteins (Ernst et al.,  1978). 
This mutation, termed fur (ferric uptake regulation), was 
then obtained and mapped from E. coli, and the 
corresponding gene was cloned and sequenced (Bagg & 

Neilands, 1985; Hantke, 1981, 1984; Schaffer et al., 

1985). The Fur protein is unusually rich in histidine and 
has a molecular mass of 17 kDa; it lacks significant 
homology to any known DNA-binding proteins. A Fur 
overproducer plasmid has been constructed, allowing a 

large amount of pure Fur protein to be obtained (Wee et 

al., 1988); its DNA-binding properties have been 
characterized (De Lorenzo et al., 1987) and an ‘iron box’ 
defined (Bagg & Neilands, 1987a). Furthermore, it has 
been shown, using the operator/promoter of the aerobac- 
tin operon, and an in vitro transcription/translation 

system, that Fur acts as a classical negative repressor 

which blocks the aerobactin promoter with Fe(II), or 

some other metals, as a co-repressor (Bagg & Neilands, 
1987b). Fur has also been postulated as a positive 
regulator in the case of expression control of ird (Hantke, 

1987), of the iron-dependent superoxide dismutase 
encoded by sodB (Niederhoffer et al., 1989) and of the 

catabolic pathways allowing growth on succinate, fumar- 
ate and acetate (Hantke, 1987). Regulatory studies have 
also shown that the fur gene of E. coli could have its 
expression controlled by its own product in a feedback 
mechanism, as well as by the CAMP-CAP (catabolite- 

activator protein) system (De Lorenzo et al.,  1988). 
Structural studies of Fur using NMR have demon- 

strated its folding (Saito & Williams, 1991 ; Saito et al.,  

1991 a,  b). The structure/function relationship has also 

been recently adressed by a biochemical approach, 

showing the existence of two domains (Coy & Neilands, 
1991): the N-terminal domain of the protein is respon- 
sible for DNA-binding and the C-terminal domain binds 
to metal ions. 

The repression of siderophore production and assimi- 
lation by the Fur protein under iron-sufficient conditions 
seems to be a mechanism conserved in various bacterial 

species, including Yersinia pestis, Shigella dysenteriae, 

Vibrio cholerae and Corynebacteriurn diphtheriae (Staggs 
& Perry, 1991). 

Iron deposition and storage in prokaryotes 

After assimilation, iron can be used to supply metabolic 
requirements and/or stored internally in various forms. 
Mechanisms of iron deposition and storage, as well as 

functions played by the different compounds involved in 
these processes, have been investigated much less than 
iron assimilation, and are reviewed below. 

Bacteriomagnetite 

Amorphous colloidal species of iron hydroxides have 

been found associated with bacterial surfaces (Ferris et 
al., 1989; Ghiorse, 1984), but the most characterized 

metal deposition in prokaryotes is magnetite (Fe,O,), in 
the form of small membrane-bound magnetosomes 
(Blakemore, 1975, 1982; Frankel et al.,  1979). The 
morphology of these magnetosomes has been studied 
mainly in Aquaspirillum magnetotacticurn, where they are 

truncated octahedrons (Blakemore, 1982; Matsuda et al., 
1983) with a thin dusting of amorphous iron on their 

surface (Mann et al., 1984). The magnetosomes are 
arranged in one or more lines along the cell axis, leading 
to alignment of the cell to the geomagnetic field 
(Blakemore, 1982). Each magnetite crystal is surrounded 
by a lipid bilayer membrane harbouring two unique 
proteins (Gorby et al., 1988). 
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Bacterioferritin 

Because of the insolubility and toxicity of iron in the 

presence of oxygen, it is likely that all aerobic organisms 
have evolved a class of ubiquitous iron-storage proteins, 

the ferritins, able to sequester a few thousand iron atoms 
in their central cavity, in a soluble, non-toxic, bioavail- 

able form (Grossman et al., 1992). 
Bacterioferritins have been purified and characterized 

from E. coli (Yariv et al., 1981), Azotobacter vinelandii 
(Stiefel & Watt, 1979), Azotobacter chroococcum (Chen & 

Crichton, 1982), Pseudomonas aeruginosa (Moore et al.,  

1986), Nitrobacter winogradskyi (Kurokawa et al., 1989) 
and the cyanobacterium Synechocystis PCC 6803 (Laul- 

htre et al., 1992). They are multimeric (24-mers) proteins 
with subunits arranged in a 432 symmetry, resembling 
ferritin from eukaryotes (Smith et al., 1989; Harrison et 

al., 1991). Some important differences, however, do exist 
between eukaryotic and prokaryotic ferritins. Bacterio- 
ferritins contain haem residues (1 haem per 2 to 8 
subunits) and in certain cases their identity with 

previously characterized cytochromes has been demon- 
strated [cytochrome b-1 in E. coli (Smith et al., 1988); 
cytochrome b-557.5 in A .  vinelandii (Stiefel & Watt, 

1979); cytochrome b-559 in N. winogradskyi (Kurokawa 
et al., 1989)l. The axial ligands of haem have recently 

been shown to be methionine residues in bacterioferritin 
from P. aeruginosa (Cheesman et al., 1990). Bacteroferri- 
tin iron-cores are amorphous due to the presence of a 

high amount of inorganic phosphate within them (Fe 
atoms:P atoms varying from 1/1 to 1/2), but this 
property depends upon the composition of the medium 

rather than upon the protein shell (Mann el al., 1986, 
1987; Harrison et al.,  1991). The complete amino acid 
sequences of E. coli and A .  vinelandii bacterioferritin 

have been determined by cloning and sequencing the 
corresponding bfr gene (Andrews et al.,  1989; Grossman 

et al., 1992). Partial amino acid sequences are also 
available for N. winogradskyi (Kurokawa et al.,  1989) and 
Synechocystis PCC 6803 (Laulhtre et al.,  1992) bacterio- 

ferritins. These data and immunological results (An- 
drews et al., 1991) have pointed out the conservation of 

bacterioferritins among various bacterial species. How- 
ever, they share a low sequence homology (between 24 

and 29%) with eukaryotic ferritins, which could, 
nevertheless, be compatible with a common origin 

(Grossman et al., 1992). Only one type of subunit has 
been described for bacterioferritin, although a new gene 
has been characterized recently in E. coli, sharing a 
greater sequence homology with the eukaryotic H- 
ferritin chain than the bfr gene (Izuhara et al., 1991); 

furthermore, in A. vinelandii, two non-identical subunits 
of bacterioferritin have been described (Harker & 

Wullstein, 1985). The question concerning bacterioferri- 

tin heteropolymers, as for ferritin in eukaryotes, is still 
open. 

The function of bacterioferritin in vivo remains 

obscure. A bfr mutation was found not to affect growth of 
E. coli (as reported by S. C. Andrews, Conference 

communication), and the amount of bacterioferritin 
subunit appears to be unchanged in Synechocystis PCC 
6803 whatever the iron status of the cells, even under iron 
starvation conditions (Laulhtre et al., 1992). This raises 

the question of whether or not bacterioferritin synthesis 
responds to excess iron. A mechanism for the control of 
E. coli BFR synthesis involving anti-sense RNA expres- 
sion regulated by the Fur protein has been proposed 

(Andrews et al.,  1989). A structure reminiscent of the 
iron responsive element (IRE), which is involved in the 

translational regulation of ferritin synthesis in response 
to iron in eukaryotic cells, has also been described in the 
case of A .  vinelandii bfr (Grossman et al., 1992). No 
experimental data supporting these regulatory hypothe- 
ses have been reported. 

Other compounds participating in iron storage 

In E. coli bacterioferritin iron represents no more than 

1 % of the total cellular iron and the bulk of iron in the 
iron-rich cells is in the form of aggregates (Bauminger et 
al., 1980), which could be associated with a novel form of 

iron-protein (Matzanke et al., 1989). More recently, 
Laulhtre et al. (1992) have shown that the bulk of iron in 
Synechocystis PCC 6803 is associated with low molecular 
mass ( c 10 kDa) compounds of unknown composition, 

which fulfil the storage function. These authors hypoth- 
esized that the abundance of saturable low molecular 
mass molecules, which could vary according to the 

cellular iron content (Bauminger et al., 1980), may control 
the fate of newly imported iron. In the case of an iron 

overload, the small molecule storage pool would take 
care of the excess iron and bacterioferritin would hardly 
be involved. On the other hand, in the case of iron 
deficiency, a rapid overflow of iron from the saturable 
low molecular mass molecules is conceivable and 

bacterioferritin would buffer this release of iron prior to 
its use for metabolic requirements. 

Iron uptake and storage by organelles of 
eukaryotic cells 

Mitochondria present in all eukaryotic cells and plastids 
present in plant cells have evolved from prokaryotic 
progenitors that invaded primitive eukaryotic cells 
(Gray, 1989). For this reason, it is relevant to report in 
this review our knowledge of iron uptake and storage by 
these organelles. The means by which iron is taken up by 
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mitochondria is not well documented and no information 

is available for iron assimilation by plastids. Iron ferritin 
can be taken up in low amounts by mitochondria from 
hepatocytes (Sibille et al., 1989) but the major pathway 

by which iron is assimilated by mitochondria involves 
mainly an AMP-Fe complex and, to a lower extent, 
ATP-Fe (Weaver & Pollack, 1990). Two kinds of 
mitochondria1 receptors are involved : one that accepts 

iron from ATP with low efficiency and one from AMP 
with high efficiency. 

No reports have appeared concerning iron-storage 
molecules in mitochondria. In contrast, it is well 
established that in plants, ferritins are localized in 
chloroplasts and non-green plastids, although they are 
encoded by nuclear genes (Seckback, 1982; Lescure et 

al., 1991). Interestingly, it has been reported that plant 
ferritins have an amino acid sequence closely related to 
animal ferritin sequences and not to bacterioferritin 

sequences, including those of cyanobacteria, thought to 
be the ancestors of plastids; relics of a bacterioferritin 
gene are still present on the chloroplast genome, however 

(Laulhkre et al., 1992; Ragland et al., 1990). 

Conclusion 

Iron assimilation is well documented in various model 
systems, particularly E. coli. It is clear that the knowledge 

gained from these systems will help to understand, and 
eventually to control, iron uptake by pathogenic bacte- 
ria, in order to have new tools to treat important diseases. 

The function and regulation in bacteria of the expression 
of the iron-storage protein ferritin is unclear, and 
deserves further study. Iron assimilation by eukaryotic 

organelles of prokaryotic type (i.e. mitochondria and 
plastids) is also an important area that has not been 
intensively scrutinized. The study of iron assimilation 
and storage in prokaryotes has provided much informa- 

tion related to a wide range of scientific activities, 
ranging from molecular genetics to pathology and 

agronomy, and more remains to be discovered. 
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