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Abstract: Neuronal lesions in Parkinson’s disease (PD) are commonly associated with α-synuclein

(α-Syn)-induced cell damage that are present both in the central and peripheral nervous systems

of patients, with the enteric nervous system also being especially vulnerable. Here, we bring

together evidence that the development and presence of PD depends on specific sets of interlinking

factors that include neuroinflammation, systemic inflammation, α-Syn-induced cell damage, vascular

dysfunction, iron dysregulation, and gut and periodontal dysbiosis. We argue that there is significant

evidence that bacterial inflammagens fuel this systemic inflammation, and might be central to the

development of PD. We also discuss the processes whereby bacterial inflammagens may be involved

in causing nucleation of proteins, including of α-Syn. Lastly, we review evidence that iron chelation,

pre-and probiotics, as well as antibiotics and faecal transplant treatment might be valuable treatments

in PD. A most important consideration, however, is that these therapeutic options need to be validated

and tested in randomized controlled clinical trials. However, targeting underlying mechanisms of

PD, including gut dysbiosis and iron toxicity, have potentially opened up possibilities of a wide

variety of novel treatments, which may relieve the characteristic motor and nonmotor deficits of PD,

and may even slow the progression and/or accompanying gut-related conditions of the disease.

Keywords: Parkinson’s disease; bacteria; lipopolysaccharides; iron; gingipains; amyloid and α-

synuclein

1. Introduction

The global prevalence of Parkinson’s disease (PD) during 2016 reached 6.1 million [1].
In the United States of America, Canada, and Europe the prevalence is projected to increase
by approximately 92% by 2050 [2], involving an increased burden on global healthcare [3].

α-Synuclein (α-Syn) is the principal component of Lewy bodies (LBs), which are
the pathological hallmark of PD and other related conditions [4]. This group of illnesses,
termed synucleinopathies, includes multisystem atrophy, dementia with Lewy bodies,
and pure autonomic failure. α-Syn-stained inclusion bodies and fragments of neurons are
detectable in many otherwise healthy individuals at the time of postmortem examination
and detailed histological examination has led to conclusion that the initial lesions of PD are
thought to occur in the medulla, in the region of the dorsal motor nucleus of the vagal nerve,
and also in the olfactory bulb [5–7]. In PD patients, LBs are also observed in nondopamin-
ergic neurons outside of the basal ganglia, in areas such as the glossopharyngeal–vagal
complex, coeruleus–subcoeruleus complex, caudal raphe nuclei, gigantocellular reticular
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nucleus, and olfactory pathways [5]. The knowledge that LBs consist mainly of misfolded
amyloid forms of α-Syn has, therefore, shaped investigations in the field of PD research
to adopt a “synuclein-centric and neuro-centric” approach, predominantly focusing on
the central nervous system (CNS). However, recent studies have challenged this neuro-
centric approach [8]. Neuronal lesions in PD, commonly associated with α-Syn-induced
cell damage, are, therefore, present both in the central- and peripheral nervous systems
(CNS or PNS) of PD patients [9], with the enteric nervous system also being especially
vulnerable [10].

Of particular interest in PD is the prion hypothesis in which it is postulated that
fragments of the protein α-Syn may lead to the formation of progressive accumulation of
amyloidogenic protein material [11,12]. In accordance with this theory, PD is characterized
by a caudo-rostral progression of deposition of α-Syn, associated with neuronal loss,
and with positive staining for α-Syn of LBs and Lewy neurites [6]. Involvement of both the
olfactory bulb and the medulla is explained by a proposed dual-hit mechanism, involving
anterograde progression of pathology from the olfactory system into the temporal lobe, and
retrograde progression to the brainstem from the gut following ingestion of a neurotropic
pathogen [13,14]. α-Syn staining material is present in patients with PD in a number of
tissues outside the brain and spinal cord and is present before the diagnosis is made [15,16].
It is also noteworthy that nonmotor features such as rapid eye movement (REM) sleep
behaviour disorder [17], constipation [18], loss of the ability to smell, and sleep disorders
may precede the appearance of tremor and other classical features of PD by as much as
two decades or more. Gastrointestinal symptoms are common and can precede motor
symptoms and clinical PD diagnosis [19].

Although PD research and clinical perspectives have focused on genetics and efforts
to remove or prevent the distinctive α-Syn-containing cytoplasmic inclusions (LBs), little
progress has been made to prevent progression of disease or to cure PD. A number of
PD genes have been identified as playing a role in PD aetiology [20]. Even collectively,
mutations in these six genes explain only a limited number (3–5%) of sporadic disease oc-
currences [21]. (For an overview of PD genes and dopaminergic neurons, see [20].) Over the
past years, researchers have published significant numbers of papers, which suggests that
the motor effects and the progressive degeneration and loss of preferential dopaminergic
neurons in the substantia nigra seen in PD patients, might be related to factors other than
a predominantly genetic cause. Recently, there has been increasing focus on investigating
the link between increased iron and copper levels (both systemically and in the brain) [22],
the role of the microbiome and how dysregulated circulating inflammatory biomarkers,
including those originating from bacteria, might all interplay in PD pathology [19].

In this paper, we aim to bring together evidence that the development and presence
of PD depends on specific sets of interlinking factors. Together with neuro-inflammation,
patients with PD also have systemic inflammation, with many cellular signals pointing
to major vascular dysfunction. We discuss published evidence that PD is both associated
with and driven by dysregulated circulating inflammagens (an irritant that elicits both
oedema and a cellular response of inflammation) and cytokines. Furthermore, there is
significant evidence that bacterial inflammagens fuel this systemic inflammation and might
be central in the development of PD [3,23–28]. There are a number of papers suggesting
altered immune activation in PD [29–32] and also, papers demonstrating altered immune
activation in PD populations [33–35]. There are also experimental works indicating that
inflammatory action can induce PD-related phenotypes [36–39]. The immune response
in PD, which is proposed to occur early, involve peripheral and brain immune cells,
eventually evolve as neuronal dysfunction progresses, and is likely to influence disease
progression [40]. Central to these immune changes in PD is the interplay between the
microbiome–gut–brain axis [25,41–43].

Since these changes are taken to be deterministic [44], we furthermore point out that,
together with genetic predisposition and epigenetic changes, the only way to address this
extremely significant healthcare dilemma is to find the origin of these inflammagens and



Biomolecules 2021, 11, 30 3 of 27

the reason for immune activation in PD. We argue that this origin is microbial. Central to
its cause might be microbiome dysregulation, translocation, and comorbidities including
periodontitis and gingivitis. For an overview, see Figure 1.

 

Figure 1. An overview of Parkinson’s disease (PD): what do we know from the literature? (1) Traditional focus on a
synuclein-centric and neuro-centric- approach, where researchers predominantly focused for the origins of PD in the
central nervous system (CNS). Recently, there has been a shift in focus to look closer at the role of both (2) lifestyle and
(3) environmental factors that result in (4) innate immune activation, in the development of PD; these 3 factors (depicted
in (2), (3) and (4), directly impact and play a significant role in PD brain neurodegeneration. (5) Inflammagens and
inflammatory cytokines from the periphery can translocate to the brain.
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2. Parkinson’s Disease, Iron, Oxidative Stress, and Chronic Systemic Inflammation

Chronic inflammation, the circulation of pro-inflammatory molecules, and the dys-
regulation of innate immune responses can contribute significantly to both the onset and
progression of neurodegeneration in PD [32,45–52]. The spectrum of iron dysregulation in
PD includes iron storage, uptake, and release [53], and importantly, the effects may be seen
both in the brain and also the peripheral tissues. Iron dysregulation in PD, occurs both in
the brain and in circulation (Figure 1) (for a review, see [54]). It was previously shown that
increased serum ferritin levels are present in PD, where it may directly cause eryptosis of
erythrocytes [54]. In circulation, iron dysregulation is directly implicated as a major cause
of oxidative stress [44,55]. Furthermore, circulating iron and serum ferritin dysregulation
(due to the release of poorly liganded iron) causes pathological changes in both erythrocyte
and fibrin morphology [56–59]. In 2012, it was also reported that serum ferritin levels
were significantly increased in male and female PD patients and were correlated with PD
severity stages and duration in men and women [60].

Iron dysfunction in the substantia nigra is considered one of the fundamental reasons
for dopaminergic neurons dysfunction and death [20,61–64]. Recently, ferroptosis (a kind
of regulated cell death that is characterized by highly iron-dependent lipid peroxidation)
has been associated with neurodegenerative conditions [65,66] and, particularly, PD [67].
Ferroptosis happens due to the depletion of plasma membrane unsaturated fatty acids and
accumulation of iron-induced lipid ROS [68]. The overaccumulation of lipid ROS leads to
an oxidative stress response in cells that causes lethal damage to proteins, nucleic acids,
and lipids and eventually to cell death [66,69]. For a comprehensive review on ferroptosis
in PD, see [70]. An important iron compound in dopamine and norepinephrine neurons
is the neuromelanin–iron complex [53,71]. Neuromelanin is a complex polymer pigment
found primarily in the dopaminergic neurons of human substantia nigra, and it is stored in
granules including a protein matrix and lipid droplets [72]. Interestingly, neuromelanin is a
strong iron chelator [53]. In PD, there is a loss of neuromelanin in the substantia nigra, and
this could lead to enhanced calcium messaging, followed by formation of reactive oxygen
species (ROS), and eventually neuronal apoptosis [73].

Serum ferritin is also upregulated in the circulation of PD individuals [54]. It has
been well documented that the absence of free iron restricts the growth of pathogens.
Here, we point out the corollary—that the presence of free iron allows their proliferation
(and hence translocation). In particular, the cytotoxicity caused by invading microbes
causes the release of iron that allows their (limited) proliferation and the release of more
inflammagenic bacterial products.

Figure 2 shows the important role of iron, mitochondria, and lysosomes in substantia
nigra neurons (adapted from Funke and coworkers (2013)) [20]. Physiological levels of iron
and the presence of oxidative stress are present not only in the brains of PD patients but
also in their circulation. In PD patients, excessive systemic inflammation also occurs [24,45],
simultaneously exacerbating and perpetuating neuro-inflammation and may also triggering
of the inflammatory events ongoing in the brain. There is an increasing recognition of the
involvement of Toll-like receptors (TLRs) in neuronal degeneration as cells of the nervous
system express TLRs and these TLRs are activated by α-synuclein. The activation of these
TLRs induces an inflammatory response that precedes neuronal loss [25]. In addition,
interleukin-1 (IL-1), can be synthesized and released by activated microglia, and could
possibly cause dopaminergic neurodegeneration leading to PD [74]. Activated microglial
cells have also been shown to be involved in the secretion of TNF-α thereby contributing
towards the progress of PD [75]. In addition, α-Syn also induces TNF-α [76].
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Figure 2. Interactions in a PD neuron between mitochondria, lysosomes, iron, and α-Syn production and ultimately
proteasomal dysfunction, oxidative stress and apoptosis (adapted from [20]). The figure illustrates the interplay between
mitochondria and lysosomes during the apoptotic cell death that characterizes the death of neurons in the substantia nigra
that is the hallmark of PD. The location of receptors like the TLR and IL-1 receptors and the metal ion transporter 1 are
shown. These receptors and transporter are known to bind bacterial inflammagens, IL-1, and Fe2+. In PD, there is also
a loss of neuromelanin in the substantia nigra, and this could lead to enhanced calcium messaging. These molecules play
a fundamental role in the downstream activation of inflammation and oxidative stress, and ultimately play a crucial role in
α-Syn and Lewy body formation.

Pathological levels of iron and oxidative stress are also central to the persistence of
neuroinflammation. A cycle of decreased levels of endogenous antioxidants, increased
ROS, augmented dopamine oxidation, and high iron levels have been found in brains from
PD patients [77]. Examples are decreased presence of coenzyme-Q10 (CoQ10), uric acid,
and vitamin E [78]. CoQ10 scavenges free radicals, with main function of protection of
mitochondrial and lipid membranes [79]. Uric acid, which acts as an antioxidant, is also
lower in PD [79]. Vitamin E is known to prevent lipids from oxidative stress, and plasma
levels of vitamin E are reduced in PD patients [80]. Dopamine metabolism, high levels of
iron and calcium in the substantia nigra, mitochondrial dysfunction and neuroinflammation
directly contribute to the increased oxidative stress and dopaminergic neuronal loss in the
brains of PD patients [78,81]. In a 2016 study, serum levels including that of iron, ferritin,
transferrin, superoxide dismutase catalase, nitrosative stress marker, thiobarbituric acid
reactive substances, and other similar oxidative stress markers were analysed in 40 PD
patients and 46 controls [82]. The authors concluded that ROS/RNS production and
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neuroinflammation may dysregulate iron homeostasis and that oxidative stress may be
a key driver in the pathophysiology of PD. See Table 1 for selected references regarding
systemic inflammatory mediators and numerous papers reporting on a dysfunction of iron
metabolism in PD.

Table 1. Selected references showing evidence of systemic mediators and iron dysregulation of
inflammation in Parkinson’s disease.

Mediators of Inflammation References

Presence of activated microglia, dysregulated inflammatory
mediators, chemokines, oxidative stress, and both systemic

and CNS inflammation
[54,83–87]

Presence of dysregulated cytokines, including interleukin
(IL)-1β, IL-2, IL-6, IL-10, tumour necrosis factor (TNF)-α,

interferon (IFN)γ, RANTES), and C-reactive protein (CRP)
[45,88–93]

Increased cluster of differentiation (CD) 4+ T-cells indicating
peripheral lymphocyte activation

[94,95]

Presence of nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX2) in postmortem PD brains

[96,97]

Increase in gut–brain axis and intestinal inflammation. An
increase in enteric inflammation associated with increased
mRNA and mRNA that are associated with glial markers

[10,42,43,98,99]

Increased presence of stool immune factors [100,101]

Dysregulated bacterial inflammagens like LPS
(lipopolysaccharides) and bacterial proteases like gingipains

[45,102–104]

Iron dysregulation [20,50,62,63,105–115]

3. An Integrated Physiological Systems Disease

The question that now arises is if there is any substantial evidence that pathological
iron levels, and increased presence of inflammatory biomarkers (both in circulation and
the brain), could originate from somewhere else than the PD brain. The quest for the
origin and the trigger of PD pathology, has led researchers to search for systemic hallmarks
that characterize PD patients [45,88–93]. Data suggest that most PD patients may suffer
from gut dysbiosis and other conditions that allow bacterial translocation. The origin
of dysregulated circulating inflammatory biomarkers could therefore involve bacteria,
and particularly their inflammagens, entering the body via gut dysbiosis and translocation
(when microbes appear in places other than their normal location) [19]. These inflammagens
might in fact contribute significantly to the increased iron levels and circulating cytokines
in PD [39,61,64,76,116].

A Continuum of Pathological Events or the Distinct Events Hypothesis?

The aetiology of PD is a complex process and the evidence in persons with PD (with or
without REM behavioural disorder) indicates that degeneration may start either in the CNS
or in the peripheral nervous system (PNS) [54], affecting numerous fundamental cellular
processes [117]. A continuum of pathological events or the “chicken or egg” hypothesis is,
therefore, not a straightforward assumption. A recent 2019 paper discusses the hypothesis
of brain-first or gut-first in the development of PD, where the authors argue that it is hy-
pothesized that PD can be divided into various subtypes, as either PNS-first and a CNS-first
subtype [118]. Central to the extent of involvement of bacteria, and the presence of gut
dysbiosis and translocation in PD, is the question of autonomic dysfunction, i.e., orthostatic
hypotension, constipation, bladder disturbances, and sexual dysfunction [119]. These
symptoms precede neuromotor symptoms and are strongly associated with impaired activ-
ities of daily life and dementia during later stages of the disease [120,121]. Dysautonomic
symptoms are frequently found in the various α-synucleinopathies, including PD [122].
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Autonomic dysfunction affects the enteric nervous system, resulting in constipation [26].
An important concept to consider, is whether dysbiosis and translocation are causes of
autonomic dysfunction and α-synucleinopathies or whether neuro-inflammation causes a
spill-over peripheral autonomic dysfunction. Evidence that might provide an answer to
this critical question may be found in the timing of the various pathologies. Already in
2001, Abbot and coworkers suggested that further studies are needed to determine whether
constipation is part of early PD processes or is a marker of susceptibility or environmental
factors that may cause PD [18]. In PD patients, α-Syn inclusions have been detected in colon
biopsies up to 8 years before the onset of motor symptoms of PD, and it has been argued
that the presence of extracellular α-Syn is associated with acute and chronic inflammatory
conditions of the intestine [123,124]. It may be worth noting here that individuals without
PD may also have intestinal α-Syn inclusions, which can also be detected [125]. The speci-
ficity and sensitivity of colonic biopsies for the detection of pathological α-Syn inclusions
is, therefore, conflicting across various research. A recent prospective cohort study also
showed that patients presenting with pure autonomic failure are at high risk of phenocon-
verting to a manifest neuro-synucleinopathy [126]. Sampson et al., (2016) demonstrated
that faecal transplantation of gut microbiota from PD patients enhanced α-Syn-mediated
motor dysfunction in a mouse model of PD [127]. The authors further found that germ-free
animals displayed significantly fewer α-Syn inclusions in the CNS, indicating that gut
microbiota are required for α-Syn aggregation and formation of the hallmark inclusions
seen in PD.

In their hypothesis, Borghammer and Van Den Berge (2019) [118] suggest that PD
associated with the PNS-first hypothesis is tightly associated with REM sleep behaviour
disorder during the prodromal phase and is characterized by marked autonomic damage
before involvement of the dopaminergic system. In contrast, the CNS-first phenotype is
most often REM sleep behaviour disorder negative during the prodromal phase and char-
acterized by nigrostriatal dopaminergic dysfunction prior to involvement of the autonomic
PNS [118]. The current available evidence not only points to intestinal involvement but
also it should be highlighted that there is an absence of longitudinal research studies. Such
studies need to be conducted to provide appropriate data with strong evidence to support
this hypothesis. According to our understanding of the sequence of events, evidence points
to an intestinal involvement, followed by systemic inflammation and then the occurrence of
neurological PD symptoms (see Figure 3). It can furthermore also be presumed that many
diseases, including PD, can be caused by a positive feedback, and that this might lead to
overwhelming of homeostatic mechanisms. In this case, the positive feedback mechanism
(namely, A causes B then B causes more A, etc.) is dysbiosis/translocation and amyloid
formation and deposition. In Figure 3, we argue that this positive feedback mechanism is
present in PD, and it is between α-Syn aggregation and autonomic dysfunction.
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Figure 3. Parkinson’s disease: a continuum or distinct events hypothesis? The condition is characterized by the presence
of (1) predisposing genetic, environmental, and lifestyle factors that together contribute to both (2) systemic and neuro-
inflammation. (3) Autonomic dysfunction and a (4) dysregulated bidirectional signalling system and (5) α-Syn aggregation
are associated with (6) motor and dopaminergic neuron dysfunction. We argue that there is a positive feedback mechanism
between (5) α-Syn aggregation and (3) autonomic dysfunction.

4. Oral and Gut Dysbiosis and Parkinson’s Disease

There is significant evidence of gut dysbiosis in PD, as reviewed in the following
paragraphs. The gastrointestinal tract can communicate with the central nervous system by
several mechanisms, including hormones, cytokines, and microbial metabolites via circula-
tion, as well as direct neural circuits via the autonomic nervous system (vagus nerve) [128].
Dysregulation of the bidirectional signalling system (the gut–brain axis, also known as the
gut–microbiota–brain axis or the microbiome–gut–brain axis), is well-known in PD. Parkin-
son’s disease patients have a significantly higher incidence of comorbid gastrointestinal
dysfunction, with between 60% and 80% of patients suffering from constipation [129] and
intestinal inflammation [10]. Gastrointestinal dysfunction is, therefore, a very well-known
accompaniment to PD [130,131] and also precedes the onset of motor symptoms by several
years [132]. It has been shown that faecal and mucosa-associated gut bacteria of PD patients
differ substantially from healthy individuals [103,132,133]. Nuzum et al., (2020) review
literature that discussed gut microbiota differences between PD groups and controls, and
suggested that were variations may potentially be the cause of PD pathophysiology [19].
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However, the authors noted that differences in methodologies may be problematic [19].
Parkinson’s disease-associated constipation has also been found to correlate with α-Syn ac-
cumulation in the enteric nervous system, resulting in local inflammation, oxidative stress,
and increased intestinal permeability [134,135]. A significant body of work has, therefore,
implicated gut dysbiosis as a major contributory factor to the constipation observed in
PD patients.

α-Syn aggregation may originate in the gut and propagate via the vagus nerve to the
brain. This hypothesis is supported by reports of α-Syn inclusions being observed in the
enteric nervous system, including the vagal nerves [7], sometimes years before the onset
of the first motor symptoms [136]. Injection of α-Syn fibrils into the gut tissue of healthy
rodents also induced pathology in the vagus nerve and brainstem, indicating that misfolded
α-Syn propagates from the gut to the brain via the vagus nerve [137]. It has also been shown
that vagotomized subjects are at a lower risk of developing PD [138]. When gut dysbiosis is
present in PD patients, gut-derived bacteria escape from the gastrointestinal tract into the
blood. This process leads to shedding of endotoxins into the systemic circulation, which
may constitute a trigger event in the development of PD and other neurodegenerative
disorders [45,139]. Moreover, there is also evidence for bidirectional and trans-synaptic
parasympathetic and sympathetic propagation of alpha-synuclein in animal models [140].
However, these models report varying results [141–143].

4.1. Bacterial Inflammagens

Gut dysbiosis is typically associated with an increase in Gram-negative bacteria
such as E. coli and H. pylori, which are known to secrete a variety of pro-inflammatory
molecules [135,144]. Bacterial inflammagens can act as both cytotoxins and neurotoxins,
which disrupt the homeostatic functioning of cells in circulation and tissues [145,146].
Microbes shed their respective inflammagens (endotoxins) in response to different physio-
logical and environmental cues, potentially resulting in a broad spectrum of deleterious
effects [44,147]. These include both systemic inflammation and neuro-inflammation as well
as impaired gut barrier function [44,148]. Bacterial inflammagens implicated in inflamma-
tion may include proteolytic enzymes such as carbonic anhydrases, peptidyl deiminases
and gingipains, as well as bacterial appendages like curli fibres and fimbriae, LPS, or
lipoteichoic acid (LTA) [102,149–152]. There is also evidence that curli can also acceler-
ate synuclein pathology in rat and worm models [153] and in mice models [116]. Many
bacteria can also assemble functional amyloid fibres on their cell surface and these amy-
loids contribute to biofilm formation where cells interact with a surface or with other
cells [154]. Furthermore, these bacterial amyloids have the potential to influence cerebral
amyloid aggregation, and neuroinflammation, and microbiota-associated proteopathy and
neuroinflammation may be a promising area for therapeutic intervention [155].

Bacterial inflammagens may also indirectly contribute to the onset and progression of
PD through their activation of peripheral immune cells, including macrophages, monocytes,
microglia and astrocytes, which can penetrate the blood–brain barrier (BBB) and contribute
to neuro-inflammation. They may also directly contribute to PD pathology by inducing
structural alterations in proteins, favouring a transition from α-helices to β-sheet-rich
amyloid fibrils [156]. In the brain, the resulting aggregation of these amyloid proteins leads
to formation of the characteristic LBs observed in PD, and in the blood, amyloid fibrin(ogen)
causes hypercoagulation, a recently discovered accompaniment of PD pathology [45].
A bacterial inflammagen that is of particular interest is bacterial cell membrane LPS, which
are large molecules consisting of an inner hydrophobic lipid A domain, a non-repeating
oligosaccharide ‘core’, and a distal polysaccharide chain known as an O-antigen which
determine the strain’s serology [157]. The lipid A domain is typically described as the site
of the molecule that is most inflammagenic [156]. We do recognise that there are commensal
gut bacteria-derived LPS which may be less immunogenic [158]. However, in the context
of this paper, we refer to the LPSs that can act as potent inflammagens.
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4.2. Contribution of LPSs to Parkinson’s Disease

4.2.1. LPS as a Potent Inflammagen

There are contrasting hypotheses on the effects of LPS. One such hypothesis is the
hygiene hypothesis [159]. This hypothesis suggest that early exposure to specific microor-
ganisms and parasites in infancy benefits the immune system development and confers
protection against allergic and autoimmune diseases [160]. In contrast, many papers re-
port the detrimental effects of LPS. Although LPSs and their effects are not homogenous,
it should be noted that microbiome-derived LPS could possibly impact long-term immuno-
suppressive mechanisms in more complex ways than has been previously thought. LPS is
initially extracted from bacterial membranes by serum LPS-binding protein. LPS-binding
protein then transfers LPS to CD14, where CD14 then disaggregates LPS complexes and
present the LPS to the toll-like receptor 4 (TLR4) [161,162]. LPS is considered a potent
immune stimulator as it binds to CD14 on monocytes, and/or macrophages [161].

After LPS binds to the TLR4, multiple host cell signalling components are activated in-
cluding nuclear factor-κB (NF-κB) [163–166], followed by transcription of pro-inflammatory
cytokines and proteins including TNF-α, IL-1β, IL-6, IL-12, and iNOS [167–170]. Cytokines
such as IL-1β and IL-6 induce the production and secretion of serum amyloid A (SAA) in the
liver, specifically acute phase SAA1 and SAA2. During the acute-phase immune response,
SAA contributes to the inflammatory response by attracting immune cells, activating the
transcription factor NF-κB and stimulating pro-inflammatory cytokine production [171].
Intracellular LPS can also activate the noncanonical NLRP3 inflammasome pathway via
caspase-11 (caspase-4 or -5 in humans), leading to caspase-1 activation [104,172].

Microglia activation is another histopathological hallmark of PD [173] and LPS can
activate microglial cells, suggesting that LPS is key in the development of neuroinflamma-
tion [162,174]. LPS was also found to induce functional changes in microglia, suggesting
that it will induce blood–brain barrier dysfunction due to ROS via nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [175]. LPS-activated microglia can release
cytokines like IL-1β, IL-6, and TNFα, resulting in an increased expression of inducible
nitric oxide synthase (iNOS) and production of ROS [176]. Interestingly, it was found in
a rat model that the substantia nigra had the highest density of microglia, and that these
microglia were particularly vulnerable to LPS damage [173].

The damaging effects of LPS are underscored by evidence that it can cause misfolding
and aggregation of α-Syn [177,178]. LPS, due to its strong inflammagenic properties,
is also regularly used to produce in vivo models of both PD and Alzheimer’s disease
(AD) [179–181], as well as other inflammatory diseases such as pre-eclampsia [182–184].
Systemic injection of LPS has also been shown to cause damage to the BBB of recipient
animals, leading to the subsequent crossing of peripheral cytokines into the brain [185–187].
Low doses of LPS were also found to induce secretion of cytokines, and thereby increased
vulnerability of dopamine neurons in a rat model [188].

Inflammation induced by LPS also increases α-Syn entry into the brain via the
BBB [189], possibly driving LB formation (this study was an animal study). Interestingly,
in a 2015 study, Hasegawa and coworkers also showed in 52 PD patients that LPS-binding
protein levels were lower than in controls [103]. Lower levels of LPS-binding protein in PD
might be related to its binding of increased LPS in circulation or might indicate less LPS
neutralization [169]. A 2020 paper from Wijeyekoon and coworkers also directly demon-
strate elevated serum endotoxin in PD, particularly in patients with increased risk for
early dementia [104]. LPS in circulation, therefore, directly or indirectly leads to neurode-
generation by inducing a strong inflammatory response, causing degradation of the BBB,
inflammation, and oxidative stress in the CNS and the stimulation of α-Syn misfolding and
aggregation into LBs.

4.2.2. Formation of Nucleated Molecular Intermediates as Induced by LPS

It has been suggested that LPS may change the structure of (healthy) proteins, whereby
it may induce the formation of nucleated molecular intermediates. Nucleation is a process
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whereby phase transitions are initiated in proteins [190]. In the context of protein bio-
physics, nucleation is used to describe a process whereby supersaturated protein solutions
form insoluble macromolecular protein aggregates. Moreover, nucleation, a complicated
biophysical process, can be described as a primary and a secondary process, and these
processes were already described in the 1960s [191]. Nucleation therefore occurs by two
pathways, the first being a fibre-independent (primary) pathway and the second a fibre-
dependent (secondary) pathway [192]. Primary pathways, such as homogeneous nucle-
ation, generate new aggregates at a rate dependent on the concentration of monomers alone
and independent of the concentration of existing fibrils [191,193]. Secondary pathways
are the complementary mechanisms, that generate new aggregates at a rate dependent
on the concentration of existing fibrils [193]. The latter class can be subdivided into
monomer-independent processes, such as fragmentation [192–194] with a rate depending
only upon the concentration of existing fibrils, and monomer-dependent processes, such
as secondary nucleation. LPS may be involved in both primary and secondary nucleation
reaction pathways.

In AD, e.g., pathological protein fibril formation where protein is changed to amy-
loid fibrils, is well known and these fibrils are characterized by a highly ordered cross-β
conformation [195]. The generation of toxic oligomers during the aggregation of the beta-
amyloid (Aβ) peptide Aβ42 into amyloid fibrils and plaques is an example of a form of
nucleation [193]. Cohen and coworkers showed that once a small but critical concentration
of amyloid fibrils has accumulated, the toxic oligomeric species are predominantly formed
from monomeric peptide molecules through a fibril-catalysed secondary nucleation re-
action. The authors argued that such a secondary nucleation mechanism is seen in Aβ,
rather than through a classical mechanism of homogeneous primary nucleation [193]. This
catalytic mechanism, insoluble amyloid fibrils, and the generation of diffusible oligomeric
aggregates are possibly the neurotoxic agents in AD. In PD, α-Syn is also a well-known
example of protein conformational changes, and primary nucleation was also noted in
α-Syn protein [196].

LPS can modulate α-Syn amyloidogenesis through the formation of intermediate
nucleating species [23]. Bhattacharyya et al. demonstrated that E. coli-derived LPS modu-
lates α-Syn aggregation in vitro by forming intermediate LPS-α-Syn complexes [23]. These
intermediate complexes might be responsible for the PD-associated pathological effects
of α-Syn amyloids [23]. The authors furthermore proposed that N-terminal-mediated
anchorage of the amphipathic molecule results in the eventual partial internalization of
the “fibrillating” (fibril forming) motif, situated in the hydrophobic acyl region of the LPS
molecule. It, therefore, appears that LPS can modulate the overall aggregation kinetics of α-
Syn in a concentration-dependent manner. Thus, the direct molecular interaction with LPS
results in the modulation of the protein’s conformation into alternative nucleating forms
that are morphologically and functionally distinct from the wild type α-Syn conformers.
Most importantly, the characterization of the epitope of interaction in the LPS-mediated
nucleation possibly allows for novel targets in the therapeutic interventions.

LPS may also induce amyloid forms of the clotting protein fibrin(ogen) during
blood clotting and significantly contributes to systemic inflammation and coagulopa-
thy [148,156,197]. Our research group has also shown that LPS may interact with the plasma
protein fibrin(ogen), resulting in protein misfolding. These protein changes can be visual-
ized using amyloid stains, e.g., thioflavin T and newer fluorescent markers, known as Amy-
trackers [148,156,197]. Figure 4 shows the diagram and micrographs from Bhattacharyya
and coworkers [23], as well as an example from our previous work [45,148,156,197]. The in-
termediate LPS-α-Syn-complexes shown by Bhattacharyya and coworkers look very similar
to the LPS–fibrinogen complexes. Bhattacharyya and coworkers’ 2019 results might, there-
fore, suggest that α-Syn fibrillation could possibly form part of a neuroimmunological
response to bacterial inflammagens.
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Figure 4. Courtesy of [23] (permission and license of usage were granted by publisher and supported
by authors).(A) Schematic representation of the orientation of α-Syn in aqueous solution (left) and
in the presence of lipopolysaccharides (LPS) micelle (right). Paramagnetic relaxation enhancement
(PRE), using MnCl2 as quenching agent, herein indicated only as “Mn”, was used by the authors to
verify internalization of the N-terminal- and NAC regions of α-Syn into the LPS micelle. (B) Trans-
mission electron microscopy (TEM) images showing morphologically distinct α-Syn fibrils at 1:1 LPS
concentration at two different time points (t = 3 and 120 h). Scale = 200 nm. (C) Confocal microscopy
images of fibrin networks formed from purified fibrinogen (with added Alexa 488 fluorophore) incu-
bated with and without LPS from P. gingivalis, followed by addition of thrombin to create extensive
fibrin(ogen) clots (unused raw data from [45].
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4.3. Oral Microbiota Translocation in Parkinson’s Disease

Periodontitis and gingivitis have also been implicated in PD [27,198,199]. Specifically,
periodontal inflammatory disease constitutes another point of entrance for bacteria in
facilitating translocation. It was initially hypothesized that PD patients develop increased
periodontal pathology, as a result of the progressive loss of self-care ability and fewer dental
attendances [200,201]. However, Liu and coworkers reported, in a retrospective cohort
study, that there is an increased risk of developing PD following chronic periodontitis [202].
Chen and workers also reported that individuals with periodontal inflammatory disease
had a 1.4-fold higher chance (adjusted hazard ratio) of developing PD [203].

One of the Gram-negative bacteria that has been implicated as a causative agent in
periodontitis and gingivitis is Porphyromonas gingivalis (P. gingivalis), and its inflammagens
have been associated with the development of various inflammatory conditions [204–208].
It is mainly a bacterium from the mouth, however, after oral administration in animal
studies, it may also induce gut dysbiosis and impaired gut barrier function [209], and can
induce systemic inflammation [210]. In an attempt to elucidate the underlying mechanisms
of how oral bacteria alter the gut microbiota, researchers performed serum metabolome
analysis on mice treated with P. gingivalis [211]. Recipient mice showed elevated serum
amino acids (alanine, glutamine, histidine, tyrosine, and phenylalanine) [211], suggesting
an increase in bacterial communities, which yield these metabolites. As there is, therefore,
a known association between periodontal disease and metabolic diseases, it is possible that
P. gingivalis can affect the metabolites produced in the gut [211].

Gingipains as Potent Inflammagens from P. gingivalis

Gingipains (toxic bacterial proteases) are virulence factors produced by P. gingi-
valis [207]. Gingipains consist of Arg-gingipain (Rgp) (RgpA and RgpB) and Lys-gingipain
(Kgp) and exist in both cell-associated and secreted forms, which play a central role in the
virulence of this organism [212]. Gingipains were also found in the brains of AD patients
and were implicated in the development of AD [207]. Recently, we reported on gingipains
in the blood of PD patients, with a similar hypercoagulation effect as for LPS [45]. Gingi-
pains may potentially also enter via the nasal cavity, from where it may potentially journey
via the olfactory bulb. This process may potentially be underpinned by the proposed
dual-hit mechanism, involving anterograde progression of pathology from the olfactory
system into the temporal lobe, and retrograde progression to the brainstem [13,14]. These
inflammagens also occur in different locations of the CNS and hence lead to different
diseases. We suggest that the effects of the same inflammagen in different areas of the CNS,
associated with either AD or PD pathologies, is possibly predetermined by the patient’s
genetic predisposition, epigenetic changes, and cellular susceptibility.

The data illustrating gingipains’ ability to induce hypercoagulation, as well as to
infiltrate brain tissue and activate amyloid protein formation, make these bacterial proteases
promising candidates for study when attempting to elucidate the aetiology and progression
of PD. Figure 5 provides an overview of the proposed gingipain activities following
translocation into the circulation.
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Figure 5. An overview of the effects of the translocation of bacterial gingipain into the circulation: (1) immune evasion
brought about by proteolytic degradation of antibodies, cytokines, and immune receptor CD14; (2) proteolytic degradation
of transferrin (TFN) and haemoglobin (Hgb); (3) hypercoagulation caused directly by contact of platelets with gingipain
proteases; and (4) amyloidogenesis, resulting not only from direct contact of neurons with gingipain proteases but also
indirectly as a result of increased iron levels, which occur due to the degradation of iron-containing proteins.

5. Therapeutic Possibilities and Pharmaceutical Interventions

5.1. Iron Chelation

Several iron chelator molecules have been suggested as sequestering agents for unli-
ganded iron [213,214]. Iron chelation molecules may also be useful in preventing ferroptosis
in PD [215]. Neuromelanin has been shown to protect dopaminergic neurons from iron-
induced damage, even in conditions of iron overload, by forming stable complexes with
unliganded iron [216]. Youdim et al. (2004) developed brain-penetrable compounds, the
VK-28 series, which are known to have iron-chelating properties similar to or even better
than the well-known iron chelator desferrioxamine (Desferal). An important characteristic
of an iron-chelating molecule should be its ability to inhibit monoamine oxidase (MAO).
MAO generates H2O2, which interacts with ferrous iron to form reactive hydroxyl radicals
via Fenton chemistry [63,217–219]. The Fenton reaction (Fe2+ + H2O2 → OH− + HO•) is
a nonenzymatic reaction that obeys mass action law, meaning that the rate of hydroxyl
radical production is directly proportional to the amount of Fe2+ in the cell [220,221]. Un-
fortunately, desferrioxamine has relatively poor MAO inhibition [222]. In contrast, VK-28
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has been shown to have good MAO inhibitory and iron-chelating properties [222]. More
recently, VK-28 was also shown to be protective against iron toxicity and less toxic than
deferoxamine [223].

Clinical trials of iron chelation in the treatment of PD have paid specific attention
to deferiprone as a promising pharmaceutical intervention. Papers showing possibly
promising efficacy with regard to neurodegeneration include [221,224,225]. However, little
longitudinal clinical data is available that shows significant results, suggesting its efficacy
in symptomatic improvement of pausing of disease progression. During a randomized trial
of deferiprone administration to patients with early-stage PD, over a period of 6 months,
decreased iron concentrations in the substantia nigra pars compacta (SNc) were found [213].
Suspension of treatment resulted in the restoration of the elevated iron levels, suggesting
a return to the pathological iron dyshomeostasis, which might underlie PD. A phase
2 clinical trial of deferiprone by Martin-Bastida et al. (2017) [224] reported removal of
excess iron concentrations in the dentate and caudate nucleus, but minimal symptomatic
improvement in PD patients, noting that the trial had small numbers of patients, was
limited to early PD and was only of 6 months’ duration. However, deferiprone is only
bidentate and a relatively weak chelator [148], and its combination with the stronger,
tridentate deferasirox may prove more effective. Iron chelation may have some mild
side effects. However, deferiprone therapy was well tolerated by PD subjects with only
minor side effects including exacerbation of pre-existing muscular/and joint pain or mild
gastrointestinal upset [224].

The marginal success of simple metal chelation drugs like deferiprone is also possibly
due to the multifactorial aetiology of PD, and the various pathological feedback loops
involved in disease pathology. Simply removing one feature of the disease would do little
to stop its progression or reverse its debilitating effects. Multifunctional agents, capable
of targeting several underlying pathological mechanisms, have been in development for
almost two decades [217,226]. Compounds like piperaxine-8-OH-quinolone hybrids have
been shown to have free radical scavenging properties, independent of their iron chelation
function [227]. Multifunctional iron chelators, like 7,8-dihydroxycoumarin derivative
(DHC12) and coumarin-tris hybrid (CT51), have been designed to accumulate in the
mitochondria, where both iron and ROS exist in high concentration, thereby increasing
their antioxidant and mitochondriotropic effects [228,229]. These agents are, however,
still in the experimental phase and are yet to be proven effective during clinical trials.
Ergothioneine is another promising iron chelator that is also an antioxidant [230].

5.2. Antibiotics and Probiotics

The effective use of therapeutics such as antibiotics (and probiotics) in the treatment
of PD and its associated gut-related issues can only be rigorously assessed in randomized
double-blind controlled clinical trials. Unfortunately, most papers that report on the
use of antibiotics and probiotics are based on limited data or case studies. However,
both antibiotics and probiotics usage have been suggested for the treatment of PD, and
particularly for the restoration of the gut microbiome in PD patients. Probiotics were
found to possibly alter the clinical progression of PD [231] and alleviate constipation and
gut-related issues [232,233]. Furthermore, probiotics, prebiotics, and synbiotics are being
examined that might influence the gut–brain axis by altering gut microbiota composition,
enteric nervous system, and CNS [234] and may play important roles in the regulation of
dysbiosis in PD [235].

Antibiotics as treatment regime in PD have mostly focussed on targeting constipation
and gut dysbiosis. Antibiotics such as rifaximin with poor systemic absorption may be
used to treat small bowel bacterial overgrowth, which is also observed in PD [236]. Particu-
larly, minocycline may have some neuroprotective activity in various experimental models
including PD, [28,237,238]. Minocycline and its effects as a neuroprotecting antibiotic are
related to inhibition of mitochondrial permeability and the suppression of microglial acti-
vation [239]. In addition, there is a growing body of evidence to suggest that minocycline
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elicits neuroprotective effects in PD, particularly because it restores gut microbiota balance,
due to the reduction in Firmicutes and Bacteroidetes bacteria [25]. In addition, minocycline
exerts anti-inflammatory effects that possibly may mediate its neuroprotection [240].

Rifampicin, another antibiotic known to exert multiple neuroprotective functions is
suggested as potential treatment regime for PD [241,242]. Rifampicin and its derivative
rifampicin quinone were found to reduce microglial inflammatory responses and neurode-
generation induced in vitro by α-Syn fibrillary aggregates [243]. Rifampicin might also
reduce the cytotoxicity by promoting SUMOylation of α-Syn [244]. SUMOylation refers
to when a small ubiquitin-like modifier (SUMO) moiety is covalently linked to a lysine
residue in the target protein. Dysregulation of SUMOylation of extranuclear proteins
is strongly implicated in neurological and neurodegenerative diseases [245], including
PD [246]. Although there is great potential for treating PD using antibiotics, certain an-
tibiotics, including tetracyclines, sulphonamides, and trimethoprim have been associated
with increased risk of PD [247]. The exact mechanisms of action of these antibiotics in the
treatment of PD is an important research question that needs to be answered. In particular,
longitudinal studies are required to determine how affective antibiotics are to successfully
treat the comorbidities of gut dysbiosis, gingivitis, and periodontitis, as well as constipation,
or indeed to stop the progression of the disease.

5.3. Faecal Microbiota Transplantation

As mentioned previously, faecal transplantation of gut microbiota from PD patients
enhanced α-Syn-mediated motor dysfunction in a mouse model of PD [127]. The question
that now arises is whether the opposite might be true: can faecal transplants form a healthy
individual assist in the treatment of PD patients? Indeed this seems to be the case, as faecal
microbiota transplantation in PD is being investigated [248]. Faecal transplantation may be
important to assist in recolonizing the gut microbiome of patients with neurodegenerative
diseases [249]. There has been one report of a case studies where faecal transplant were
used in PD [250]. Faecal microbiota transplantation was also shown to protect mice in a PD
model by suppressing neuroinflammation and reducing toll-like receptor (TLR)4/TNF-α
signalling [251]. Once again, to fully understand the usefulness of this method and to
present convincing clinical results, controlled clinical trials are needed.

5.4. Additional Therapeutic Options

Therapeutic interventions that directly target both LPS and gingipains could also be
additional therapeutic options. Examples of such options may include small molecule
inhibitors of gingipains [207]. An interesting option is the adjunctive use of lozenges
containing IgY antibody against gingipains from P. gingivalis. It was shown that the use of
this therapy resulted in clinical and microbiological benefits in the treatment for chronic
periodontitis [252] and may actually also have therapeutic effects in PD.

6. Conclusions

In this review, we have brought together evidence that the development and presence
of PD depends on specific sets of interlinking factors that include neuro-inflammation,
systemic inflammation, α-Syn-induced cell damage, vascular dysfunction, and iron dys-
regulation, together with gut and periodontal dysbiosis. Published evidence substantiates
the view that PD is both associated with and driven by dysregulated circulating inflam-
magens (such as LPSs and gingipains), iron, and cytokines. Bacterial inflammagens may
either enter via the gut or as a dual-hit mechanism, involving anterograde progression of
pathology from the olfactory system into the temporal lobe, and retrograde progression to
the brainstem [13,14], and these processes may provide areas for therapeutic intervention.
There is also evidence that pre-and probiotics, as well as antibiotics and faecal transplant
treatment, might be valuable treatments in PD. A current challenge for drug discovery
designed for complex brain disorders such as PD is to look for multimodal drugs that might
deliver disease-modifying outcomes. Targeting underlying mechanisms of PD, such as gut



Biomolecules 2021, 11, 30 17 of 27

dysbiosis and iron toxicity, have elucidated a wide variety of novel treatments, which could
not only relieve the characteristic motor deficits seen in PD but also might significantly
slow the progression of the disease. We suggest that the most effective approach to prevent
PD and its worsening is to determine the origin of the disease and its comorbidities and
to follow a personalized treatment regime, of which we outline the main features. Most
treatment options discussed here may be most effective against the comorbidities that are
related to nonmotor symptoms; such symptoms may mostly precede motor symptoms.
In such a personalized treatment approach, all multifactorial features should be explored.
Ultimately, we need to embark on long-term longitudinal studies where large cohort data
are available.
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Abbreviations

α-Syn Alpha-synuclein
AD Alzheimer’s disease
Aβ Beta-amyloid
BBB Blood–brain barrier
CD Cluster of differentiation 14
CNS Central nervous system
COX-2 Cyclooxygenase-2
CRP C-reactive protein
CT51 Coumarin-tris hybrid
DHC12 7,8-dihydroxycoumarin-12
Hgb Haemoglobin
IFNγ Interferon-gamma
IL Interleukin
iNOS Inducible nitric oxide synthase
LB Lewy body
LPS Lipopolysaccharide
LTA Lipoteichoic acid
MRC Medical Research Council of South Africa
mRNA Messenger ribonucleic acid
MOA Monoamine oxidase
NADPH Nicotinamide adenine dinucleotide phosphate reduced
NF-кB Nuclear factor kappa-light-chain-enhancer of activated B cells
PARK Parkinson’s disease genes
PD Parkinson’s disease
RANTES Regulated upon activation, normal T cell expressed and presumably secreted
REM Rapid eye movement
Rgp Gingipain
ROS Reactive oxygen species
SAA Serum amyloid A
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SNc Substantia nigra pars compacta
SUMO Small ubiquitin-like modifier
TEM Transmission electron microscope
TLR Toll-like receptor
TNF-α Tumour necrosis factor-alpha
TFN Transferrin
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