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Abstract
Iron(II) bromide catalyzes the transformation of ortho-substituted aryl azides into 2,3-disubstituted
indoles through a tandem ethereal C–H bond amination–[1,2]-shift reaction. The preference for
the 1,2-shift component of the tandem reaction was established to be Me < 1° < 2° < Ph.

The ability of tandem reactions to rapidly increase the molecular complexity of simple
substrates continues to inspire the efforts of synthetic groups to incorporate new reactions
into these cascades.1,2 While transition metal-catalyzed C–H bond amination is emerging as
a useful synthetic process,3,4 this reaction has never been harnessed to initiate a cascade
reaction. Further, the incorporation of migratorial processes into these cascade sequences
remains rare despite the potential of these processes to transform simple substrates into
complex, functionalized products.5 We have demonstrated that metal nitrenes originating
from ortho-alkenyl-substituted aryl azides can engage in cascade reactions where electro-
cyclization of the rhodium nitrene triggers a subsequent, selective 1,2-shift.6 Initiating these
tandem reactions with a C–H bond amination reaction—ideally using an inexpensive, non-
toxic first row transition metal catalyst—would be highly appealing because it would
minimize the amount of functionality required in the starting material. Towards this goal, we
report our development of an iron(II) bromide-catalyzed ethereal C–H bond amination-1,2-
migration tandem reaction that efficiently and selectively transforms ortho-substituted aryl
azides into 2,3-disubstituted indoles.

An unexpected observation during our optimization study into the formation of indoline 2
from aryl azide 1 prompted our interest into using an amination reaction to initiate a tandem
reaction sequence (Scheme 1). A screen of transition metal complexes identified Rh2(esp)2
to be the most efficient catalyst for the intramolecular C–H bond amination of 1, which
provided indoline 2.8 This screen also revealed that FeBr2 decomposed the aryl azide. The
expected indoline, however, was not observed. Instead, a mixture of 2,3- dimethylindole 3
and aniline were formed. We attributed the formation of these products to an Fe-mediated
oxidation of indoline 2,9 which would produce iminium ion 4 and aniline if the aryl azide
was the oxidant.10 A 1,2-methyl shift from 4 would then produce the observed indole. We
anticipated that this tandem amination-migration process might be rendered a viable
synthetic method if the mechanism for iminium ion formation were changed from an
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oxidative process (requiring a stoichiometric oxidant, azide) to an elimination step. We
envisioned that this modification could be achieved if one of the β-hydrogen atoms in 1
were replaced with a leaving group. Transition metal-catalyzed C–H bond amination of 5
would form indoline 6, which could undergo Lewis acid-catalyzed elimination of the leaving
group to form iminium ion 7 and trigger the desired 1,2-migratorial process.11

Our pursuit of triggering a tandem C–H bond amination-elimination- migration sequence
started by investigating the reactivity of aryl azides 8 toward transition metal complexes
(Table 1). We began by substituting the β-hydrogen atom in 1 with an alkoxy group and
examining the reactivity of the resulting azides toward iron(II) bromide.11–13 While the use
of an acetate lead only to aniline formation (entry 1), changing R to Et led to nearly
complete 2,3-dimethylindole formation (entry 2). The reaction conversion was dependent on
both the temperature as well as catalyst loading with severe attenuation of indole formation
observed when either was reduced (entries 2 – 4).

Upon completion of our initial optimization studies using iron(II) bromide, other transition
metal complexes were examined to determine if they could catalyze this tandem reaction
(Table 1). Despite their proven ability to catalyze N-atom transfer reactions from azides, our
survey of Rh2(II)-,14 Ir(I),15 Co(I),16 Ru(III)-17 or Cu(I)-complexes18 did not identify any
competent catalyst for our process (entries 5 – 8). The reaction also proved sensitive to the
Lewis acidity of the iron salt:19 no reaction was observed if the counterion or the oxidation
state was changed (entries 9 – 11). From our studies, iron(II) bromide appears unique in its
ability to catalyze the C–H bond amination reaction, elimination and the 1,2-methyl shift
with the optimal conditions to be 20 mol % catalyst loading in toluene at 140 °C.

Using these optimal conditions, the scope of our iron(II) bromide-catalyzed tandem C–H
bond amination-elimination-1,2-methyl migration reaction was investigated (Table 2). We
found that the reaction yield was not affected by the electronic nature of the aryl azide with
consistent yields of the 2,3-dimethylindole obtained for both electron-releasing as well as
electron-withdrawing groups. Despite the established reactivity of olefins with iron
nitrenes,9c we found that aryl azide 8e bearing a styryl group was transformed into the
indole product, albeit with a diminished yield (entry 5). Our reaction enables the synthesis of
6-substituted indoles (e.g. 10g), which cannot be made regioselectively using the Fischer
indole reaction.20 These results indicate that changing the electronic nature of the aryl azide
is not detrimental to the outcome of our tandem reaction.

Next, the effect of changing the identity of the migrating group on the Fe(II)-catalyzed C–H
bond amination-1,2-migration reaction was investigated (Table 3). We found that our
reaction was not limited to 1,2-methyl shifts, but that ethyl group migrations as well as ring
expansions could be triggered (entries 1 – 4). For the latter, the reaction was not constrained
by the alleviation of ring strain: the highest reaction yield was obtained from the expansion
the cyclohexyl substituted aryl azide 11d in comparison to cyclobutyl- and cyclopentyl
substrates (entries 2 – 4).

Our next objective was to determine if any selectivity could be observed during the
migration component of the tandem reaction. We began this investigation by examining aryl
azides that contained both methyl- and aryl groups (Table 3, entries 5 – 7). To our delight,
we found that submission of these substrates to reaction conditions resulted in exclusive aryl
group migration to afford 2-aryl-3-methylindoles, presumably via a phenonium ion. This
reaction, however, was dependent on the electronic nature of the aryl group with only
decomposition observed for azide 11g bearing an electron deficient arene. With successful
differentiation between sp2- and sp3 carbons, we were curious if our reaction could
distinguish between different sp3-substituted migrating carbons (entries 8 and 9). To
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examine this, we submitted aryl azide 11h to reaction conditions. To our surprise, we found
that only ethyl group migration occurred to provide 2-ethyl-3-methylindole as the solitary
product. To determine if this high selectivity was general, azide 11i bearing both an
isopropyl- and ethyl group was submitted to reaction conditions to afford 2-isopropyl-3-
ethylindole as the only product (entry 9). Finally, to test for alkyl- or aryl group migration in
the presence of an α-hydrogen azides 11j and 11k were examined (entries 10 and 11). While
diminished yields were obtained, only 3-substituted indoles 11j and 11k were observed from
these azides revealing that these groups do not migrate when a hydrogen is present.21 From
these results, a preliminary migratorial aptitude scale of our reaction can be established to
be: Me < 1° < 2° < Ph.

While a number of mechanisms can explain our transformation,21 we have interpreted our
results to indicate that iron(II) bromide functions as both an N-atom transfer catalyst as well
as a Lewis acid (Scheme 2). Coordination of the iron catalyst to the aryl azide (to form 14)23

triggers the extrusion of N2 to form iron nitrene 15.24 While the ethereal C–H bond
amination reaction could be concerted (via TS-16),11a a stepwise process is also possible:
hydride transfer from 15 forms oxocarbenium ion 17 that is attacked by the proximal amine
to form indoline 18.25 Coordination of the Lewis acidic iron salt to the ethyl ether promotes
the generation of iminium ion 21, which triggers the 1,2-shift.26 Subsequent deprotonation
of 22 by iron ethoxide completes the catalytic cycle.

In the course of our optimization studies, we isolated two potential heterocyclic
intermediates, whose reactivity towards the reaction conditions support our proposed
mechanism (Scheme 3). When cyclopropyl-substituted aryl azide 11n was exposed to
iron(II) bromide, a mixture of indoline 13n and indole 23n was isolated. Isolation of
indoline 13n provides support that C–N bond formation occurs through an ethereal C–H
bond amination reaction. The lack of fragmentation of the cyclopropane suggests that this
amination reaction does not proceed through an H-atom abstraction-radical recombination
reaction.22e,22h,27 Resubmission of 13n to reaction conditions produced indole 23n; in the
absence of iron(II) bromide no reaction was observed. The reactivity of methoxy-substituted
8b was also consistent with our mechanistic hypothesis. The isolation of 3H-indole 24b
indicates that the 1,2-methyl shift occurs after elimination of the ethoxide group. In contrast
to 13n, thermolysis of 24b forms the 2,3-dimethylindole product in the absence of the Lewis
acid. Together these results suggest that iron(II) bromide is required for both C–H bond
amination as well as iminium ion formation, but not for 1,2- alkyl migration.

To probe the mechanism of the 1,2-shift reaction, a double crossover experiment was
performed (eq 1). Exposure of a 1:1 mixture of 8a and 11a to reaction conditions resulted in
the formation of only two indoles. The lack of crossover products suggests that the 1,2-shift
component of our tandem reaction either is a concerted process; or if stepwise, the shift
occurs faster than diffusion of the migrating group.

(1)

In conclusion, we have discovered that iron(II) bromide promotes tandem C–H bond
amination-1,2 migration reactions of ortho-substituted aryl azides to enable the formation of
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2,3-disubstituted indoles. The 1,2-shift component of our tandem reaction is remarkably
selective, and our results enable prediction of the migration aptitude to be Me < 1° < 2° <
Ph. Our future studies are aimed at achieving a better understanding of the mechanism of
our tandem reaction as well as further exploring iron-catalyzed C–H bond amination
reactions.
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Scheme 1.
Observation of a Fe(II)-promoted Tandem Reaction.
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Scheme 2.
Possible Mechanisms for Fe-Catalyzed Tandem Reaction.
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Scheme 3.
Isolation of Reactive Intermediates.
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Table 2

Scope of Fe(II)-Catalyzed Tandem Reaction.

entry # R1 R2 yield, %a

1 a H H 85

2 b OMe H 70

3 c Me H 98

4 d Ph H 85

5 e PhCH=CH H 50

6 f Br H 81

7 g H Br 79

a
Isolated after silica gel chromatography.
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Table 3

Effect of Changing the Identity of the Migrating Group on the Tandem Reaction.

entry # aryl azide indole yield, %a

1 a 83

2 b 65b

3 c 69

4 d 78

5 e 95

6 f 58

7 g dec

8 h 83
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entry # aryl azide indole yield, %a

9 i 60b

10 j 50

11 k 42c

a
Isolated after silica gel chromatography.

b
Aniline obtained as a by-product.

c
As determined using 1H NMR spectroscopy using CH2Br2 as the internal standard.
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