Iron-mediated Intermolecular \boldsymbol{N}-Group Transfer Chemistry with Olefinic Substrates

Elisabeth T. Hennessy, Richard Y. Liu, Diana A. Iovan, Ryan A. Duncan, Theodore A. Betley*
Department of Chemistry and Chemical Biology
Harvard University
12 Oxford Street, Cambridge, MA, 02138

Page
General Considerations SI-2
Characterization and Physical Methods SI-2
Catalysis and Competition Experiments SI-2
Table S-1. Competition Experiment Details SI-3
Characterization Data SI-5
Figure S-1. Solid-state molecular structure for 2. SI-11
Table S-2. Experimental details for X-ray collection. SI-12

General Considerations

All manipulations of metal complexes were carried out in the absence of water and dioxygen using standard Schlenk techniques, or in an MBraun inert atmosphere drybox under a dinitrogen atmosphere. All glassware was oven dried for a minimum of 1 h and cooled in an evacuated antechamber prior to use in the drybox. Benzene and diethyl ether were dried and deoxygenated on a Glass Contour System (SG Water USA, Nashua, NH) and stored over $4 \AA$ molecular sieves (Strem) prior to use. Chloroform- d was purchased from Cambridge Isotope Labs and used as received. Benzene- d_{6} was purchased from Cambridge Isotope Labs and was degassed and stored over $4 \AA$ molecular sieves prior to use. All reagents, unless otherwise specified, were purchased from Aldrich and used as received. Cis- β-deuterostyrene was synthesized according to literature procedure, ${ }^{1}$ using Schwartz's reagent and freshly prepared d_{1}-phenylacetylene. Allylic amination substrates were distilled from CaH_{2} and deoxygenated prior to use in the amination reactions. Celite® 545 (J. T. Baker) was dried in a Schlenk flask for 24 h under dynamic vacuum while heating to at least $150{ }^{\circ} \mathrm{C}$ prior to use in a drybox. Silica gel 32-63 μ (AIC, Framingham, MA) was used as received.

Characterization and Physical Measurements

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and were recorded on Varian Mercury 400 MHz or Varian Unity/Inova 500 MHz spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to SiMe_{4} using the chemical shift of residual solvent peaks as reference. Gas chromatography/mass spectrometry (GC/MS) was performed on an Agilent GC/MS 5975 Turbo system. Elemental analyses were carried out by Complete Analysis Laboratories, Inc. (Parsippany, NJ).

Catalysis and Competition Experiments

General Procedure for Amination and Aziridination Reactions. Under an inert N_{2} atmosphere, 1 -azidoadamantane ($1-10$ equiv.) was added to a stirring solution of $\left({ }^{\mathrm{Ad}} \mathrm{L}_{\mathrm{Cl}_{2}}\right) \mathrm{FeCl}\left(\mathrm{OEt}_{2}\right)(\mathbf{1})(20 \mathrm{mg}, 0.028 \mathrm{mmol})$ or $\left({ }^{\mathrm{tBu}} \mathrm{L}_{\mathrm{Cl}_{2}}\right) \mathrm{FeCl}\left(\mathrm{OEt}_{2}\right)(\mathbf{2})(16 \mathrm{mg}, 0.028 \mathrm{mmol})$ in 1 mL of substrate in a 20 mL scintillation vial. The resultant inky, dark red solution was stirred for 12 hours at $25^{\circ} \mathrm{C}$. The dark mixture was flash chromatographed through a short pipette of triethylamine-treated silica gel (10:1 hexanes:EtOAc) to yield a brightly colored solution. The

1. L. T. Ball, G. C. Lloyd-Jones and C. A. Russell, Chem.-Eur. J., 2012, 18, 2931.
solvent was removed in vacuo to yield pure amine or aziridine product. The yields were determined by ${ }^{1} \mathrm{H}$ NMR via integration against ferrocene, averaging over three runs for each substrate. GC/MS yields for allylic amination reactions were also obtained after obtaining a calibration curve for the desired allylic amine products. Products were isolated for characterization via silica gel flash chromatography using 9:1 DCM:MeOH as eluent.

Determination of Substituent Effects for Amination and Aziridination Reactions via

 Competition Experiments. Under an inert N_{2} atmosphere, 1 mL of an equimolar mixture of the two substrates was added to 1 -azidoadamantane ($6.1 \mathrm{mg}, 0.028 \mathrm{mmol}, 1$ equiv) and $\left({ }^{\mathrm{Ad}} \mathrm{L}_{\mathrm{Cl} 2}\right) \mathrm{FeCl}\left(\mathrm{OEt}_{2}\right)(\mathbf{1})(10 \mathrm{mg}, 0.014 \mathrm{mmol}, 1$ equiv.) in a 20 mL scintillation vial. The resultant inky, dark red solution was stirred for 12 hours at $25{ }^{\circ} \mathrm{C}$. The dark mixture was flash chromatographed through a short pipette of silica gel $\left(20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$ to yield a red solution. For the aziridination reactions, relative ratios were determined by ${ }^{1} \mathrm{H}$ NMR via integration of the benzylic resonance (dd, $\delta \sim 2.5-3 \mathrm{ppm}$). For the amination reactions, relative ratios were determined by GC/MS. Yields were averaged over three runs. Table S-1 lists values and parameters used to plot the data.Table S-1. Competition Experiment Details. Variation of $\log k_{\mathrm{R}}$ with $\sigma^{+}, \sigma_{\mathrm{mb}}, \sigma_{\mathrm{JJ}}{ }^{\bullet}$ scales for the aziridination and amination of para-substituted styrenes and toluenes.

Substrate (para substituent)	Product Ratio	$\begin{gathered} \log k \\ \text { (exptl_avg) } \end{gathered}$	$\begin{gathered} \log k_{\text {avg }} \\ \text { (std dev) } \end{gathered}$	σ^{+}	σ_{mb}	$\sigma_{\mathrm{JJ}}{ }^{\circ}$	$\begin{gathered} \log k_{\mathrm{R}} \\ \left(\text { (calcd) }{ }^{b}\right. \end{gathered}$
Aziridination							
Cl	1.15	0.06070	$\begin{aligned} & \hline 0.0311 \\ & (0.014) \end{aligned}$	0.11	0.11	0.18	0.0324
	1.09	0.03742					
	1.08	0.03342					
Br	1.13	0.05308	$\begin{aligned} & 0.0452 \\ & (0.015) \end{aligned}$	0.15	0.13	0.26	0.0459
	1.07	0.02938					
	1.06	0.02531					
OMe	1.21	0.08279	$\begin{aligned} & \hline 0.0801 \\ & (0.004) \end{aligned}$	-0.78	-0.77	0.42	0.0793
	1.19	0.07555					
	1.21	0.08278					
Amination							
Cl	1.09	0.03743	$\begin{aligned} & 0.0559 \\ & (0.036) \end{aligned}$	0.11	0.11	0.18	0.0521
	1.25	0.09691					
	1.08	0.03342					
Br	1.17	0.06819	$\begin{aligned} & \hline 0.0703 \\ & (0.022) \end{aligned}$	0.15	0.13	0.26	0.0725
	1.12	0.04922					
	1.24	0.09342					
OMe	1.09	0.03743	$\begin{aligned} & \hline 0.0334 \\ & (0.007) \end{aligned}$	-0.78	-0.77	0.42	0.0333
	1.09	0.03743					
	1.06	0.02531					
$t \mathrm{Bu}$	1.2	0.07918	$\begin{aligned} & 0.0426 \\ & (0.032) \end{aligned}$	-0.26	-0.22	0.26	0.0427
	1.05	0.02119					
	1.06	0.02531					

Characterization Data

N-benzyladamantan-1-amine ${ }^{2}$

\boldsymbol{N}-(4-(tert-butyl)benzyl)adamantan-1-amine: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 7.34$ (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.59(\mathrm{~m}, 12 \mathrm{H}), 1.30(\mathrm{~m}$, 9H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 149.6,138.3,128.0,125.3,51.1,44.7,42.7,36.7,34.4$, 31.4, 29.6. IR (thin film) $\mathrm{n}_{\max }=2966,2908,2852,1718,1516,1454,1362,1311,1265,1136$, $1097 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $298.2564\left[\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}+\mathrm{H}\right]^{+}$, Found $298.2571[\mathrm{M}+\mathrm{H}]^{+}$.

\boldsymbol{N}-(4-chlorobenzyl)adamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.32-7.21$ (m, 4H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 140.0$, $132.3,129.6,128.4,51.0,44.4,42.7,36.6,31.4,29.7$. IR (thin film) $\mathrm{n}_{\max }=2931,2852,1723$, 1493, 1451, 1359, 1312, 1265, 1137, 1097. HRMS (ESI $\left.{ }^{+}\right) m / z$ Calc. $276.1549\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}+\mathrm{H}\right]^{+}$, Found $276.1544[\mathrm{M}+\mathrm{H}]^{+}$.

\boldsymbol{N}-(4-bromobenzyl)adamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{q}, J=$ $12.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.7,131.8,130.0,113.8,55.2,53.4,44.3,42.0$,
2. For physical and spectroscopic characterization data, see: S. Calet, F. Urso and H. Alper, J. Am. Chem. Soc., 1989, 111, 931.
36.5, 31.6, 29.5. IR (thin film) $\mathrm{n}_{\max }=2960,2932,2912,1720,1613,1513,1458,1252,1248$, 1137, $1037 \mathrm{~cm}^{-1}$. HRMS (ESI $) m / z$ Calc. $272.2014\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}+\mathrm{H}\right]^{+}$, Found $272.2005[\mathrm{M}+\mathrm{H}]^{+}$.

N-(4-methoxybenzyl)adamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 140.8,131.6,130.2,120.7,53.7,44.7,43.0,36.8,29.9$. IR (thin film) $\mathrm{n}_{\max }$ $=2911,2851,1702,1591,1488,1450,1358,1098,1070 \mathrm{~cm}^{-1}$. HRMS $\left(\right.$ ESI $\left.^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $320.0954\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NBr}+\mathrm{H}\right]^{+}$, Found $320.0968[\mathrm{M}+\mathrm{H}]^{+}$.

1-(adamantan-1-yl)-2-phenylaziridine: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 7.34-7.30$ (m, 2 H), $7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=3.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (br. s., 3 H), $2.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 6 \mathrm{H}), 1.62(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 141.5,128.1,126.7,126.5,52.8,40.4,39.8,31.7,29.5,28.4$. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $254.1909\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}+\mathrm{H}\right]^{+}$, Found $254.1940[\mathrm{M}+\mathrm{H}]^{+}$.

1-(adamantan-1-yl)-3-deutero-2-phenylaziridine: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.33-7.25$ (m, 4 H), $7.23-7.17$ (m, 1 H), 2.81 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 (br. s., 3 H), 2.06 (d, $J=6.4 \mathrm{~Hz}, 1$ $\mathrm{H}), 1.72-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.62$ (br. s, 6 H).

1-(adamantan-1-yl)-2-(4-chlorophenyl)aziridine: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 7.24$ (m, $4 \mathrm{H}), 2.76(\mathrm{dd}, J=6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.47(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 140.4,132.3,128.4,128.2,53.1,40.6,37.0,34.9,31.8,29.7$. IR (thin film) $\mathrm{n}_{\max }=2955,2852,1722,1492,1456,1356,1311,1265,1136,1076 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $288.1514\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NCl}+\mathrm{H}\right]^{+}$, Found $288.1508[\mathrm{M}+\mathrm{H}]^{+}$.

1-(adamantan-1-yl)-2-(4-bromophenyl)aziridine: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 7.38(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{dd}, J=6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 5 \mathrm{H})$, $1.76-1.37(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 144.7,140.9,131.4,128.6,53.1,45.7$, 40.6, 37.0, 31.8, 29.7. IR (thin film) $\mathrm{n}_{\max }=2910,2899,1488,1450,1358,1289,1136,1012 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $332.1008\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NBr}+\mathrm{H}\right]^{+}$, Found $332.1000[\mathrm{M}+\mathrm{H}]^{+}$.

1-(adamantan-1-yl)-2-(4-methoxyphenyl)aziridine: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29$ (d, J $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.30(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 164.3,131.4,127.8,113.7,55.4,52.8,40.5,37.0,31.8$, 29.9. IR (thin film) $=2959,2913,2855,1613,1513,1300,1248,1036 \mathrm{~cm}^{-1} . \mathbf{H R M S}^{\left(\mathrm{ESI}^{+}\right)} \mathrm{m} / \mathrm{z}$

1-butyl-2-phenylaziridine ${ }^{3}$

1,2-diphenylaziridine ${ }^{4}$

1-(4-(tert-butyl)phenyl)-2-phenylaziridine

N-(hex-2-en-1-yl)adamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ (mixture of E and Z isomers): 6.26-6.34 (m, 0.3 H), 6.12-6.21 (m, 0.7 H), 5.58-5.72 (m, 2 H), $3.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $0.6 \mathrm{H}), 3.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.4 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 6 \mathrm{H}), 1.97-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.90(\mathrm{~m}, 3 \mathrm{H})$,
3. For physical and spectroscopic characterization, see: S. Fantauzzi, E. Gallo, A. Caselli, C. Piangiolino, F. Ragaini and S. Cenini, Eur. J. Org. Chem., 2007, 36, 6053.
4. For physical and spectroscopic characterization, see: W. Chamchaang and A. R. Pinhas, J. Org. Chem., 1990, 55, 2943.
1.34-1.49 (m, 8 H), $0.87-0.93(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(Z$-olefin in parentheses): 137.7(135.2), 122.8(122.5), 57.3, 42.4, 36.7(37.2), 35.8, 34.7, 29.5, 22.4(22.7), 13.9. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $234.4017\left[\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}+\mathrm{H}\right]^{+}$, Found $234.4012[\mathrm{M}+\mathrm{H}]^{+}$.

\boldsymbol{N}-(octa-2,7-dien-1-yl)adamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.72$ (ddt, $J=16.7$, $9.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.61-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.17(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1.7 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 7 \mathrm{H}), 1.62(b r . \mathrm{s}, 6 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2$ H). ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 138.9,131.5,130.2,114.8,51.3,43.1,42.7,36.9,33.6,32.2$, 30.0, 29.0. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $260.4392\left[\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}+\mathrm{H}\right]^{+}$, Found $260.4388[\mathrm{M}+\mathrm{H}]^{+}$.

N-(cyclohex-2-en-1-yl)adamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.21$ (d, $J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.81-5.87(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.45$ (m, 2 H), 2.13 (br. s., 6 H), 1.90 (br. s., 5 H$), 1.79-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.56(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 132.1,126.8,59.1,49.2,39.1,36.2,30.0,29.3,24.9,21.1 . \mathrm{HRMS}^{2}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ Calc. $234.4017\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}+\mathrm{H}\right]^{+}$, Found $234.4018[\mathrm{M}+\mathrm{H}]^{+}$.

\boldsymbol{N}-(cyclooct-2-en-1-yl)adamantan-1-amine: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.50-5.58(\mathrm{~m}, 1 \mathrm{H})$, 5.30-5.38 (m, 1 H), 3.79-3.92 (m, 1 H), 2.13-2.24 (m, 1 H), 1.99-2.12 (m, 4 H$), 1.51-1.76(\mathrm{~m}$, $16 \mathrm{H}), 1.30-1.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3$, 127.1, 51.6, 47.3, 44.1, 39.0, 36.8, 29.9, 29.8, 27.5, 27.3, 24.9, 22.8. HRMS (ESI+) m / z Calc. $260.2382\left[\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}+\mathrm{H}\right]^{+}$, Found $260.2373[\mathrm{M}+\mathrm{H}]^{+}$.

\boldsymbol{N}-cinnamyladamantan-1-amine: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.48-6.41(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ $(\mathrm{m}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 6 \mathrm{H}), 1.55(\mathrm{~m}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 137.3,128.7,127.6$, 126.6, 52.0, 43.2, 42.5, 36.8, 29.9. HRMS (ESI $\left.{ }^{+}\right) \mathrm{m} / z$ Calc. $268.2065\left[\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}+\mathrm{H}\right]^{+}$, Found $268.2069[\mathrm{M}+\mathrm{H}]^{+}$.

 bottom flask was charged with 2-tert-butylpyrrole ($7.5 \mathrm{~g}, 60.9 \mathrm{mmol}$), 2,6-dichlorobenzaldehyde ($5.3 \mathrm{~g}, 30.3 \mathrm{mmol}, 0.5$ equiv.) and 200 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring until all materials were dissolved, pyridinium p-toluenesulfonate ($1.5 \mathrm{~g}, 5.98 \mathrm{mmol}, 0.1$ equiv.) was added. The reaction was refluxed at $40{ }^{\circ} \mathrm{C}$ for 12 h . The solution was concentrated in vacuo and filtered through a plug of silica gel in a medium porosity frit $(150 \mathrm{~mL})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give an orange filtrate. Solvent was removed in vacuo affording 1,9-di(tert-butyl)-5-(2,6-dichloro)benzenedipyrromethane ($12.2 \mathrm{~g}, 99 \%$) as an orange oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.00 (br. s, 2 H), $7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=0.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.82-5.91(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H})$. The product ($12.2 \mathrm{~g}, 30.4 \mathrm{mmol}$) was dissolved in $300 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The oxidant, 2,3-dichloro-5,6-dicyanoquinone (DDQ) ($7.1 \mathrm{~g}, 31.3 \mathrm{mmol}, 1$ equiv.), was added to immediately give a dark red solution which was stirred overnight. The solution was concentrated in vacuo and residue was dissolved in ethyl acetate (350 mL) and was washed with saturated aqueous sodium bicarbonate, water and brine, dried over magnesium sulfate, filtered and concentrated in vacuo to give a brown solid. The product was loaded onto an alumina plug and eluted with 10:1 hexanes:ethyl acetate to give a red filtrate. Solvent was removed in vacuo and resulting solid was
 ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 13.35$ (br. s, 1 H), 6.96 (dd, $J=8.01,0.76 \mathrm{~Hz}, 2 \mathrm{H}$), 6.55 (m, 1 H), 6.47 (d, J $=4.20 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=4.20 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 167.0$, 139.1, 136.5, 135.9, 132.8, 129.8, 127.6, 126.9, 115.2, 33.6, 29.8. HRMS (ESI ${ }^{+}$) m/z Calc. $401.1546\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$, Found. $401.1562[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{\mathbf{t B u}} \mathbf{L}_{\mathrm{Cl}_{2}} \mathbf{F e C l}\left(\mathbf{O E t}_{2}\right)$ (2): Complex was prepared following literature precedent ${ }^{5}$ from the corresponding ligand ${ }^{\mathbf{E B u}} \mathbf{L}_{\mathbf{C l}_{\mathbf{2}}}(\mathbf{H}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 59.54$. (s), 21.42 (br. s), 10.65 (br. s), 6.82 (br. s), 1.61 (br. s), -5.68 (br. s). Elemental Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{Cl}_{3} \mathrm{FeN}_{2} \mathrm{O}$: C 57.32, H 6.24, N 4.95; Found: C 57.37, H 6.27, N 4.89. Single crystals of 2 were obtained by storing a concentrated diethyl ether solution at room temperature (Figure S-1).

Figure S-1. Solid-state structure for $\mathbf{2}$ with the thermal ellipsoids set at 50% probability level (Fe orange, N blue, O red, C gray, H white).
5. E. T. Hennessy and T. A. Betley, Science, 2013, 340, 591.

Table S-2. X-ray crystallographic experimental details for 2.

	2
Formula	$\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{FeN}_{2} \mathrm{O}$
FW	565.77
Crystal System	Orthorhombic
Space Group (Z)	Pbca (8)
a (A)	15.980(3)
b (A)	14.393(2)
c (A)	24.368(4)
$\boldsymbol{\alpha}\left({ }^{\circ}\right)$	90.00
$\beta{ }^{\circ}{ }^{\circ}$	90.00
$\gamma\left({ }^{\circ}\right)$	90.00
Volume ($\mathrm{A}^{\mathbf{3}}$)	5604.7(16)
Calc. $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.341
$\mu\left(\mathrm{mm}^{-1}\right)$	0.846
Reflections	5371
Compl. (to 20)	99.4
GOF on F^{2}	0.984
R1, wR2 ${ }^{\text {c }}$	0.0594
$[\mathrm{I}>2 \boldsymbol{\sigma}(\mathrm{I})$]	0.1665

${ }^{\mathrm{a}} \lambda=0.71073 \AA ;{ }^{\mathrm{b}} \mathrm{T}=100(2) \mathrm{K} ;{ }^{\mathrm{c}} \mathrm{R} 1=\Sigma| | F_{o}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{o}\right|, \mathrm{wR} 2=\left\{\Sigma\left[w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$

