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The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron
imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of
regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of
type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and
ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron
metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection
between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss
the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future
directions concerning these novel T2DM treatment targets.
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INTRODUCTION
Iron is an important trace element for living organisms [1] as it
participates in a range of metabolic processes, such as oxygen
transport, energy metabolism, nucleotide synthesis, and electron
transport [2]. Although vital, excessive amounts of iron can be
toxic, therefore, its concentration needs to be maintained within
an ideal range. Iron homeostasis is regulated and maintained by
iron metabolism. Thus, iron metabolic homeostasis is required for
the optimal functioning of fundamental physiological processes
[3]. Iron homeostasis in humans is regulated by balancing iron
uptake with intracellular utilization and storage. Dietary iron is
absorbed by duodenal enterocytes (section 3.1) and binds to
transferrin in the plasma. Transferrin limits the production of toxic
free radicals and is responsible for ferric-ion delivery into cells. The
iron homeostasis system maintains transferrin saturation at
physiological levels. During iron metabolism, less than 10% of
the iron demand is met by intestinal absorption, and the
remaining iron is exported by ferroportin [4]. Ferroportin is
regulated by hepcidin, which is a peptide hormone and is often
secreted by hepatocytes [5]. Abnormal iron metabolism mainly
presents as iron deficiency or overload [3], which triggers multiple
pathological changes such as ferroptosis. Ferroptosis is an iron-
dependent form of non-apoptotic cell death [6], characterized by
iron overload [7] and lipid hydroperoxides accumulation [8].
Numerous studies have shown that ferroptosis plays an

important role in the development and progression of type 2
diabetes mellitus (T2DM) and complications. T2DM is a serious
global health concern. Physical inactivity and an unhealthy diet
are the major T2DM risk factors, and an increasing disease
prevalence is observed in children and younger adults [9]. High

levels of ferroptosis, mediated by multiple metabolic pathways
and signals, can lead to insulin resistance (IR), abnormal
metabolism in the liver and fat, and neurological and vascular
diseases. Human blood glucose homeostasis is primarily regulated
by insulin and glucagon, which promote glycogen synthesis and
breakdown, respectively. It has been shown that iron metabolism
is involved in different processes of human glucose metabolism
such as insulin secretion [10], liver metabolism [11], and fat
metabolism [12], and maintains blood glucose homeostasis in
multiple organs and tissues.
Recently, scholars gradually found a relationship between iron

metabolism and glucose homeostasis [13]. However, studies were
largely limited to animal models, and only a few clinical trials were
conducted. In this review, we discuss the iron metabolism processes
that are involved in glucose homeostasis, explore potential drug
targets related to ferroptosis in T2DM and its complications, and list
drugs or small molecules that may inhibit ferroptosis by targeting
T2DM and its complications. This review provides a basis for a
potential treatment approach and its potential clinical applications.

MOLECULAR MECHANISM AND METABOLIC BASIS OF
FERROPTOSIS
Ferroptosis is a newly recognized type of iron-dependent cell death,
characterized by iron overload and lipid peroxidation accumulation.
In 2003, Dolma et al. [14] first identified the compound erastin,
which exhibited selective lethality against cancer cells expressing
RAS, but it was noted that cells died in a manner different from that
typically observed with known programmed cell death. With the
continuous development of this research, Dixon et al. [11] first
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proposed the concept of ferroptosis, based on its distinct
morphological characteristics and function in 2012. Ferroptosis
was defined as an iron-dependent form of regulated cell death that
involves the iron-catalyzed accumulation of lethal lipid peroxides.
Under physiological and pathological conditions, cell death is an
inevitable and important function in biological processes and marks
the end of cell life. Cells undergoing ferroptosis have different
morphological and metabolic characteristics from other known
forms of cell death (such as apoptosis, necrotizing apoptosis, and
pyroptosis) [15]. Morphologically, ferroptosis mainly occurs in cells,
presented as decreased mitochondrial volume, decreased or no
mitochondrial cristae, and increased bilayer membrane density;
however, the nuclear size remains unchanged [16]. Ferroptosis is
regulated by many aspects of iron metabolism, including iron
absorption, transport, storage, and utilization (section 4.1) [17]. In
addition, ferroptosis-inducing factors can affect different pathways
of glutathione peroxidase directly or indirectly [18], resulting in a
decreased capacity of antioxidants and accumulation of lipid
reactive oxygen species (ROS) in cells, culminating in oxidative cell
death. Thus, ferrotropis regulation is closely related to the
metabolism of iron, lipids, amino acids, and glutathione. Evidence
shows that Abnormal ferroptosis is closely related to the occurrence
and progression of various diseases, including metabolic diseases,
such as T2DM. Over the past decade, an increasing number of
studies have supported the view that ferroptosis plays an important
pathophysiological role in the occurrence and development of
T2DM and its complications [19–22].

IRON METABOLISM AND GLUCOSE HOMEOSTASIS
In the human being, iron binds to transferrin in the plasma.
Transferrin limits the production of free radicals and is the main
carrier of iron to cells; the transferrin receptor (TfR) binds to iron
to form a trivalent iron complex (Tf-Fe3+) and is transported to a
tissue cell that contains a transferrin receptor [8]. Presently, the
evaluation of plasma ferritin concentration is a clinically useful
method for measuring iron storage. In the human body, it is a
sign of iron overload that the plasma transferrin is greater than
45%. And iron overload is a known risk factor for T2DM [23]. The
initial description of IR may be in patients with hereditary
hemochromatosis (HH). The mechanism of HH is iron deposition
in pancreas β cells, and HH induces cell death which leads to
diabetes [4]. A systematic review showed that the TfR to ferritin
ratio was negatively related to the risk of T2DM and that plasma
transferrin may be related to diabetes development directly or
indirectly [24]. A cohort study showed that higher plasma serum
ferritin levels were significantly associated with an increased risk
of T2DM. These results support iron intake and storage as an
indicator of T2DM, which could potentially allow for early
diagnosis in clinical practice [25]. Due to the relationship
between iron metabolism and glucose homeostasis, maintaining
normal iron metabolism is a key factor in maintaining blood
glucose stability. Below, we discuss the key processes of iron
metabolism in maintaining blood glucose homeostasis, in
different tissues under physiological and pathological condi-
tions (Fig. 1).

Fig. 1 Flow chart of the study. Iron metabolism. Iron is absorbed by intestinal cells in the form of free divalent iron (Fe2+) or heme iron
(Heme) in the intestine. Fe2+ is absorbed by intestinal cells through divergent metal transporter 1 (DMT-1). Heme iron is transported to
intestinal cells through heme carrier protein 1 (HCP-1). Fe2+ is released into the blood capillary through ferroportin (Fpn), oxidized into free
ferric iron (Fe3+) by hephaestin (HEPN), combined with transferrin (Tf ) in the circulation, and transported to organs and tissues. Fe3+ enters
the pancreas, liver, fat, and skeletal muscle to regulate blood glucose (Glu) homeostasis. Pancreas β Cells release insulin (INS) in response to
the stimulation of Glu. INS affects the liver, fat, and skeletal muscles. The liver and skeletal muscles release adipose factor (AF), which regulates
adipose tissue metabolism. On the other hand, iron metabolism also influences the composition of the gut microbiota, which may affect
cognitive through the gut-brain axis. Iron affects circadian glucose metabolism via the regulation of the interaction of nuclear receptor
subfamily 1 group d member 1 (Rev-Erbα) with its co-suppressor, nuclear receptor corepressor 1 (NCOR). iron also participates in the
regulation of β-cell function mediated by HIF-1α in circadian rhythms.
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Dietary iron uptake
The main source of iron is diet [26]. Upon intake, iron is primarily
absorbed by intestinal cells in the form of free Fe2+ or heme iron
[27]. Free Fe2+ in the intestine is absorbed by intestinal cells
through divergent metal transporter 1 (DMT-1) [28]. Heme iron is
transported to the intestinal cells through heme carrier protein 1
(HCP-1) [29]. In the basolateral membrane of the intestinal
epithelium, Fe2+ is released into the blood capillary through
ferroportin [30], oxidized by hephaestin, combined with transferrin
in the circulation, and transported to various organs and tissues.

Insulin secretion
Iron plays an important role in insulin secretion function in
pancreas β cells. Tf-Fe3+ is absorbed into pancreas β cells through
DMT-1 [31]. The pancreas β cells strictly control iron homeostasis,
to avoid excessive harmful free iron. Consequently, Fe2+ is
reserved in the labile iron pool (LIP), where iron is sequestered
by ferritin (a unique cytoplasmic iron storage protein) [32]. Fe2+ is
bound in ferritin for the synthesis of iron-dependent proteins in
the cytoplasm or mitochondria [33]. In extracellular, the pancreas
β cells release hepcidin, which binds transferrin and induces their
internalized [34, 35]. Studies have shown that transferrin mediates
a positive feedback mechanism for iron regulation in the process
of glucose-stimulated insulin secretion [36]. Fe2+ in the Labile iron
pool (LIP) is involved in insulin secretion, via three pathways.
Although iron can be found in almost all intracellular organelles,
iron is predominantly consumed by mitochondria which is the

primary source of cellular iron metabolism. Synthesis of heme and
Fe-S clusters, used for electron transport proteins, occurs in the
mitochondria. Under high-glucose stimulation, glucose enters the
pancreas β cells via glucose transporter 2 (GLUT-2) [37] and
undergoes glycolysis before entering the mitochondria, which
leads to increased ATP production. Iron exchange in the
mitochondria is mediated by DMT-1 and classical mitoferrins
(Mfrn) 1 and 2 [38], which are incorporated into the electron
transport chain and produce ATP under the stimulation of glucose.
An increase in the ATP to ADP ratio triggers insulin secretion. In
addition, Fe2+ promotes ROS production via the Fenton reaction,
which is regarded as an amplified signal for insulin secretion
[39, 40]. Recent research has shown that Fe2+ participates in Fe-S
cluster biosynthesis. The Fe-S cluster promotes the Cdkal1
catalytic metabolism of t6A37 in tRNALysUUU to ms2t6A37 and
enables the normal processing of proinsulin into insulin [41]. The
Fe-S cluster is an iron mitochondrial chaperone, expressed in
pancreas β cells and stimulated by hyperglycaemic disease [42].
Iron is a cofactor of several enzymes and an important component
of the Fe-S cluster, participating in insulin secretion as well as in
the proliferation and differentiation of β cells. Proinsulin transla-
tion in pancreas β cells requires the activity of the Fe-S cluster
enzyme, CDKAL1. CDKAL1 dysfunction leads to lysine codon
misreading in proinsulin and impairs proinsulin processing,
thereby reducing insulin concentration and secretion [41]. A
high-glucose environment will lead to an increase in extracellular
hepcidin concentration and inhibit the excretion of intracellular

Fig. 2 Iron metabolism in pancreatic β cells. Iron metabolism in regulating insulin secretion in pancreatic β cells. Fe3+ combined with
transferrin (Tf ) into Tf-Fe2+ in the circulation. Tf-Fe2+ binds to the transferrin receptor (TrfR) on the cell surface, and the receptor complex is
endocytosed with the divergent metal transporter 1 (DMT-1). Inside the endosome, Fe3+ is reduced to Fe2+ and released into the labile iron
pool (LIP). Ferritin combines with Fe2+ in LIP to regulate the concentration of Fe2+ in cells. In addition, Fe2+ is discharged from cells through
ferroportin (Fpn). The pancreas β cells, and hepatocyte can release hepcidin, which can induce Tf internalized and inhibit the activity of Fpn.
Glucose (Glu) enters the pancreas β cells via glucose transporter 2 (GLUT-2) and performs glycolysis before entering the mitochondria, which
leads to increased ATP production. Fe2+ promotes the production of reactive oxygen species (ROS) through the Fenton reaction. Iron
exchange in the mitochondria is mediated by DMT-1 and classical mitoferrins (Mfrn) 1 and 2, which can be incorporated into the electron
transport chain and produce more ATP under the stimulation of glucose. Fe2+ participates in Fe-S cluster biosynthesis in mitochondria. The
Fe-S cluster promotes Cdkal1 catalytic metabolism of t6A37 in tRNALysUUU to ms2t6A37 and enables the normal processing of proinsulin into
insulin.
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Fe2+ through ferroportin [43]. It was found that upon glucose
stimulation, islet tissue from iron-deficient mice showed impaired
insulin release. In glucose depleted environment, human pancreas
β cells upregulate the expression of the TfR [44]. However, excess
TfR may be toxic due to excessive activation of the oxidation
pathway and ROS accumulation. The redox-active iron form (Fe2+)
oxidizes lipids, in the Fenton reaction, which results in the
production of a large amount of ROS, further oxidation of DNA
and proteins are mediated by ROS, which results in insulin
synthesis and secretion reduction, and ultimately apoptosis [45]
(Fig. 2).

Adipocyte metabolism
Iron is an important regulator of energy metabolism, primarily in
adipose tissue. Adipose tissue has specific dynamic characteristics
that are helpful in regulating the steady state of carbohydrate and
lipid metabolism in the human body. Adipose tissue regulates
metabolism by responding to signaling molecules, such as
adipokines produced by other metabolic tissues (for example by
crosstalk between the liver and skeletal muscle) [46]. Mitochon-
drial dysfunction in the adipose tissue is a key determinant of the
etiology of type 2 diabetes [47]. Iron deficiency and iron overload
are considered important causes of chronic metabolic diseases
(such as T2DM or obesity) [48]. Studies have shown that the
expression of ACO1 is positively related to adipogenic markers in
adipose tissue. Although the mechanism of ACO1 and transferrin
affecting adipose tissue metabolism is unclear, ACO1 gene
expression is significantly related to gene expression of
proliferator-activated receptor-gamma coactivator 1-beta (PGC-
1β), which is critical to the mitochondrial function of adipose
tissue [49]. Therefore, further research is required to clarify the
relationship between the mitochondrial oxidation capacity of
adipocytes and iron regulation. Iron is the key regulator of
mitochondrial biogenesis. As an important component of the Fe-S
cluster, iron is necessary for mitochondrial oxidation regulation
[50]. It was found that reducing Mfrn1/2 in mitochondria reduced
the mitochondrial iron content, oxygen consumption rate, and
ATP level in fat cells, which lead to a reduction in lipogenic gene
expression and lipid synthesis during lipogenic differentiation [51].
Studies have shown that mice fed with rich iron diets showed
upregulation of IR-related adipokines [52]. In addition, the
intervention of rat adipocytes with excessive iron leads to reduced
glucose transport, after insulin stimulation [53]. Adipocytes are
regulated by various cytokines, such as leptin and adiponectin.
Studies have shown that leptin and adiponectin levels are reduced
in the adipocytes of mice fed a high-iron diet. Clinical experiments
have shown that patients with T2DM have higher transferrin and
lower adiponectin levels than healthy individuals [54]. Therefore,
abnormal iron homeostasis leads to changes in the levels of
various fat factors, eventually leading to lipid metabolism
disorders and IR.

Liver metabolism
The relationships among iron metabolism, T2DM, liver function,
and liver injury are complex [26]. Hepatocytes play a dual role in
iron metabolism: they serve as the main site of iron storage [55]
and regulate blood iron content by secreting regulatory
hormones, such as hepcidin [56], which controls plasma iron
content by binding to transferrin in intestinal epithelial cells and
iron circulating macrophages. The binding of transferrin to
hepcidin triggers transferrin degradation, thereby reducing
transferrin levels. Hepcidin expression is primarily regulated by
the BMP-SMAD signaling pathway [57]. In addition, hepatocyte
metabolism is regulated by iron. Studies have shown that the iron-
sequestering ferritin H chain (FTH) is synthesized in hepatocytes to
limit iron-induced hepatic glucose-6-phosphatase (G6Pase)
expression and oxidative inhibition. FTH maintains endogenous

glucose production, through hepatic gluconeogenesis, which is
necessary for hypoglycemic prevention [58].
Studies have shown that iron overload causes IR, which is the

risk factor in T2DM and non-alcoholic fatty liver disease (NAFLD)
[59, 60]. In multiple models of IR, researchers have found that iron
overload leads to the development IR. It was shown that hepatic
gluconeogenesis is increased in mouse models of hereditary
haemochromatosis [61]. In db/db mice, iron overload aggravates
IR and increases hepatic gluconeogenesis [62]. In hypoxia and iron
deficiency mouse models, iron restriction caused hypoglycemic, in
part due to reduced hepatic gluconeogenesis, possibly due to the
activation of the hypoxia-sensing pathway [63]. In the context of
the functional interplay between iron metabolism and liver
gluconeogenesis, studies have shown that iron can alter the
circadian rhythm of hepatic glucose production and affects liver
gluconeogenesis (section 2.6) [64]. Inappropriate hepcidin synth-
esis has been shown to play a role in the pathogenesis of T2DM
and its complications. Insufficient hepcidin expression results in
iron overload, which triggers ROS synthesis which in turn plays a
major role in the pathogenesis of β cell exhaustion and IR-
mediated T2DM. Increased hepcidin expression leads to increased
intracellular iron sequestration and is associated with T2DM
complications [65].

Gut microbiota
Studies have shown that progressive iron storage and T2DM
development, in obese patients, causes aging, and affect the brain
microstructure and function. Iron metabolism also influences the
composition of the gut microbiota, which is also known to affect
cognition via the gut-brain axis [66]. Gut microbiota has emerged
as an important risk factor for T2DM and obesity [67]. Therefore,
these results suggest a link between iron metabolism, the
composition of gut microbiota, and the development of T2DM
[66, 68].

Circadian rhythms
Luconeogenesis is usually suppressed during feeding periods and
enhanced during fasting. Circadian rhythm disruption is asso-
ciated with T2DM, both in experimental animal models and
humans, and researchers have found an elevated risk of T2DM in
night-shift workers compared to normal individuals [69]. Based on
the above findings, researchers have discovered that iron could
alter the circadian rhythms of hepatic glucogenesis [64]. Dietary
iron regulates circadian glucose metabolism through heme-
mediated regulation of the interaction of nuclear receptor
subfamily 1 group d member 1 (Rev-Erbα) with its co-suppressor,
nuclear receptor corepressor 1 (NCOR). In addition, it was found
that iron participates in the regulation of β cell function, mediated
by biological clock-based mechanisms driven by HIF-1α. Glucose
metabolism and insulin release in β cells are controlled by this
mechanism [70, 71], mainly based on the HIF-1α, which can bind
promoter regions of clock genes and control their transcription
[72]. Some iron-related genes are transcriptionally regulated by
clock genes [73, 74], which regulate circadian rhythms and iron
homeostasis.

FERROPTOSIS IN T2DM DEVELOPMENT
Ferroptosis is a newly discovered process of non-apoptotic cell
death that is dependent on excess cellular iron uptake [6].
Ferroptosis is associated with reduced mitochondrial volume, and
unlike known programmed death pathways, it is not associated
with organelle swelling, chromatin condensation, or autophagy.
Instead, it is characterized by iron accumulation, lipid peroxida-
tion, and reduced glutathione peroxidase 4 (Gpx4) expression
[8, 26, 75]. In vivo studies have found a potential association
between excessive iron storage and T2DM [76]. This partly reveals
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a correlation between iron and T2DM, which is closely associated
with the development of IR [61]. Therefore, the prevailing view is
that the higher the iron storage, the higher the risk of developing
T2DM. However, this has not yet been effectively demonstrated.
Reducing iron storage levels in vivo, has resulted in improved
insulin secretion and peripheral tissue insulin sensitivity, which
lead to better control of blood glucose and T2DM condition
improvement [77]. Herein, we discuss the ferroptosis pathways
and molecules involved in the development of T2DM and its
complications. The link between ferroptosis and the development
of T2DM and its complications has not yet been fully elucidated.

Ferroptosis and glucose metabolism disorder
It is well known that one of the main antioxidant protective
enzymes in cells is GPx4, whose lipid peroxide reduction activity
plays a crucial role in protecting cells from iron-induced damage
and death. Several studies have shown that pancreatic β cells are
predisposed to ferroptosis (Fig. 3). Study was shown that
pancreatic β cells express low levels of antioxidant enzymes, such
as superoxide dismutase (SOD), glutathione (GSH) peroxidase and
catalase [78]. Thus, pancreatic β cells are susceptible to oxidative
stress. In pancreatic β cells, the Fe2+ in the labile iron pool (LIP)
promotes ROS synthesis, via the Fenton reaction. ROS accumula-
tion triggers several ferroptosis. It was shown that the glucose-
stimulated insulin secretion (GSIS) capacity of pancreatic β cells
was significantly reduced when treated with erastin, in vitro. In
contrast, pretreatment with the ferroptosis inhibitors, Fer-1 or
DFO, reversed the damage caused by GSIS [79]. External factors
(e.g. chronic arsenic exposure) cause mitochondrial damage and

produce excess mitochondrial ROS (MtROS), which leads to
MtROS-dependent autophagy and ferroptosis, resulting in an
increase in intracellular iron. This results in the increased
production of Fe2+ in pancreatic β cells, and impaired insulin
secretion. It was experimentally verified that MtROS-mediated
pathway blocking promotes pancreatic β cell insulin secretion
[80]. An Abnormal Fe-S cluster content in cells can easily lead to
ferroptosis [81]. The Fe-S cluster regulates iron homeostasis in
mitochondria. Iron accumulation in the mitochondria causes a lack
of Fe-S clusters, which leads to increased ROS levels in the
mitochondria [82], followed by ferroptosis due to lipid peroxide
accumulation [83].

Ferroptosis in diabetic macroangiopathy
Theoretically, increased iron availability may contribute to diabetic
macrovascular disease improvement because free iron has
adverse effects on the endothelium [84] and accelerates the
development of atherosclerosis [85]. In animal experiments, mice
fed with an iron-deficient diet had a reduced incidence of
atherosclerotic lesions [86], and iron overload led to a reduction in
atherosclerosis [87]. Inhibition of iron-catalyzed oxidative reactions
by Deferoxamine (DFX) restores the dilation of the coronary
microcirculation and a normal match between myocardial
metabolic demand and coronary blood flow in patients with
T2DM [88].

Ferroptosis in diabetic microangiopathy
Early development and accelerated course of diabetic nephro-
pathy have been observed in patients with thalassemia, which is a

Fig. 3 Pharmacological target for treating ferroptosis in pancreatic β cells. Ferroptosis in pancreatic β cells and pharmacological target
mechanisms of different drugs. Pancreatic β cells express low levels of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione
(GSH) peroxidase, and glutathione peroxidase 4 (Gpx4). The Fe2+ in the labile iron pool (LIP) promotes reactive oxygen species synthesis
through the Fenton reaction, leading to the accumulation of reactive oxygen species (ROS). External factors will cause mitochondria damage
and produce an excess of mitochondrial ROS (MtROS). ROS and MtROS lead to ROS-dependent autophagy and ferroptosis, and cause
intracellular iron increased. Iron in mitochondria accumulation will cause the lack of Fe-S clusters, which could lead to ROS increase in the
mitochondria. The lack of Fe-S cluster and the increase of ROS will reduce the synthesis and secretion of insulin. Metformin, Quercetin,
Melatonin, and Vitamin D effect on different targets to reduce the possibility of ferroptosis in pancreatic β cells.
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recognized condition of iron overload [89]. Increased levels of iron
in lysosomal proximal renal tubules have been observed in
patients with diabetic nephropathy [90]. This observation is
related to mutations in HH that appear to predict DN develop-
ment of diabetic nephropathy [91]. Recent studies suggest that
ferroptosis may enhance diabetes nephropathy and impair the
renal tubule in diabetes models, via the HIF-1α/HO-1 pathway [92].
Iron increases diabetic kidney injury by increasing oxidative/
nitrifying stress and decreasing antioxidant capacity. In addition,
iron may be a potential cofactor in diabetic nephropathy, and
strict control of iron is therefore important in the diabetic state
[93].

Ferroptosis in diabetic neuropathy
Experimental studies have shown that DFR administration restores
motor and sensory nerve conduction velocity, and improves
neural blood flow [94]. Several studies have shown a direct
beneficial effect of reducing blood glucose and HbA1c levels, after
treatment with high-iron concentrations. The number of pro-
inflammatory M1 macrophages was reduced in the neural sections
and the number of anti-inflammatory M2 macrophages was
increased in db/db mice (fed a high-concentration iron diet).
These results confirm and extend the finding in STZ diabetic rats
[95], suggesting that dietary non-iron supplements may partially
prevent the development of peripheral diabetic neuropathy (PDN)
[96].

FERROPTOSIS AS A PROMISING TREATMENT TARGET
Ferroptosis is one of the reasons for the onset of T2DM and its
complications; thus, ferroptosis is a very promising therapeutic
target for the treatment and prevention of T2DM and metabolic
diseases. In this section, we summarize some molecules that can
inhibit ferroptosis and discuss the use of these molecules in the
different metabolic pathways of ferroptosis (Table 1).

Metformin
Metformin, a biguanide, has been used as the first-line treatment
for T2DM for several decades. It has been reported to regulate
cellular energy homeostasis by inducing the AMPK signaling
pathways [97]. Its basic pharmacological effects include hepatic
gluconeogenesis inhibition, glucose uptake promotion, and
insulin sensitivity promotion in peripheral tissues [98]. The LKB1/
AMPK signaling pathway plays an important role in glucose
homeostasis [99]. A previous study showed that LKB1 and its
downstream AMP-activated protein kinase (AMPK) blocked
ferroptosis by inhibiting the phosphorylation of both acetyl-CoA
carboxylase 1 (ACC1) and FAS [100]. Metformin protects cells by
activating the AMPK pathway, regulating metabolism, and
protecting them from degradation and pathogenic changes at
the molecular level. Therefore, we propose that the ability of
metformin to improve T2DM is associated with the inhibition of
ferroptosis and the reduction of IR. In addition, supplementation

of vascular smooth muscle cells (VSMCs) with metformin can
enhance the antioxidant capacity of VSMCs, inhibit ferroptosis,
and attenuate hyperlipidemia-related vascular calcification
through the activation of Nrf2 signaling [101].

Quercetin
Quercetin, one of the most widely distributed flavonoids, has been
reported to have a large number of attractive pharmacological
efficacy in epidemiological investigations, including T2DM risk
reduction [102]. Quercetin is a natural inhibitor or regulator of iron
metabolism and is beneficial in improving diseases caused by iron
overload [103–105]. Studies have shown that quercetin treatment
significantly restores GSH content and SOD activity in pancreas β
cells. The results indicate that quercetin has a potential beneficial
effect on T2DM, and functions by inhibiting pancreas β cells
ferroptosis, highlighting the promising curative effect of quercetin
in T2DM [106].

Melatonin
Many studies have shown that melatonin is a potent endogenous
antioxidant [107], which also indirectly stimulates certain anti-
oxidant enzymes such as SOD and Gpx4 [108]. Recent studies
have shown that melatonin reduces diabetic kidney injury and
exerts neuroprotective effects by activating the Nrf2/HO-1 path-
way and increasing the levels of antioxidant enzymes HO-1 and
NAD(P)H dehydrogenase [quinone] 1 (NQO1) [109, 110]. Epide-
miological studies have shown that the incidence of osteoporotic
fractures increases in T2DM patients compared with healthy
populations [111, 112]. High glucose induces ferroptosis via
increased ROS/lipid peroxidation/glutathione depletion in type 2
diabetic osteoporosis. Melatonin significantly reduced ferroptosis
and improved the osteogenic capacity of MC3T3-E1 cells by
activating the Nrf2/HO-1 pathway in vivo and in vitro [113].

Vitamin D
Studies have shown that iron overload in the pancreas contributes
to T2DM pathogeneses. Vitamin D can inhibit ferroptosis in
diabetic pancreatic β cells through NF-κB-DMT1 signaling, which is
a potential protective drug in the development of T2DM [114].

Other compounds affecting ferroptosis in T2DM
Systemic inflammation is mainly caused by activation of the
myeloid differentiation factor 2 (MD2)/toll-like receptor 4 complex,
a key mediator of left ventricular dysfunction in prediabetes. Study
was shown that in obese mice the MD2 inhibitor L6H21 effectively
reduced systemic inflammation, and L6H21 provides cardiopro-
tective efficacy in a dose-dependent manner, by reducing
apoptosis and ferroptosis [115]. Furthermore, Ze450 has been
shown to be protective against cellular peroxidation, where Ze450
retains mitochondrial function and integrity by inhibiting ferrop-
tosis. Thus, promoting the ability of cells to recover from oxidative
stress both in vitro and in vivo is a therapeutic opportunity for
metabolic diseases such as T2DM [116]. A novel molecule, M1, was

Table 1. The potential drugs or molecules of ferroptosis-targeted.

Intervention subjects Potential mechanism References

Metformin AMPKα1/α2L/L mice AMPKa Lee et al. [100]

Quercetin C57BL/6J mice GSH, GPX4a, Feb Li et al. [106]

Melatonin C57BL/6J mice Nrf2/ARE signal pathway, HO-1, NQO1a Long et al. [109, 110, 113]

vitamin D ZDF rats DMT1, NF-κBb Zhao et al. [114]

L6H21 Prediabetic rats MD2, toll-like receptor 4b Sumneang et al. [115]

M1 db/db mice Fe-S clustersb Marjault et al. [117]
aThe level is higher than before the intervention.
bThe level is lower than before the intervention.
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found to enhance the lability of the Fe-2S clusters of mNT and
NAF-1 proteins, reduced mitochondrial iron and ROS accumula-
tion, and successfully treated diabetic mice [117].

Limitations of ferroptosis-targeted agents
A growing number of evidence supports the role of ferroptosis in
the initiation and progression of various metabolic diseases such
as T2DM. However, several questions need to be addressed before
the therapeutic potential of ferroptosis-targeted agents can be
clinically evaluated [17]. What are the crucial safeguarding
mechanisms for ferroptosis in diabetes? Which are the reliable
biomarkers for predicting ferroptosis in metabolic disease? Plasma
ferritin concentration is currently used as a ferroptosis biomarker
in preclinical studies. However, it is non-specific and is present in
other types of cell death and several pathological conditions. The
lack of ferroptosis-specific biomarkers has been a long-standing
bottleneck, limiting the development of ferroptosis-targeted
clinical applications. Finally, how does the interplay between
ferroptosis and other forms of cell death affect the development
of metabolic diseases? To date, no clinical trials have investigated
ferroptosis-specific inhibitors for metabolic disease treatment.
Most of the research uses selective inhibition of ferroptosis, which
has been shown to substantially improve pancreatic β cells
function in various animal models. Large population-based
datasets are urgently needed to determine whether selectively
blocking ferroptosis can improve T2DM and its complications.

CONCLUSION
The relationship between iron metabolism and glucose home-
ostasis is now widely recognized. Iron has been shown to affect
glucose homeostasis in organs and cells, such as pancreas β cells,
hepatocytes, and adipose tissue. In addition, iron metabolism is
related to the brain-gut axis and circadian rhythm. Iron
metabolism disorders result in insufficient insulin secretion and
IR; however, the relationship between iron metabolism and T2DM
and its complications was unclear until the discovery of
ferroptosis. Excess levels of free reactive iron cause tissue damage
and oxidative cell death. Different drugs and compounds for lipid
peroxidation have been widely studied for the treatment of T2DM
induced by iron overload. However, there is a lack of clinical
research at this stage and preclinical research is paving the way for
the development of effective ferroptosis-specific antagonists for
the clinical treatment of T2DM.
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