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Abstract

Background: Engineered iron nanoparticles are being explored for the development of

biomedical applications and many other industry purposes. However, to date little is known

concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and

organs from blood circulation, as well as the underlying implications of potential harmful health

effects in human.

Results: The confocal microscopy imaging analysis demonstrates that exposure to engineered iron

nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our

studies further reveal iron nanoparticles enhance the permeability through the production of

reactive oxygen species (ROS) and the stabilization of microtubules. We also showed Akt/GSK-3
signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of

ROS demonstrate ROS play a major role in regulating Akt/GSK-3 – mediated cell permeability

upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of

engineered iron nanoparticles which can inform potential applications in medical imaging or drug

delivery.

Conclusion: Our results indicate that exposure to iron nanoparticles induces an increase in

endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling.

The findings from this study provide new understandings on the effects of nanoparticles on vascular

transport of macromolecules and drugs.

Published: 9 January 2009

Particle and Fibre Toxicology 2009, 6:1 doi:10.1186/1743-8977-6-1

Received: 18 July 2008
Accepted: 9 January 2009

This article is available from: http://www.particleandfibretoxicology.com/content/6/1/1

© 2009 Apopa et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19134195
http://www.particleandfibretoxicology.com/content/6/1/1
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Particle and Fibre Toxicology 2009, 6:1 http://www.particleandfibretoxicology.com/content/6/1/1

Page 2 of 14

(page number not for citation purposes)

Background
Iron nanoparticles are of great interest due to their unique
physicochemical properties and have been used for the
development of imaging, magnetic and electrical applica-
tions [1]. Recently, iron nanoparticles have been widely
used in coal industry to produce clean fuels due to their
catalytic activities that facilitate the chemical reactions to
form and cleave carbon-carbon bonds [2]. More impor-
tantly, iron nanoparticles show great potential in human
biomedical applications, such as labeling and magnetic
separation of biological materials, imaging and diagnostic
applications in human, site-directed drug delivery, and
anticancer hyperthermia therapy [2]. However, significant
knowledge gaps currently exist on the precise mechanisms
of translocation of iron nanoparticles into the targeted tis-
sues, organs, and tumors, as well as the toxicological effect
of iron nanoparticles, which would deter their broad
applications.

Endothelial cells play a central role in angiogenesis, car-
cinogenesis, atherosclerosis, myocardial infarction, limb
and cardiac ischemia, and tumor growth [3,4]. The
endothelium is an important target for drug and gene
therapy. The vascular endothelial monolayer forms a
semi-selective permeability barrier between blood and the
interstitial space to control the movement of blood fluid,
proteins, and macromolecules across the vessel wall.
Alteration of permeability barrier integrity plays a major
role in drug-based therapies, as well as the pathogenesis of
cardiovascular diseases, inflammation, acute lung injury
syndromes, and carcinogenesis [3,5,6].

Several studies have shown that intravenously adminis-
trated iron nanoparticles can translocate from the blood
circulation into various targeted tissues and organs [1,7].
However, it is not clear how iron nanoparticles cross the
endothelium from the blood stream into the targeted
sites. In this study, we sought to examine whether iron
nanoparticle exposure would induce an increase in per-
meability in human microvascular endothelial cells
(HMVECs) and to determine the underlying molecular
mechanisms involved. Particular emphasis was focused
on the involvements of iron nanoparticle-induced reac-
tive oxygen species (ROS) production in endothelial cell
permeability changes. The results in this report demon-
strate that iron nanoparticle exposure induces an increase
in permeability in HMVECs. This iron nanoparticle-
induced permeability involves the production of ROS and
the stabilization of microtubules. Furthermore, it was
found that PI-3 kinase/Akt/GSK-3 pathways are the
important mediators for iron nanoparticle-induced
endothelial cell permeability. The results obtained from
this study provide the evidence, for the first time, showing
that iron nanoparticles may cross the endothelial monol-
ayer through the induction of cell permeability. The

results obtained from this study may also provide some
insights for understanding the translocation pathways of
nanoparticles in general.

Results
Size distribution of nanoparticle in cell culture medium 

and uptake of iron nanoparticles by HMVECs

Iron nanoparticles used in these experiments are ferrites of
maghemite (Fe2O3), which are superparamagnetic nano-
particles. Unmodified nanoparticles are usually colloidal
in nature and prone to agglomerate in suspension [8]. In
order to accurately measure the size and distribution of
iron nanoparticles in aqueous solutions, a TEM was
applied to profile iron nanoparticles in 0.1% FBS cell cul-
ture medium. As shown in Figure 1A, the nanoparticles
ranged in size from 50 nm-600 nm. Since a TEM can only
measure very limited number of particles in solution and
the particles subjected to measurements are fixed and
dried, it may not provide an accurate profile of the parti-
cles in the working solution. Therefore, we applied a
dynamic light scattering (DLS) measurement to further
characterize the particle size in the working solution.
These measurement results showed that iron nanoparti-
cles existed in a size range from 100 nm-700 nm with a
mean diameter of 298 nm (Figure 1B). These results dem-
onstrate that iron nanoparticles form small agglomerates,
which are uniformly distributed in cell culture medium.

Previously, it was shown that iron nanoparticles can be
taken up by mouse macrophages in vivo [9] and rat pheo-
chromocytoma cell line (PC12M) in vitro [10]. Here, we
investigated the uptake of iron nanoparticles by HMVECs.
The HMVEC line used here was immortalized by engi-
neering human telomerase catalytic protein (hTERT) into
the cells and are therefore able to maintain the inherent
features of primary endothelial cells [11]. The cells were
cultured to a confluent monolayer on transwell tissue cul-
ture-treated polycarbonate membrane polystyrene plates
(Corning, NY), and then were stimulated with 50 g/ml
iron nanoparticles for different periods of time ranging
from 10 min to 5 h. After the stimulation, the cells were
processed for TEM analysis. As shown in figure 1C, the
uptake of nanoparticles by HMVECS occurred as early as
10 min after the exposure, and the particles were localized
within the cytoplasm of the cells. Approximately, 60% of
the cells engulfed the nanoparticles within 30 min after
the stimulation (data not shown). The iron nanoparticles
were gradually expelled out of the cells, with only 10% of
the cells retaining the nanoparticles after 1 h stimulation
(data not shown). The results demonstrate that the uptake
of iron nanoparticles by HMVECs is both efficient and
dynamic.
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Iron nanoparticles induce an increase in permeability of 

HMVECs

The changes in endothelial cell permeability not only play
a major role in the pathogenesis of cardiovascular dis-
eases, inflammation and cancer, but also have a critical
effect on drug delivery to underlying cells, tissues, and
organs [12]. We investigated whether exposure to iron
nanoparticles would induce an increase in endothelial cell
permeability. These results using confocal microscopy
image analysis show that the unstimulated HMVECs were

attached to each other tightly with no significant intercel-
lular gaps in the HMVEC monolayer (Figure 2A1). How-
ever, upon exposure to iron nanoparticles, the confluent
monolayer was pulled apart and the cells were separated
from each other to form intercellular gaps, which is a hall-
mark of cell permeability increase [3]. The permeability
increase occurred as early as 10 min after the exposure and
persisted up to 5 h (Figure 2A2–5). The increase in perme-
ability peaked around 30 min after the exposure (Figure
2A3). To further prove iron nanoparticle-induced HMVEC

Size distribution and cell uptake of iron nanoparticlesFigure 1
Size distribution and cell uptake of iron nanoparticles. A, TEM micrograph of iron nanoparticles in 0.1% FBS cell culture 
media at the concentration of 50 g/ml. B, Dynamic light scattering measurements of iron nanoparticles in 0.1% FBS cell culture 
media at the concentration of 50 g/ml. C, TEM micrograph of iron nanoparticle uptake by HMVECs. HMVECs were stimu-
lated with 50 g/ml iron nanoparticles for different periods of time ranging from 10 minutes to 5 hours as indicated. The 
arrows indicate the location of iron nanoparticles. Each TEM micrograph represents one HMVEC.
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Iron nanoparticles induce endothelial cell permeability in HMVECsFigure 2 
Iron nanoparticles induce endothelial cell permeability in HMVECs. A. HMVECs were grown to a confluent monol-
ayer on coverslides and serum-starved overnight. The cells were exposed to 50 g/ml iron nanoparticle for different periods of 
time as indicated. After exposure, the cells were fixed, permeabilized, and stained with VE-cadherin (green color) and actin fil-
aments (red color). A Zeiss confocal microscope was applied to take the images. Each image is an overlay of two different 
stains. Arrows indicate the gaps. B. HMVECs were grown to a confluent monolayer on gold microelectrodes and serum-
starved overnight. The cells were treated with 50 g/ml iron nanoparticles, followed by measuring the transendothelial resist-
ance (TER) for 5 hours. The results shown are representative of 3 independent experiments. C. Exposure of HMVECs to 50 
g/ml iron nanoparticles does not induce cytotoxicity. HMVECs were exposed to 50 g/ml for different periods of time as indi-
cated. At the end of each exposure, the cell culture media was collected and measured for lactate dehydrogenease (LDH) 
activities. Values given are means ± SD (t-test, n = 5, p > 0.19).
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permeability, we measured transendothelial electrical
resistance (TER) across HMVEC monolayer with an elec-
tric cell-substrate impedance sensor (ECIS). Our results
demonstrate that exposure of HMVECs to iron nanoparti-
cles decreased electrical resistance (Figure 2B), indicating
endothelial monolayer barrier compromise. Our dose-
dependent ECIS assays demonstrate that iron nanoparti-
cles have an ability to induce endothelial permeability at
the concentrations ranging from 12.5 g/ml to 100 g/ml
(data not shown). To rule out the possibility that iron
nanoparticle may induce endothelial permeability change
due to cytotoxicity-related cell damage, the LDH (lactate
dehydrogenase) release assays were performed. Our
results indicate that at the concentration of 50 g/ml, iron
nanoparticles did not significantly induce cytotoxicity
within 5 hours of incubation (Figure 2C). Taken together,
these results demonstrate that iron nanoparticles have an
ability to induce an increase in cell permeability in
HMVECs.

Iron nanoparticles induce cell permeability through 

microtubule remodeling in HMVECs

We next examined the underlying molecular mechanisms
leading to an increase in permeability upon iron nanopar-
ticle stimulation. Cytoskeleton protein microtubules are
the major structural proteins involved in endothelial cell
permeability through the dynamic remodeling processes
[13,14]. This study sought to investigate the importance
of microtubule remodeling in iron nanoparticle-induced
cell permeability in HMVECs. Here, we first identified
whether iron nanoparticles had an ability to induce
microtubule remodeling in HMVECs. As shown in figure
3A, the cells treated with iron nanoparticles exhibited a
significant remodeled microtubule structure. In normal
HMVECs, the acetylated microtubules, a stabilized form
of microtubules, formed network-fiber structures sur-
rounding the nuclear area. However, upon exposure to
iron nanoparticles, the network-fiber structures were dis-
rupted to form dotted structures distributed evenly
throughout the cells, and the amount of acetylated micro-
tubules was also increased. Next, we investigated the
effects of iron nanoparticles on acetylated microtubules
with immunoblotting analysis. As shown in figure 3B,
iron nanoparticles induced an increase in acetylated
microtubules as early as 10 min after the treatment. The
increase in acetylated microtubules was maintained up to
1 h. These results demonstrate that iron nanoparticle
exposure promotes microtubule polymerization and
altered distribution in HMVECs.

We then determined the involvement of microtubule
remodeling in iron nanoparticle-induced cell permeabil-
ity with different kinds of microtubule inhibitors: nocoda-
zole and paclitaxel. Nocodazole depolymerizes
microtubules and paclitaxel polymerizes microtubules.

The results show that the pretreatment with paclitaxel
increased iron nanoparticle-induced cell permeability
whereas the pretreatment with nocodazole decreased the
permeability (Figure 3C). Taken together, these results
support the hypothesis that iron nanoparticles induce
endothelial cell permeability in HMVECs through the sta-
bilization of microtubule structures.

Iron nanoparticles induce cell permeability through the 

production of ROS in HMVECs

Accumulating evidence strongly suggest that many mate-
rials at the nanoparticle size have the ability to induce the
production of ROS [15]. We sought to determine if the
production of ROS is involved in iron nanoparticle-
induced cell permeability. First, we examined whether
iron nanoparticle exposure stimulated ROS production in
HMVECs with flow cytometry analysis. As shown in figure
4A1, iron nanoparticle exposure significantly increased
ROS production in 1 hour, compared to the unexposed
cells. To determine the specificity of ROS production, the
cells were pretreated with catalase, a ROS scavenger, fol-
lowed by iron nanoparticle exposure. The results showed
that catalase pretreatment blocked iron nanoparticle-
induced ROS in HMVECs (Figure 4A1). We also exposed
the cells to 500 M H2O2 to set it as a positive control. Our
results demonstrated that H2O2 exposure induced the pro-
duction of ROS in HMVECs, which was significantly
inhibited by catalase (Figure 4A1). To exclude the possi-
bility that iron nanoparticles may generate ROS intrinsi-
cally, we measured the production of ROS in cell free
systems. Our results found that iron nanoparticles were
unable to produce ROS in cell-free systems (cell culture
media without HMVECs); however the positive control,
H2O2, was able to produce significant amount of ROS in
the same systems (Figure 4A2). These results demonstrate
that iron nanoparticle-induced ROS production in
HMVECs is generated from the cell oxidative stress
response. We then investigated the importance of ROS
production in iron nanoparticle-induced cell permeability
with a ROS scavenger catalase. As shown in figure 4B1 and
4B2, pretreatment of cells with catalase inhibited iron
nanoparticle-induced dotted microtubule structures and
microtubule distribution, and inhibited cell permeability
as well, indicating that ROS are involved in the regulation
of iron nanoparticle-induced microtubule remodeling
and cell permeability. This study further confirmed the
effect of ROS production on microtubule remodeling by
immunoblotting analysis. As shown in figure 4C, the pre-
treatment of cells with catalase significantly attenuated
iron nanoparticle-induced acetylated microtubule forma-
tion.
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Figure 3 (see legend on next page)
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Iron nanoparticles induce HMVEC permeability via GSK-

3 signaling pathways

The inhibition of GSK-3 (phosphorylation at serine 9)
plays a major role in regulating microtubule stabilization
[16]. This study investigated if GSK-3 is involved in iron
nanoparticle-induced microtubule stabilization and cell
permeability in HMVECs. As shown in figure 5A, iron
nanoparticles induced serine-9 phosphorylation of GSK-
3 within 10 min after the treatment, and the increase in
the phosphorylation was maintained up to 2 h. We then
explored the activities of Akt, an upstream kinase of GSK-
3, upon iron nanoparticle exposure. It was found that
the pattern of Akt phosphorylation (activation) was the
same as that of GSK-3 (Ser-9) phosphorylation (Figure
5A). The results also showed that iron nanoparticle-
induced phosphorylation of both GSK-3 (Ser-9) and Akt
was dramatically attenuated by the pretreatment with a
PI3K inhibitor, LY294002 (Figure 5B). These results indi-
cate that iron nanoparticles have an ability to induce the
inhibition of GSK-3 through the PI3K/Akt signaling
pathway.

We then determined the role of ROS production in iron
nanoparticle-induced GSK-3 inhibition and Akt activa-
tion. As shown in figure 5C, hydrogen peroxide alone
increased the phosphorylation of both GSK-3 (Ser-9)
and Akt (Ser -473) in a manner similar to that of iron nan-
oparticle exposure. When the cells were treated with iron
nanoparticles plus hydrogen peroxide, the induction of
GSK-3 (Ser-9) and Akt (Ser-473) phosphorylation was
enhanced compared with either treatment alone. Further-
more, the pretreatment of cells with catalase attenuated
iron nanoparticle-induced phosphorylation of both GSK-
3 (Ser 9) and Akt (Ser 473) (Figure 5C). These results
indicate that ROS production plays a regulatory role in
iron nanoparticle-induced GSK-3 inhibition and Akt
activation.

Lastly, this study sought to determine the regulatory roles
of GSK-3 inhibition in iron nanoparticle-induced micro-

tubule remodeling and cell permeability by using a phar-
macological inhibitor of GSK-3, GSK-3 inhibitor I.
These results demonstrate that the pretreatment with
GSK-3 inhibitor I enhanced iron nanoparticle-induced
microtubule remodeling and cell permeability (Figure
5D1 and 5D2). These results suggest that GSK-3 may be
involved in regulating iron nanoparticle-induced micro-
tubule remodeling and cell permeability in HMVECs.

Discussion
The endothelial cells line the luminal surface of blood ves-
sels to form a semi-permeable barrier to regulate vascular
tone, blood fluidity, angiogenesis, and extravasation of
blood components and other substances [3,17]. The
changes in this semi-permeable barrier are critical in con-
trolling the passage of macromolecules and fluid from the
blood circulation into tissues, which is a key molecular
process for drug delivery, as well as for the pathogenesis of
inflammatory diseases, cardiovascular diseases, lung
injury, carcinogenesis [3,17]. The endothelial semi-per-
meable barrier controls the transfer of many soluble and
insoluble substances via two pathways: transcellular and
paracellular pathways [3]. The transcellular pathway
transports many substances via transcytosis in vesicle car-
riers whereas the paracellular pathway transfers sub-
stances through tightly linked inter-endothelial junctions.
The paracellular pathway-mediated permeability is main-
tained by an equilibrium between cytoskeleton-generated
contractile force and cell-cell junction and contact-
induced adhesive force [18]. Any shift in this equilibrium
will results in the opening and closing of paracellular
pathways to affect the transport of macromolecules and
drugs [18]. The unperturbed endothelium paracellular
pathway can only allow transport of molecules with a
radius of less than 3 nm to move passively across the bar-
rier [3]. However, in response to stimulation or patho-
logic conditions, the paracellular pathway becomes leaky,
opening inter-endothelial junctions to form the gaps
between endothelial cells to allow the translocation of
larger molecules [19]. Previous studies reported that nan-

Iron nanoparticles induce cell permeability through microtubule remodeling in HMVECsFigure 3 (see previous page)
Iron nanoparticles induce cell permeability through microtubule remodeling in HMVECs. A, Iron nanoparticles 
induce microtubule remodeling and redistribution. HMVECs were grown on coverslips and serum-starved overnight. Iron nan-
oparticles (50 g/ml) were used to stimulate the cells for 30 min. After exposure, the cells were fixed and stained for 
acetylated -tubulin (red color) and VE-cadherin (green color). A Zeiss confocal microscope was applied to take the images. 
The bottom panels of each image are overlays of two different stains. The size of the scale bar is 20 m. B, A time course of 
iron nanoparticle-induced microtubule stabilization. HMVECs were grown to a confluent monolayer and serum-starved over-
night. The cells were exposed to 50 g/ml iron nanoparticles for different periods of time as indicated. After exposure, the 
cells were lysed. The lysates were resolved on SDS-PAGE gel, and anti-acetylated -tubulin antibody was used to detect 
acetylated -tubulin. C, The monolayer HMVECs were pretreated with either 100 nM paclitaxel or 10 nM nocodazole for one 
hour as indicated, followed by exposure to 50 g/ml iron nanoparticles for 30 min. The cells were fixed and stained for 
acetylated -tubulin (red color) and VE-cadherin (green color). A Zeiss confocal microscope was applied to take the images. 
Each image is an overlay of two different stains. The size of the scale bar is 20 m.
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oparticles are able to across the semi-permeable barrier via
transcellular pathways [20]. However, little is known
about the effects of nanoparticles on endothelial paracel-
lular pathways. In this study, we demonstrate that iron

nanoparticle stimulation induced an increase in cell per-
meability in vitro, i.e., the formation of gap structures
between endothelial cells in a confluent endothelial mon-
olayer. This indicates that the exposure to iron nanoparti-

ROS production is involved in iron nanoparticle-induced cell permeabilityFigure 4
ROS production is involved in iron nanoparticle-induced cell permeability. A, Iron nanoparticles induce the produc-
tion of ROS in HMVECs. 1. Iron nanoparticles induce the production of ROS in HMVECs. The monolayer HMVECs were pre-
treated with 10 M CM-H2DCFDA, as well as 10,000 unit catalase as indicated, for one hour, followed by exposure to 50 g/
ml iron nanoparticles or 500 M H2O2 for another hour as indicated. After the stimulation, the cells were collected and ana-
lyzed by a flow cytometry. Values given are means ± SD (t-test, n = 5, *p < 0.01). 2. Iron nanoparticles do not induce the pro-
duction of ROS in cell-free system. The hydrolyzed CM-H2DCF-DA was mixed with 50 g/ml iron nanoparticles, 100 g/ml 
iron nanoparticles, or 1 mM H2O2 as indicated, followed by the fluorescence measurements using a cytoflour series 4000 plate 
reader. Values given are means ± SD (t-test, n = 5, *p < 0.05). B, Catalase pretreatment inhibits iron nanoparticle-induced 
microtubule remodeling and permeability in HMVECs. HMVECs were pretreated with 10,000 units/ml of catalase for one hour, 
followed by exposure to 50 g/ml iron nanoparticles for 30 minutes. The cells were fixed and stained for acetylated -tubulin 
(red color) and VE-cadherin (green color). A Zeiss confocal microscope was applied to take the images. The size of the scale 
bar is 20 m. 1. Images of microtubule remodeling and cell permeability. The right panels are an overlay of two different stains. 
2. Images of microtubule remodeling for the individual cells. C, Catalase pretreatment inhibits iron nanoparticle-induced micro-
tubule stabilization. HMVECs were pretreated with 10,000 units/ml catalase for one hour, followed by the exposure to 50 g/
ml iron nanoparticles for one hour. The cells were lysed, and the lysates were resolved with 8% SDS-PAGE gel. An anti-
acetylated -tubulin antibody was applied to detect the expression of acetylated -tubulin.
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Figure 5 (see legend on next page)
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cles may be able to facilitate extravasation of
macromolecules and drugs, as well as nanoparticle them-
selves, into surrounding tissues. The results obtained from
this study provide a new insight on the effects of nanopar-
ticles on vascular transport of drugs and macromolecules.

The concentration (50 g/ml) of iron nanoparticles
applied in this manuscript is relevant to the dosages
employed in current clinical trials. Human imaging in
central nervous system and in carotid atherosclerotic
plague utilized iron nanoparticles at 45 mol Fe/kg for
magnetic resonance imaging [21], which is about the con-
centration of 70 g/ml (at average 50 kg human weight
and 5000 ml human blood volume). Rat clinical trials for
magnetic resonance imaging injected iron nanoparticles
via intravenous injection at the dose of 5 mg Fe/kg [22],
which is about the concentration of 66 g/ml (at average
200 g rat weight and 15 ml rat blood volume). Therefore,
our concentration (50 g/ml) of iron nanoparticles is
achievable in the circulation. The studies of iron nanopar-
ticle pharmacokinetics and biodistribution demonstrated
that the high doses of iron nanoparticles are needed to
reach deep compartments of bodies in clinical imaging
experiments [21].

The cellular uptake profiling shows that the peak of
uptake occurs within 30 min of the stimulation and only
10% of the cells still retain iron nanoparticles after one
hour of exposure. However, the alteration of signaling
transduction pathway are maintained for almost two
hours following exposure to iron nanoparticles, and both
our confocal microscope analysis and ECIS assays show
that iron nanoparticle-induced permeability lasts at least
5 hours after the stimulation. There results indicate that
exposure of HMVECs to iron nanoparticles induces a pro-
long alteration of endothelial monolayer barrier function.

The unique features of nanoparticles are small particle
size and large surface area, which exposes atoms or mole-

cules on the particle surface instead of covering them
within the interior of the material [15]. Accumulating evi-
dence shows that nanoparticle-induced ROS oxidant
stress response is the major mechanism for the induction
of various biological effects [15,23]. At the low basal level,
ROS is involved in regulating normal cell functions; how-
ever, at a higher abnormal level, ROS induce cell injury
and death [24]. In this study, it was found that the expo-
sure to iron nanoparticles induces the production of ROS
in HMVECs. Furthermore, we found that the addition of
H2O2 enhances iron nanoparticle-induced cell permeabil-
ity whereas the elimination of ROS with catalase abro-
gates iron nanoparticle-induced cell permeability,
demonstrating that the production of ROS is involved in
iron nanoparticle-induced permeability. Our results
regarding the roles of ROS in endothelial cell permeability
are consistent with several published observations [24].
Numerous studies have shown that ROS-induced oxidant
stress directly increases endothelial permeability [6,24].
The treatment of endothelial cell monolayers with ROS
generators, xanthine/xanthine oxidase or glucose/glucose
oxidase, increases endothelial cell permeability in a dose
dependent manner [25,26].

In this study, it was found that iron nanoparticle-induced
ROS production may regulate cell permeability through
the remodeling of microtubules in HMVECs. It was well
established that microtubules remodeling is closely
related to the changes in endothelial cell permeability
[3,19]. However, it is controversial as to the mechanisms
by which microtubule remodeling regulates cell permea-
bility. Several previous studies showed that microtubules
are involved in regulating both tumor necrosis factor-
and thrombin-induced endothelial permeability through
destabilization (depolymerization) while some observa-
tions found that microtubules modulate cell permeability
via stabilization (polymerization) in tumor cells
[14,27,28]. In this study, it is demonstrated that iron nan-
oparticle exposure induces both polymerization and

GSK-3 signaling pathways are involved in iron nanoparticle-induced endothelial cell permeabilityFigure 5 (see previous page)
GSK-3 signaling pathways are involved in iron nanoparticle-induced endothelial cell permeability. A, Iron nano-
particle treatment induces the inhibition of GSK-3 and the activation of Akt. HMVECs were grown to a confluent monolayer 
and serum-starved overnight. The cells were exposed to 50 g/ml iron nanoparticles for different periods of time as indicated. 
After the stimulation, the cells were lysed. The lysates were resolved on SDS-PAGE gel, followed by probing with different 
antibodies as indicated. B, PI3K is involved in iron nanoparticle-induced Akt activation and GSK-3 inhibition. HMVECS were 
pretreated with 10 M LY294002, a PI3K inhibitor, for one hour, and then exposed to 50 g/ml iron nanoparticles for 30 min-
utes, followed by Western blot analysis. C, ROS production is involved in iron nanoparticle-induced Akt activation and GSK-3 
inhibition. HMVECs were pretreated with either 200 M hydrogen peroxide (H2O2) or 10,000 units/ml catalase for one hour, 
and then exposed to 50 g/ml iron nanoparticles for 30 min, followed by Western blot analysis. D, The inhibition of GSK-3 
enhances iron nanoparticle-induced microtubule remodeling and cell permeability in HMVECs. HMVECs were pretreated with 
5 M GSK-3 inhibitor I for one hour, and then exposed to 50 g/ml iron nanoparticles for 30 minutes, followed by Western 
blot analysis (1) and confocal microscopy analysis (2). Blue color stains for actin filaments, red color stains for acetylated -
tubulin, and green color stains for VE-cadherin. The size of the scale bar is 20 m.
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redistribution of microtubules through the production of
ROS in HMVECs. Furthermore, it is demonstrated that
ROS-mediated microtubule remodeling is involved in
iron nanoparticle-induced endothelial cell permeability.
The finding that iron nanoparticle exposure stimulates the
activation of PI-3 kinase/Akt/GSK-3 signaling pathways
further supports our observations of iron nanoparticle-
induced microtubule remodeling. GSK-3 is a key kinase
that regulates microtubule depolymerization via the
phosphorylation of several microtubule-associated pro-
teins [29]. Serine-9 phosphorylation of GSK-3 by Akt
inhibits its activities, which abrogates GSK-3's ability to
phosphorylate microtubule-associated protein and results
in microtubule stabilization [29]. These results demon-
strated that iron nanoparticle exposure induces the activa-
tion of Akt and inhibition of GSK-3 in a PI3-kinase
dependent manner, and both our inhibitory and stimula-
tory assays strongly indicate that Akt/GSK-3 signaling
pathways are involved in iron nanoparticle-induced cell
permeability through ROS-mediated remodeling of
microtubules.

Taken together, these results demonstrate that exposure to
iron nanoparticle induces an increase in endothelial cell
permeability through ROS oxidative stress- modulated
microtubule remodeling (Figure 6). The findings from
this study provide new insights on the effects of nanopar-
ticles on vascular transport of macromolecules and drugs.
Results provided here may have implications for under-
standing the bioactivity of engineered nanoparticles,
which can inform potential applications in both nanom-
edicine and elucidate nanotoxicology in general.

Methods
Reagents

Cell culture medium EBM-2 was obtained from Lonza
(Boston, MA). Fetal bovine serum was obtained from
Atlanta Biologicals (Lawrenceville, GA). Fe2O3 nanoparti-
cles were purchased from nGIMAT (Atlanta, GA).
Acetylated-tubulin antibody, total tubulin antibody, actin
antibody, catalase, hydrogen peroxide, EGF growth sup-
plement, and hydrocortisone were from Sigma (St. Louis,
MO). Protease and phosphatase inhibitor cocktail was
from Pierce (Rockford, IL). LY294002, GSK-3 inhibitor I,
nocodazole and paclitaxel were obtained from Calbio-
chem (La Jolla, CA). Penicillin and Streptomycin antibiot-
ics, 5-(and-6)-chloromethyl-2',7'-
dichlorodihydrofluorescein diacetate, acetyl ester (CM-
H2DCFDA), secondary antibodies-conjugated with FITC,
TRITC, and Cy5 were purchased from Invitrogen (Eugene,
OR). Phospho-Akt (ser-473) and total Akt antibodies
were from Cell Signaling Technology (Boston, MA). Phos-
pho-GSK-3 (ser-9) and total GSK-3 antibodies were
from Santa Cruz Biotechnology (Santa Cruz, CA). VE-

Cadherin antibody was purchased from Alexis (San
Diego, CA).

Cell culture

The human microvascular endothelial cells (HMVECs)
were a kind gift from Dr. Rong Shao (Biomedical Research
Institute, Baystate Medical Center/University of Massa-
chusetts at Amherst, Springfield, MA, USA). The cells were
cultured according to the protocol described previously
[11]. Briefly, HMVEC were grown in endothelial basal
medium-2 (EBM-2) (Lonza, Boston MA) supplemented
with 10% (v/v) fetal bovine serum (FBS) (Atlanta Biolog-
icals, Lawrenceville, GA), 100 U/ml penicillin and 10 g/

Schematic representation of signal transduction from iron nanoparticle stimulation to cell permeabilityFigure 6
Schematic representation of signal transduction 
from iron nanoparticle stimulation to cell permeabil-
ity.
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ml streptomycin, 1 g/ml of epidermal growth factor and
50 g/ml hydrocortisone. The cells were maintained in an
incubator at 37°C with 5% CO2.

Particles preparation and size measurements

Fe2O3 nanoparticles were purchased from nGIMAT
(Atlanta, GA). Their surface area was approximately 165
m2/g, the average powered particle size was <10 nm, and
there were trace amounts of Lead and Bismuth potentially
in the particles. The iron nanoparticles were suspended in
0.1% fetal bovine serum (FBS) cell culture media at a con-
centration of 2.5 mg/ml. Once the nanoparticles were dis-
persed in 0.1% FBS cell culture media, the suspension was
indirectly sonicated at 4°C for 10 min with a Hielscher-
Ultrasound Technology Sonicator (UIS 259L) at ampli-
tude 100% and cycle 1. After the indirect sonication, the
suspension was further directly sonicated at 4°C for 5 min
at a duty cycle setting of 10% and output of 5 with a Bran-
son 450 Sonifier probe sonicator. The stock solution (2.5
mg/ml) of iron nanoparticles was kept at 4°C and used
within 2 weeks for the experiments. The working concen-
tration of iron nanoparticle was 50 g/ml. Prior to being
diluted to the working concentration, the stock solution
was directly sonicated at 4°C for 1 min at the setting indi-
cated above. The particle size was determined by both
dynamic light scattering using Nanotrac 252 (Microtrac,
Montgomeryville, PA) [30] and by a transmission electron
microscope.

Lactate dehydrogenase (LDH) assay

The LDH release assays were measured using the LDH
assay kit form Roche Diagnostics Inc. (Indianapolis, IN)
according to the manufacturer instructions.

ROS production in Cell-free system

The measurements of ROS production in cell-free system
were performed according to the previously published
methods[31]. Briefly, 7.5 l of 10 mM CM-H2DCF-DA
was chemically hydrolyzed to CM-H2DCF in 1 ml of 0.01
N NaOH in dark for 30 min at the room temperature, fol-
lowed by neutralizing with 0.5 ml of 0.1 M PBS (pH 7.4).
The reaction mixture was freshly prepared by mixing 400
l of the neutralized CM-H2DCF, 1.6 ml of EBM-2
medium (0.1% FBS), and 0.2 units of horse radish perox-
idase (HRP) to obtain a final concentration of 10 M CM-
H2DCF. Then, 2 l of iron nanoparticle stock solution (25
mg/ml) or 2 l of H2O2 stock solution (0.5 M) was added
into 2 ml of the reaction mixture to make a final concen-
tration of 50 g/ml iron nanoparticles or 500 M H2O2,
respectively. After 30 minute incubation, fluorescence
generated from the oxidation of CM-H2DCF to DCF was
measured using a cytoflour series 4000 plate reader
(PerSeptive Biosystems, Inc., Framingham, MA) at 485
nm excitation and 530 emission

ROS measurements by flow cytometry

ROS measurements by flow cytometry analysis were per-
formed according to the methods described previously
[32]. HMVECs were pretreated with 10 M CM-H2DCFDA
for 60 min. After the pretreatment, the cell culture media
was removed and replaced with the media containing iron
nanoparticles (50 g/ml) and 10 M CM-H2DCFDA for
further stimulation. After the stimulation, the cells were
quenched on ice for 10 min then washed three times with
ice-cold PBS before they were harvested by scrapping. The
cells were fixed with 10% formaldehyde for 20 min at
room temperature and then washed three times with PBS,
followed by resuspension in 400 ml of PBS. ROS measure-
ments were carried out by a flow cytometry using FACS-
Calibur system (BD Biosciences, Rutherford, NJ) with a
488-nm excitation beam. The signals were obtained using
a 530-nm band-pass filter for CM-H2DCFDA. Each meas-
urement was based on the mean fluorescence intensity of
10,000 cells.

Transendothelial electrical resistance

The transendothelial electrical resistance (TER) was meas-
ured using electrical cell-substrate impedance sensing sys-
tem (ECIS) (Applied Biophysics, Troy, NY) according to
the published protocol [33]. Briefly, HMVECs were grown
to confluent monolayer on ECIS culture ware and serum-
starved overnight. The electrical resistance was measured
on cells located on the small gold electrodes in each of the
wells. The culture medium was the electrolyte. The small
gold electrode covered by confluent HMVECs and a larger
gold counter electrode were connected to a phase-sensi-
tive lock-in amplifier. A constant current of 1 A was sup-
plied by a 1-V, 4,000-Hz alternating current through a 1-
M resistor. Changes in voltage between the small elec-
trode and the large counter electrode were continuously
monitored by the lock-in amplifier, stored, and then cal-
culated as resistance.

Immunofluorescence assay and Western blot analysis

Immunofluorescence assays were performed according to
the methods published previously [34]. Briefly, HMVECs
were grown on coverslides. After treatment, cells were
fixed and permeabilized, followed by labeling with the
specific antibodies for the targeted proteins as well as
immunofluorescence-conjugated secondary antibodies.
The labeled coverslides were mounted to the slides with
antifade reagent (Invitrogen, Eugene, OR). A Zeiss LSM
510 microscope was used to obtain images. Scale bars
were generated and inserted by LSM software. Western
blot analysis was performed according to the methods
described previously [35]. Briefly, the cell lysates were
resolved in 8% SDS-PAGE gel, and then transferred to
PVDF membranes, followed by blotting with different
antibodies for the individual targeted proteins. Horserad-
ish peroxidase-conjugated secondary antibodies (GE
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Healthcare) were applied to visualize proteins using
chemiluminescence.

Transmission electron microscopy (TEM) of iron 

nanoparticles

TEM of iron nanoparticles was performed according to
previously published procedures [36]. Briefly, HMVECs
were grown and stimulated in transwell tissue polycar-
bonate membrane polystyrene plates, and were then
washed with ice cold PBS. The cells were fixed in Kar-
novsky's fixative (2.5% glutaraldehyde + 3% paraformal-
dehyde in 0.1 M sodium cacodylate, pH 7.4), and then
washed three times in 0.1 M sodium cacodylate and post-
fixed in 1% osmium tetra oxide, followed by washing
with 0.1 M sodium cacodylate and distilled water. The
cells were dehydrated by sequential washings in 25%,
50% and 100% ethanol then embedded in LX-112 (Ladd,
Williston, VT). The ultrathin sections were stained with
uranyl acetate and lead citrate and examined with a TEM
(JEOL 1220, Tokyo, Japan). To measure the size distribu-
tion of iron nanoparticles in the cell culture medium, iron
nanoparticles (50 g/ml) were prepared as indicated
above. An aliquot of this working solution was then
dropped on a formvar-coated grid, let to dry then ana-
lyzed by transmission electron microscopy.

Dynamic light scattering measurements

Suspension of iron nanoparticles at 50 g/ml was pre-
pared in 0.1% FBS EBM-2 media. The iron nanoparticle
suspension was sonicated with a probe sonicator (Bran-
son Sonifier 450, 10 W continuous output) for 30 min
and then vortexed for 1 min, followed by measuring the
particle size by dynamic light scattering using Nanotrac
252 (Microtrac, Montgomeryville, PA). During sonica-
tion, heat was dissipated by placing the samples on ice
[30].
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reactive oxygen species; TEM: transmission electron
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