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ABSTRACT
Continuous crop expansion has led to a growing demand for phosphate fertilizers. A sound knowledge of the dynamics of phosphorus, and 
its interaction with iron oxides and organic matter, can be useful to develop effective strategies for sustainable management, especially in 
a scenario of increasing shortage of mineral phosphate resources. In this paper, we review the relationship of phosphate to iron oxides 
and organic matter, and its effect on phosphorus availability. Crops typically obtain phosphate from weathered minerals and dissolved 
fertilizers. However, the amount of phosphorus present in the soil solution depends on the extent to which it is adsorbed or desorbed 
by iron oxides, which may be influenced by interactions with organic matter. Therefore, systems for fertilizer recomendation based on 
methodologies considering interactions between soil components such as oxides and organic matter, and the phosphorus sorption 
capacity resulting from such interactions (e.g. residual P analysis), may be more reliable to ensure efficient, rational use of phosphate.

Index terms: Goethite; hematite; phosphorus adsorption; phosphorus desorption; organic carbon.

RESUMO
A contínua expansão da produção agrícola tem levado a uma crescente demanda de fertilizantes fosfatados. O conhecimento da dinâmica 
do fósforo no solo e suas interações com óxidos de ferro e matéria orgânica podem ser uteis no desenvolvimento de estratégias eficientes 
para o manejo sustentável, especialmente em um cenário de crescente escassez de fontes de minerais fosfatados. Nesta revisão bibliográfica 
foi abordado a relação do fósforo com óxidos de ferro e matéria orgânica, e seu efeito na disponibilidade de fósforo. As culturas, 
normalmente, obtém fosfato de minerais intemperizados ou fertilizantes dissolvidos. No entanto, a quantidade de fósforo presente na 
solução do solo depende das reações de adsorção e dessorção por óxidos de ferro, as quais podem ser influenciadas por interações com 
a matéria orgânica. Portanto, os sistemas de recomendação de fertilizantes com base em metodologias que consideram as interações 
entre componentes do solo, tais como óxidos e matéria orgânica, e a capacidade de adsorção de fósforo, resultantes de tais interações 
(por exemplo, análise de P remanescente), pode ser mais confiável para garantir o uso eficiente e racional de fertilizantes fosfatados.

Termos para indexação: Goethita; hematita; adsorção de fósforo; dessorção de fósforo; carbono orgânico.

INTRODUCTION

The world population is expected to rise from 7.2 

billion at present to 9.1 billion by 2050; also, food demand 

is estimated to double over this period. The increasing food 

demand for food and shortage of fertilizer worldwide (Cordell 

et al., 2009; Grantham, 2012) has raised the need for efficient 
use of nutrients in order to meet the demands for increased 

agricultural production while ensuring environmental 

sustainability (Tenkorang; Lowenberg-DeBoer, 2008; 

Worstall, 2013). Brazil is expected to play a central role in this 

scenario (Tollefson, 2010), where traditional food production 

practices will have to be transformed into sustainable, healthy, 

economically efficient agriculture (Sachs et al., 2010).

Productivity can be boosted through appropriate crop 

nutrition, which involves a number of chemical, physical 

and biological processes occurring in soil that are influenced 
by mineralogy, organic composition, fertilization and soil 

management. The dynamics and kinetics of these processes 

are affected by interactions between clay fraction and organic 

components of soil, which influence nutrient availability to 
plants (Barber, 1995; Sposito, 2008). Phosphorus (P) is 
especially influential on agricultural production in countries 
such as Brazil (Novais; Smith, 1999), where soils —largely 
highly weathered Oxisols and Ultisols— are typically 
poor in this element. These two types of soil account for 

approximately 170 million hectares in 72 countries and 
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50% of all terrestrial agriculture in the world. In Brazil, they 

occupy 58% of the territory (IBSRAM, 1985), and are rich in 
iron and aluminium oxides, as well as in 1:1 phyllosilicates 

such as kaolinite; also, they contain substantial amounts of 

2:1 minerals (Kämpf; Curi, 2003; Schaefer et al., 2008). 

PHOSPHORUS

Phosphorus is one of essential elements and also one 

of the most important macronutrients for plant life. In fact, P 

plays a crucial role in phosphorylation and in the production 

of adenosine triphosphate by photosynthesis. It is the eleventh 

most abundant element in the terrestrial crust, with average 

content of 1050 mg kg–1 (Heirinch, 1980), and is found in 

more than 370 minerals (Huminicki; Hawthorne, 2002). 

However, only minerals in the apatite group contain enough 

P to justify its mineralization, whether as hydroxyapatite 

[Ca
5
(PO

4
)

3
(OH)], fluorapatite [Ca

5
(PO

4
)

3
F] or chlorapatite 

[(Ca
5
(PO

4
)

3
Cl)] (Hughes; Rakovan, 2002).

Morocco and Western Sahara in Africa, and China 
—mainly— in Asia, have 66% of all phosphate rocks in the 
world (Fixen, 2009). However, there are estimates that P 

mineral reserves will decay over this century if phosphate 

demand and production continue to grow at the current 

rate (Vaccari, 2009). According to Cordell et al. (2009), 
extraction of phosphatic rocks might peak in 2030 and 

then decline in parallel to an increase in price. 

Global use of P increased markedly from 1961 
to 2007 (Metson; Bennett; Elser, 2012); however, the 
imminent P crisis has refocused international attention 

in recent years, especially, after the 2008 rise in the price 

of phosphate rocks by about 800% (Gilbert, 2009). This 

scenario has raised increasing awareness of the P shortage 

and, together with also increasing worries about the 

environmental impact of P pollution, has boosted research 

to improve the use of this element by reducing losses in the 

agro-ecosystem (Dawson; Hilton, 2011; Fernandez-Mena; 
Nesme; Pellerin, 2016).

PHOSPHORUS IN SOIL

Phosphorus in soil parent materials is primarily in 

mineral form (Figure 1) and especially as apatite (calcium 

phosphate) (Tiessen et al., 1984). The action of different 

factors (e.g., parent material, climate, slope, organisms, 

time) and processes (translocation, transformation, addition, 

Figure 1: Phosphorus cycle in the environment.
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removal) involved in soil formation drives the primary 

mineral to a thermodynamic equilibrium with stable 

pedogenic forms. In these transformations, P from primary 

minerals is released into the soil solution, from which plants 

can absorb it. Concomitantly, elements such as Ca, Mg, K and 
Na, silicates and carbonates, are leached. Transformation of 

Fe and Al into oxides, hydroxides or oxyhydroxides creates 
new functional groups for P adsorption.

Soil weathering causes dissolved phosphate from 
primary minerals to (a) precipitate with some cations 

and lead, for example, to the neo-formation of calcium 

phosphate in alkaline soils (Beck and Sánchez, 1994); (b) 

be adsorbed by functional groups of iron or aluminium 

oxides to form thermodynamically stable complexes 

(Bortoluzzi et al., 2015; Fink et al., 2016b) or (c) form 

biologically active organic compounds that remain as 

organic P in soil (Conte et al., 2002; Martinazzo et al., 
2007; Dodd; Sharpley, 2015). Transformations between 
inorganic and organic forms of P are governed by factors 

affecting its mineralization and immobilization (e.g., 

microbial activity, moisture, physico–chemical and 

mineralogical soil properties) (Santos et al., 2008; Shen 
et al., 2011; Tiecher et al., 2012).

The dissolution of minerals or phosphate fertilizers, 

and the mineralization of organic components in soils, 

produce different anionic species (Lindsay et al., 1989) 

that are protonated to a variable extent depending mainly 

on pH (Hinsinger, 2001). Inorganic P species derived from 

orthophosphoric acid (H
3
PO

4
) such as H

2
PO

4

– and HPO
4

2–

are preferentially absorbed by plants. To what extent P 

remains in the soil solution depends on the degree to which 

it is adsorbed, desorbed and mineralized (Hinsinger, 2001; 

Fink et al., 2016b). Most tropical and subtropical soils in 
Brazil are low in available P because of strong phosphate 

adsorption on soil minerals (Almeida et al., 2003; Johnson; 
Loeppert, 2006; Bortoluzzi et al., 2015).

IRON OXIDES IN SOILS

Brazilian soils —particularly well-drained soils 
(Schaefer et al., 2008)— typically contain iron oxides in 
amounts ranging from a few grams to about 800 g kg–1 

(Kämpf; Curi, 2003). Goethite and hematite are the 

most common pedogenic iron oxides, accompanied by 

maghemite and ferrihydrite in small amounts (Kämpf; 

Schwertmann, 1982; Schaefer et al., 2008; Carvalho 
Filho et al., 2015). The presence and abundance of these 

iron oxides depend on the conditions of soil evolution 

(Bortoluzzi et al., 2015). Thus, Oxisols, which are 

found near the Equator Line, contain aluminium oxides 

(gibbsite) mainly. On the other hand, the oxides hematite, 

goethite, maghemite and magnetite prevail in tropical and 

subtropical Oxisols (Alleoni; Camargo, 1995). Ferrihydrite 
and lepidocrocite are found in poorly drained soils and 

exhibit greater, and faster phosphate adsorption (Wang et 

al., 2013) as a result of their nanometric size and poorly 

crystalline structure leading to a high specific surface area 
(SSA). The presence of goethite is favoured by the high 
organic matter contents and acid pH of the soils (Cornell; 

Schwertmann, 1996), which usually exhibit a higher affinity 
for this mineral than for hematite (Guzmán et al., 1994).

Structurally, hematite (α-Fe
2
O

3
) consists of O layers 

superimposed on the z-axis, with Fe3+ occupying 66% of 
all octahedra formed and each octahedron sharing a face 

with another in the upper layer (Bigham et al., 2002). The 

(SSA) of synthetic hematite ranges from 2 to 115 m2 g–1 

(Cornell; Schwertmann, 1996; Barrón et al., 1988); whereas 
that of natural hematite does not exceed 47 m2 g–1 (Torrent 

et al., 1994).

Goethite (α-FeOOH) is the most abundant iron 
oxide. Its structure comprises a double network of 

FeO
3
(OH)

3
 octahedra on the z-axis. The octahedron 

spaces juxtaposed to the network are empty as a result 

of Fe3+ occupying only one-half of all spaces; also, each 

double network is bonded to another by hydrogen bonding 

and by sharing the apical oxygen (Bigham et al., 2002). 

SSA for goethite ranges from 21 to 70 m2 g–1 (Cornell; 

Schwertmann; 1996; Torrent et al., 1990).
Ferrihydrite is an iron oxyhydroxide precursor of 

hematite formation (Bigham et al., 2002) with a varying 

formula as a result of its also varying degree of hydration 

and of continuous reorganization of atoms in its structure. 

Michel et al. (2010) synthesized an ordered ferrihydrite 
with an increased crystalline structure [Fe

8.2
O

8.5
(OH)

7.4
 

+ 3H
2
O] and ferrimagnetic behaviour, but failed to 

directly observe this phase in soils. Because of its low 

atomic order, identifying this iron oxide requires using 

X-ray diffractometry with synchrotron radiation and 

supplementary techniques such as selective chemical 

extraction with ammonium oxalate and Vis–IR or 
Mössbauer spectroscopy. This mineral is present in soil and 
sediments predominantly in form of nanometric particles 

and hence with a high SSA [up to 400 m2 g–1 according to 

Schwertmann; Taylor (1989)].
Maghemite (γ-Fe

2
O

3
) is typically formed by 

oxidation (Fe2+ → Fe3+) of magnetite. This mineral is 

isomorphic to hematite and isostructural to magnetite; also, 

it possesses a cubic structure consisting of iron tetrahedra 

and octahedra in addition to empty spaces formed by 

effect of changes in Fe valence (Bigham et al., 2002; 
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Schwertmann; Taylor, 1989). A stoichiometric imbalance of 
spins makes maghemite magnetic. This mineral is present in 

amounts up to 297 g kg–1 in soils (Souza et al., 2010; Costa 
et al., 1999); also, it can exhibit a high SSA depending on 
the particular formation conditions (Camargo et al., 2015).

PHOSPHORUS ADSORPTION
ON IRON OXIDES

The high affinity of iron oxides for phosphate 
has for decades boosted research into the adsorption, 

desorption and diffusion dynamics of P, and its 

availability, in soils (Table 1). Some studies have revealed 
that the actual importance of P adsorption by other clay 

minerals has been underestimated. Thus, P is adsorbed 

less markedly by functional groups at the edges of 1:1 

and 2:1 minerals, and this affects the amount and energy 

of P adsorption —and hence P availability to plants 
(Devau et al., 2009). Recently, Gérard (2016) revisited 
experimental studies on the topic conducted over the past 

70 years and concluded that the P adsorption capacity of 

clay minerals may be similar to or even higher than that 

of iron and aluminium oxides depending on the SSA of 
the particular soil components.

Phosphorus adsorption and desorption depend on 

concentration, crystallinity, SSA, and the configuration 

and concentration of hydroxyl groups on the surface of 

iron oxides. These factors in turn are affected by the 

formation route, parent material, degree of weathering, 

soil solution composition, drainage conditions and pH 

(Barrón; Torrent, 1996; Inda; Kämpf, 2005; Schaefer 
et al., 2008). Well-drained soils weathered to a 

variable degree have been found to differ in maximum 

phosphorus adsorption capacity (P
max

) depending on the 

particular type of iron or aluminium oxide and on its 

properties (Curi; Franzmeier, 1984; Torrent et al., 1994; 

Barrón; Torrent, 1996; Almeida et al., 2003; Cessa et 
al., 2009; Lair et al., 2009; Broggi et al., 2010; Fink 

et al., 2014).

Adsorption of phosphate in the soil solution by 
functional groups in iron oxides results in the formation 

of surface complexes with no intercalated water molecules 

that are specifically adsorbed (Figure 2). These surface 
complexes are called “inner sphere complexes” to 

indicate that they are strongly bonded to highly structured 

mineral surfaces via covalent binding (Essington, 
2003; Sparks, 2003; Sposito, 2008). Phosphorus is 
preferentially adsorbed by hydroxyl surface groups in 

iron oxides, which are protonated below pH 7–9 (zero-

charge point; Table 2) (Essington, 2003; Sparks, 2003; 
Sposito, 2008). Hydroxylation occurs when Fe ions on 
mineral surfaces are exposed to water and complete 

Table 1: Selected studies on phosphorus adsorption in soils.

Authors, year Subject of the study

Lewis and Quirk, 1967 Phosphorus diffusion and uptake by plants grown in different soils

Barrow, 1974 The relationship between P addition and adsorption in soils

Bhat et al., 1973 The relationship between P desorption in soil and diffusion to plant roots

Barrón et al., 1988 Phosphorus adsorption in various soils containing aluminous hematite

Torrent et al., 1990 Phosphorus adsorption and desorption onto goethite of variable morphology

Torrent et al., 1992 Stages of P adsorption onto natural goethite

Mesquita and Torrent, 1993 Phosphorus adsorption in soils of diverse mineralogy from the Brazilian Cerrado 

Afif et al., 1995 The influence of organic matter and specific surface area on P adsorption in 
Brazilian soils

Fontes and Weed, 1996 The effect of mineralogy and specific surface area on P adsorption in Brazilian soils

Kreller et al., 2003 Competitive adsorption of phosphate and organic matter on iron oxides

Liptzin and Silver, 2009 The reducing effect of iron oxides on P availability in soils under high carbon 
additions

Pinto et al., 2013 Phosphorus adsorption and desorption as indicators of soil fertility

Bortoluzzi et al., 2015 The role of hematite and goethite in P adsorption in subtropical soils

Fink et al., 2014; 2016a; 2016b Phosphorus adsorption, desorption, diffusion and absorption in soils rich in 
goethite, hematite or kaolinite. 
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its coordination with hydroxyl groups (Stumm, 1992). 
Hydroxyl groups may be coordinated by one (type 

A, ≡Fe—OH–0.5), two (type C, ≡Fe
2
—OH0) or three 

Fe atoms (type B, ≡Fe
3
—OH+0.5), corresponding to 

hydroxyls of simple, double or triple coordination 

(Figure 2), respectively (Russel et al., 1974; Essington, 
2003; Sparks, 2003; Sposito, 2008). Type A hydroxyls 
are the most easily protonated (Fontes et al., 2001) as a 

result of the charge balance in Fe—O bonds, where the 
electron cloud of oxygen is more electronegative than in 

doubly or triply coordinated hydroxyls. Protonation of 

these functional groups confers Lewis acid properties, 

with the metal cation reacting with empty electronic 

orbitals. These sites are very reactive because a 

positively charged water molecule (≡Fe–OH
2

+0.5) is 

very unstable and easily exchanged with an organic 

or inorganic anion in solution. Protonation weakens 

the Fe—OH bond by displacing the electron cloud of 
oxygen to the hydrogen side (Fontes et al., 2001). As 
a result, hydroxyl protonation triggers two different 

processes in P adsorption, namely: (a) protonated 

surfaces generate a positive electric field that attracts 
phosphate ions; and (b) phosphate replaces protonated 

hydroxyl groups. The phosphate may be absorbed in 

monodentate or bidentate form depending on the number 

of OH groups in the phosphate that are bonded to Fe 

atoms, or in binuclear form when two OH phosphate 

groups are adsorbed by two Fe atoms (Figure 2).

Thermodynamically, all adsorbed phosphate may be 

desorbed (Barrow, 1983a, 1983b); however, the desorption 

kinetics depends on the interplay of various factors such as 

the types of clay minerals where the phosphate is adsorbed 

(Chintala et al., 2014). According to Parfitt (1989), the 
binding energy increases in the sequence monodentate > 

bidentate > binuclear complexes and the probability of 

phosphate desorption increases in the reverse sequence.

Barrón and Torrent (1996) estimated the concentration 
of monocoordinated hydroxyl groups in various goethite and 

hematite faces, which adsorb P via binuclear complexes. 

Adsorbed phosphate can increase the proportion of binuclear 
complexes through so-called “phosphorus aging” (Santos et al., 
2008; de Campos et al., 2016). This accounts for the reported 
fact that phosphate diffuses with time, through defects on 

the mineral surface, thereby significantly increasing P
max

 and 

decreasing desorption (Barrow, 1985; Torrent et al., 1992; 

Barrow, 1987). Willian and Reith (1971) found 8–20% of all 
P added to soil to remain available one year after application, 

and the proportion to decrease to 2.7% after 6 years.
Barrón et al. (1988) and Torrent et al. (1994) found 

P
max

 for hematite to range from 0.8 to 4.1 µmol P m–2 in 

natural samples and from 0.2 to 3.3 µmol P m–2 in synthetic 

samples,  depending on the size, morphology, and degree 

of Al substitution in its crystal structure. In goethite, P
max

 

ranges from 1.62 to 3.13 µmol P m–2 (Torrent et al., 1994); in 

ferrihydrite, it is close to 7 µmol P m–2 (Guzman et al., 1994). 

Although the average phosphate adsorption per surface area 
unit is similar for goethite and hematite, the goethita typically 

adsorbs more P as a result of its higher SSA (Torrent et al., 
1994). This is consistent with the results of Parfitt (1989) 
and Wang (2013), who found P adsorption to decrease in 

the mineral sequence ferrihydrite > goethite > hematite. 

Ferrihydrite can considerably alter P
max

 in soil, even at 

Figure 2: Phosphorus adsorption in monodentade/
mononuclear and bidentate/binuclear forms onto 
goethite surfaces.

Component ZCP

Organic matter 3.0–9.0

Hematite [α-Fe
2
O

3
] 6.7–8.5

Goethite [α-FeOOH] 7.8–9.0

Magnetite [Fe
3
O4] 7.0

Gibbsite [Al(OH)
3
] 9.0

Quartz [α-SiO
2
] 2.0–3.0

Kaolinite [Al
2
Si

2
O5(OH)4] 4.6–4.7

Montmorillonite 2.5

Table 2: Zero-charge point (ZCP) for major organic and 
inorganic soil components. Adapted from Essington 
(2003), Sparks (2003) and  Sposito (2008).
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low concentrations in well-weathered soils (Johnson and 
Loeppert, 2006; Ranno et al., 2007; Fink et al., 2014). Fink 
et al. (2016a) examined the effect of SSA on P adsorption 
in two Oxisols with similar contents in iron oxides and 

found P
max

 to be twice greater in the soil where goethite 

prevailed over hematite.

INTERACTION OF ORGANIC MATTER WITH 
IRON OXIDES AND PHOSPHORUS

Organic matter is an important influential factor 
for chemical, physical and biological soil properties. 

Negatively charged functional groups in organic 

substances (e.g., carboxyl, phenol) can interact with 

positively charged minerals such as iron oxides and alter 

phosphorus adsorption as a result (Schwertmann; Kodama; 
Fischer, 1986; Liu et al., 1999). In fact, adsorption of 
organic functional groups onto iron oxides can (a) promote 

anion adsorption via cation bridges (Al3+ and Fe3+); (b) 

increase SSA by inhibiting mineral crystal growth; (c) alter 

surface charges; (d) boost competition with other anions 

for adsorption sites; and (e) cause adsorbed anions to be 

desorbed (Hinsiger et al., 2011; Borggaard et al., 2005; 

Guppy et al., 2005; Hinsinger, 2001). These phenomena 

are illustrated in Figure 3. 

As can be seen, condition I in the figure increases 
P adsorption (Yaghi; Hartikainen, 2013); however, if it 

decreases the P concentration in the soil solution, then 

the bond is reversible. In condition II, the presence of 

organics acids inhibiting crystal growth increases SSA in 
iron oxides and hence P adsorption (Barrón et al., 1988). 
However, Mikutta et al. (2006) found citrate (an organic 
anion) to block goethite pores and prevent phosphate 

diffusion into mineral defects as a result.

Organic acids in soil also can compete for P 

adsorption sites (condition IV; Schwertmann; Kodama; 
Fischer, 1986; Bayon et al., 2006; Redel et al., 2007; 
Zamuner et al., 2008) or, if previously adsorbed, alter the 

surface charge of iron oxides and cause phosphates to 

be electrostatically repelled (condition III; Antelo et al., 
2007). Phosphorus sorption is decreased in both cases.

Several studies have shown humic acids to affect 
the reduction of phosphorus adsorption (Sibanda; Young, 
1986; Andrade et al., 2003; Antelo et al., 2007) and 
hence the increase in P availability (Pavinato; Merlin; 
Rosolem, 2008). Recently, Yan et al. (2015) studied the 
phosphorus adsorption capacity of humic acid complexes 

of ferrihydrite and goethite under variable conditions of 

pH and ionic strength. The authors found P adsorption to 

Figure 3: Effects of organic carbon on phosphorus adsorption onto iron oxides.
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be substantially reduced by iron oxides in the presence of 

organic compounds. However, Borggaard et al. (2005) and 

Guan, Chang and Chen (2006) found the adsorption energy 
of P onto iron oxides to be much higher than that of organic 

acids, being that the natural concentration of organic 

carbon in soil had no effect on P adsorption. These results 

are consistent with those of Afif et al. (1995), who found 
the concentration of low-molecular weight organic acids in 

extracts from P-containing soils to increase; this suggests 

that the acids may delay but not prevent P adsorption. The 

previous results make phosphate desorption by organic 

matter unlikely (condition V in Figure 3), even though 

Souza et al. (2014) found the addition of citrate to soil to 
increase P desorption.

Some studies have revealed that increasing the 
organic matter content of soil does not decrease P

max 

(Boschetti; Quintero; Benavidez, 1998; Valladares; 

Pereira; Anjos, 2003; Fink et al., 2014, 2016a); others, 
however, suggest that organic matter affects the binding 

energy of adsorbed P (Kreller et al., 2003, Rheinheimer; 
Anghinoni; Conte, 2003) and can therefore increase the 
efficiency of phosphate fertilizer —possibly as a result of 
phosphate adsorption with little energy (e.g., via cation 

bridges; Guppy et al., 2005; Figure 3).

Some recent studies have addressed the dynamics 
of P adsorption in the presence of C added in biochar 

forms (Yao et al., 2012; Lin et al., 2012; Xu et al., 2014). 

Biochar is a product of the pyrolysis, with oxygen 

limitation, of biological materials (Cernansky, 2015) whose 

characteristics depend on the production conditions (viz., 

residue composition, temperature, time, oxygen supply 

during burning). Biochar has proved be an efficient sorbent 
for organic pollutants by effect of its high SSA and porosity 
(Lehmann, 2007; Glaser; Lehmann; Zech, 2009; Cornelissen 

et al., 2005). An increased number of phenol, hydroxyl, 
carboxyl and quinone groups can increase negative surface 

charge (Cohen-Ofri et al., 2006) and decrease P adsorption 
as a result. However, this assumption requires further 

investigation in order to confirm the favourable and adverse 
effects of biochar on tropical soils.

CONCLUSIONS

The growing global demand for food and fibre, and 
the impending shortage of phosphate mineral reserves, have 

made it indisputably necessary to understand the processes 

and mechanisms governing phosphorus availability in soil. 

Iron oxides and organic matter are the soil constituents 

most strongly affecting the reactions and rate of phosphorus 

adsorption and desorption, especially in highly weathered 

soils. A sound knowledge of the interaction of iron oxides 
and organic matter with soil P is essential with a view 

to developing effective nutrient management strategies 

for agro-ecosystems allowing crop productivity to be 

maintained or even increased with a concomitant reduction 

in phosphate fertilizer use. Recent studies in highly 
weathered Brazilian soils have shown that organic matter 

and various iron oxides have a direct effect on P adsorption/

desorption and availability (Bortoluzzi et al, 2015; Fink et 

al., 2016b, 2014). As a result, fertilizer recommendation 
systems based on soil buffering categories established in 

terms of clay content may be ineffective. Therefore, systems 

for fertilizer recommendation based on methodologies 

considering interactions between soil components such 

as oxides and organic matter, and the phosphorus sorption 

capacity resulting from such interactions (e.g., residual P), 

may be more reliable to ensure efficient, rational use of 
phosphate fertilizers.
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