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S u m m a r y  

Recently, it was reported that nitric oxide (NO) directly controls intracellular iron metabolism 
by activating iron regulatory protein (IRP), a cytoplasmic protein that regulates ferritin translation. 
To determine whether intracellular iron levels themselves affect NO synthase (NOS), we studied 
the effect of iron on cytokine-inducible NOS activity and mRNA expression in the murine 
macrophage cell line J774A.1. We show here that NOS activity is decreased by about 50% in 
homogenates obtained from cells treated with interferon 3' plus lipopolysaccharide (IFN-3~/LPS) 
in the presence of 50 ~M ferric iron [Fe(3 +)] as compared with extracts from cells treated with 
IFN-3~/LPS alone. Conversely, addition of the iron chelator desferrioxamine (100 #M) at the 
time of stimulation with IFN-3,/LPS increases NOS activity up to 2.5-fold in J774 cells. These 
effects of changing the cellular iron state cannot be attributed to a general alteration of the IFN-3~/LPS 
signal, since IFN-3,/LPS-mediated major histocompatibility complex class II antigen expression 
is unaffected. Furthermore, neither was the intracellular availability of the NOS cofactor tetra- 
hydrobiopterin altered by treatment with Fe(3 +) or desferrioxamine, nor do these compounds 
interfere with the activity of the hemoprotein NOS in vitro. We demonstrate that the mRNA 
levels for NOS are profoundly increased by treatment with desferrioxamine and reduced by 
Fe(3 +). The half-life of NOS mP, NA appeared not to be significantly altered by administration 
of ferric ion, and NOS mP, NA stability was only slightly prolonged by desferrioxamine treatment. 
Nuclear run-off experiments demonstrate that nuclear transcription of cytokine-inducible NOS 
mP, NA is strongly increased by desferrioxamine whereas it is decreased by Fe(3 +). Thus, this 
transcriptional response appears to account quantitatively for the changes in enzyme activity. 
Our results suggest the existence of a regulatory loop between iron metabolism and the NO/NOS 
pathway. 

N 
'itric oxide (NO) 1 is a short-lived messenger molecule 
involved in neurotransmission, regulation of blood pres- 

sure, and cytotoxicity (for reviews see references 1-3). Many 
biological effects of NO can be explained by its interaction 
with iron. Cytotoxicity of activated macrophages towards 
tumor target cells is characterized by inhibition of DNA syn- 
thesis, by inhibition of non-heme iron containing enzymes 
of the respiratory electron transfer chain, and by iron release 
(4). It has been demonstrated that the loss of activity of the 

1Abbreviations used in thistmper: Fe(3+), ferric iron; iNOS, inducible nitric 
oxide synthase; IRE, iron responsive element; IRP, iron regulatory protein; 
NMA, NC-monomethyl-t-arginine; NO, nitric oxide; NOS, nitric oxide 
synthase. 
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critical Krebs-cycle enzyme aconitase in activated macrophages 
is a result of the formation of iron-nitrosyl complexes in- 
duced by the synthesis of nitric oxide which interacts with 
the iron-sulfur cluster of the enzyme (5, 6). It was also shown 
that non-heme iron of ferritin is a target of NO (7). Further- 
more, the activation of soluble guanylyl cyclase by NO ap- 
pears to be achieved by nitrosylation of the heine iron of the 
enzyme (for a review see reference 8). Thus, many of the bio- 
logical effects of NO can be traced back to chemical interac- 
tions between NO and iron. 

Control over cellular iron homeostasis is largely exerted 
by a genetic system that operates posttranscriptionally in the 
cytoplasm. A cis-acting RNA motif, the so-called iron- 
responsive element (IRE), and a trans-acting cytoplasmatic 
protein, known as iron regulatory protein (IRP, formerly 
known as IRF, IRE-BP, FRP, or p90) cooperate to coor- 
dinate the iron-dependent expression of the intracellular storage 
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protein ferritin, of the receptor critical for cellular uptake of 
the iron carrier transferrin, and of erythroid 5-amino levu- 
linic acid synthase, the first enzyme in the heme biosynthetic 
pathway. Iron deprivation stimulates IRE-binding by IRP, 
thereby repressing ferritin and e - A L A S - m R N A  translation 
and protecting transferrin receptor m R N A  from degradation, 
which consecutively results in increased transferrin receptor 
expression (for reviews see references 9, 10). Recently, it was 
found that not only iron deprivation, but also activation of 
N O  synthase (NOS) can stimulate the IRE-binding activity 
of IRP (11, 12) in the murine macrophage cell lines J774, 
RAW264.7, and P338D1, as well as in primary macrophages. 
These results indicate involvement of N O  in the intracellular 
regulation of  iron metabolism (13). Stimulation of NO syn- 
thesis was shown to repress ferritin translation via IRP in 
the murine macrophage cell line J774 (12). Enhanced gener- 
ation of N O  resulting from stimulation of inducible NOS 
by cytokines may also play a role in iron disturbances charac- 
teristic in chronic immune activation states which are hall- 
marked by low levels of  iron and high ferritin and cytokine 
concentrations in serum (14-16). Based on these recent dis- 
coveries pertaining to the function of N O  in iron regula- 
tion, we investigated the effect of intracellular iron levels on 
NOS activity and expression in the murine macrophage cell 
line J774. 

Mater ia ls  and  Me thods  

Cell Culture Techniques. The J774A.1 murine macrophage cell 
line was obtained from the American Type Culture Collection 
(Rockville, MD). Cells were grown in DMEM medium supple- 
mented with 10% heat-inactivated FCS, 1 mM glutamine, 100 U/ml 
penicillin, and 0.1 rag~m1 streptomycin. 107 cells were supplemented 
with 50 /zM ferric iron [Fe(3+)] (applied as Fe(NO3)3.9H20), 
100/zM desferrioxamine, or 250 #M NC-monomethyl-L-arginine 
(NMA; all from Sigma Chemical Co., Munich, Germany) in cul- 
ture medium. Cells were stimulated by combined treatment with 
50 U/ml murine rIFN-3' (sp act 107 U/mg, from GIBCO BILL, 
Life Technologies, Vienna, Austria) and 10 #g/m1 Escherichia coli 
LPS (055:B5; phenolic extract; Sigma Chemical Co.). These stimuli 
have been shown to stimulate inducible NOS (iNOS) in J774 
cells (17). 

After incubation for 20 h at 37~ in humidified air containing 
5% CO2, cells were harvested and washed with PBS, containing 
130 mM NaC1, 2 mM KC1, 6 mM Na2HPO4, 1 mM KH2PO4. 
For determination of NOS activity in homogenates, 107 cells were 
frozen in 1 ml of distilled water at -80~ and treated further as 
described below. 

Determination of NOS Activity. Enzyme activity in cell homo- 
genates was determined by formation of [3H]citrulline as previ- 
ously done (18, 19) and modified as described (20). In brief, J774 
cells frozen at -80~ were thawed rapidly, centrifuged for 15 rain 
at 10,000g at 4~ and the supernatant was freed from low mole- 
cular mass compounds by Sephadex G-25 chromatography. The 
protein fraction was eluted with 40 mM Tris/HC1, pH 7.5, con- 
taining 100 #M PMSF. Standard reaction mixtures contained 40 mM 
Tris-HC1, pH 7.0, 100/zM L-arginine, 25 #M flavinadeninedinucleo- 
tide, 25 #M flavinmononucleotide, 2 mM NADPH, 5 #M 6R- 
tetrahydrobiopterin, 100 #M PMSF, 60,000-80,000 cpm of purified 
L-[2,3,4,5-3H]-arginine (Amersham International, Amersham, 

Bucks, UK; for purification see reference 20) and 100 #1 of cell 
extract (about 200 #g of cell protein) in a final volume of 200 #1. 
Samples were incubated for 30 min at 37~ and the reaction was 
stopped by the addition of 800 #1 of 200 #M sodium acetate, pH 
5.0, containing 200 #M EDTA and 1 mM t-citrulline. [3H]citrul- 
line was quantified after separation from [3H]arginine by Dowex 
50W (21). Enzyme activity is expressed as pmol [3H]citrulline 
formed per minute per milligram of protein in the cell extract. 

Measurement of Nitrite in Supernatants. Cells were grown in 
culture medium and stimulated for 20 h as described above. Nitrite 
was determined in supernatants by the Griess reaction (22) using 
the stable Griess-Ilosvay's reagent from Merck (Darmstadt, Germany) 
and sodium nitrite as a standard. The detection limit was 1 
#mol/liter. 

Determination of MHC Class H Expression. Expression of 
mouse MHC class II antigens was estimated by use of the anti-I- 
Ek.d.p ....... IgG2a mAb (clone 13/4.K5; obtained from Serotec, 
Oxford, UK). For isotype control, a mouse IgG2a mAb anti- 
CD-10 (Becton Dickinson & Co., Mountain View, CA) was used. 
Both antibodies were applied as purified Ig (0.5 #g in 20 #1 of 
PBS containing 0.1% azide). Cells were seeded at a density of 106 
cells/ml in 24-well plates and supplemented and stimulated as de- 
scribed above for 48 h. After harvesting by scraping, cells were 
washed and resuspended in 50/~1 of DMEM containing 2% FCS 
and 0.1% azide and incubated with the appropriate antibody for 
30 min on ice. For reagent control, the first step was carried out 
only with culture medium. Incubation was stopped by addition 
of I ml of cold DMEM/2% FCS/0.1% azide. After two washes, 
cells were counterstained with FITC-conjugated anti-mouse IgG 
serum diluted 1:100 in DMEM/2% FCS/0.1% azide. For analysis, 
a fluorescence-activated cell sorter (FACScan| Becton Dickinson 
& Co.) was used. Fluorescence intensities of 5 x 103 cells were 
measured for each determination. Data are expressed as mean fluores- 
cence channel in relation to isotype and reagent control. 

Determination of lntracellular Biopterin. J774 mouse macrophages 
were seeded at a density of 106/ml in 6-well plates (5 ml/well) and 
stimulated as described above. Cells were harvested after 20 h by 
means of a cell scraper, washed with PBS, and pellets were 
resuspended in 250 #1 of distilled water and rapidly frozen in liquid 
nitrogen. After thawing, samples were centrifuged at 10,000 g for 
2 min and subjected to oxidation with iodine at alkaline or acidic 
pH according to previous protocols (23). Briefly, 100 #1 of cell ex- 
tracts was mixed with 5 #1 of 1 M HC1 and 5 #1 of 0.1 M KI/I2 
in order to determine the amount of total biopterin including 7,8- 
dihydrobiopterin and 5,6,7,8-tetrahydrobiopterin. Another 100/~1 
of cell extracts was mixed with 5 #1 of 1 M NaOH and 5 #1 of 
0.1 M KI/I2 for destroying the tetrahydro-derivative, thus de- 
tecting the sum of 7,8-dihydrobiopterin and biopterin. After incu- 
bation for 1 h in the dark at room temperature, 10 #1 HC1 were 
added to the NaOH/KI2 treated extracts, samples were cen- 
trifuged for 2 min at 10,000 g, and the supernatant was mixed 
with 10 #1 of 0.1 M ascorbic acid. Samples were then extracted 
with AASP-SCX cartridges (Analytichem International, Inc., 
Harbor City, CA), and pteridines were directly eluted on to a 
reversed-phase HPLC column (Lichrosorb, RP-18; Merck) and 
quantified by fluorescence detection (LS 4; Perkin-Elmer Corp., 
Baconsfield, UK) as described (24). Values are presented as pico- 
mole per milligram of total cell protein. 

Northern Blot Analysis and Determination of mRNA Half Life, 
J774 cells were stimulated for 20 h as described above. For determi- 
nation of mKNA half-life, actinomycin D (5 #g/ml) was added 
and cells were then harvested for RNA preparation every 1.5 h 
for 7.5 h (25). Cells were harvested by scraping, washed twice with 
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Table 1. Influence of Fe(3+), Desferrioxamine and NMA on IFN-y/LPS-induced NOS Activity and Relative and Absolute 

Concentrations of 5,6,7,8-tetrahydrobiopterin (BH4) in j774 Cells 

NOS activity Intracellular BH4 BH4/ 
Supplementation (pmol/min -1 mg-l~ (nmol/mg protein) (Biopterin + BH2) 

Control 8.6 _+ 0.3 73.4 + 21.6 2.37 

Iron 6.4 _+ 0.4 75.7 + 23.1 2.23 

Desferrioxamine 5.6 _+ 0.2 72.2 _+ 17.8 2.28 

IFN-'y/LPS 286.7 + 8.3 58.6 _+ 19.0 2.42 

IFN-3'/LPS plus Fe(3 +) 157.0 + 23.5 61.6 _+ 18.9 2.15 

IFN-y/LPS plus desferrioxamine 699.7 _+ 39.1 56.3 _+ 14.7 2.43 

IFN-y/LPS plus NMA 53.8 _+ 6.4 64.2 _+ 21.2 2.23 

IFN-3'/LPS plus NMA plus Fe(3 § 29.5 _+ 4.9 62.9 _+ 13.7 2.41 

IFN-3;/LPS plus NMA plus desferrioxamine 137.6 + 14.9 59.0 _+ 18.2 2.33 

Confluent J774 cells were treated with Fe(3 § (50 #M), applied as ferric nitrate nonahydrate, desferrioxamine (100 /~M), or NMA (250/~M) in 
the presence or absence of IFN-y (50 U/ml) and LPS (10/~g/ml) for 20 h. NOS activity and intracellular concentrations of biopterin, 7,8-dihydrobiopterin 
(BH2), and 5,6,7,8-tetrahydrobiopterin (BH4) were determined as described in Materials and Methods. A ratio of BH4/(BH2 plus biopterin) was 
calculated in order to obtain a measure of relative BH4 availability in the cell. Values are means of triplicate cultures _+ SD from one of five similar 
experiments. 

PBS, and pellets were stored at -80~  until preparation of total 
RNA by acid guanidinium thiocyante-phenol-chloroform extrac- 
tion as previously done (26). 10/~g of total RNA were separated 
on 1% agarose/2.2 M formaldehyde gels and RNA was blotted 
onto Duralon-UV membranes (Stratagene, La Jolla, CA). After 
UV-cross-linking and prehybridization for 6-8 h at 65~ blots 
were hybridized overnight with 106 cpm/ml of o~[32p]dCTP- 
radiolabeled cDNA plasmid probes at 65~ The hybridization so- 
lution contained 3 • SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 
10% dextran sulfate, 10• Denhardt's solution (0.2% Ficoll 400, 
0.2% polyvinylpyrrolidone, and 0.2% BSA), and 1 mg/ml of 
denaturated salmon sperm DNA. Blots were washed subsequently 
with 2 • SSC/0.5% SDS (twice for 30 min) and with 0.1 • 
SSC/0.5% SDS (twice for 30 rain) at 65~ Filters were exposed 
for up to 4 d to XILP-5 x-ray films (Kodak, X-OMAT RP) with 
intensifying screens at -80~ Autoradiographs were densitometri- 
cally scanned using the Bio-Profil system for image analysis (Vilber 
Lourmat, Marne La Vall6e, France). 

cDNA Probes. The murine inducible macrophage NOS cDNA 
probe (clone piNOSL3 in pU19) was a generous gift of Drs. 
Q.-W. Xie and C. F. Nathan (Cornell University Medical Col- 
lege, New York) (27). For Northern hybridization, the 817-bp 
EcoRI/HinclI insert was used. Murine m5/3 tubulin cDNA (in 
pUC9; 1.6-kb EcoRI/EcoRI insert) (28) and chicken/3-actin cDNA 
(in pBR322; 1.9-kb HindlII/HindlII insert) (29) were kindly 
provided by Dr. D. W. Cleveland (Johns Hopkins University School 
of Medicine, Baltimore, MD). Probes were labeled with 
c~[32p]dCTP (DuPont New England Nuclear, Boston, MA) using 
the oligoprimer procedure (30) to a sp act of 1-5 x 109 cpm//~g 
DNA. 

Nuclear Runoff Transc@tion. Nuclei ofJ774 cells treated as out- 
lined above were prepared after 12 h of stimulation. Purification 
of nuclei and in vitro transcription were performed as described 
(31). Briefly, nuclei were isolated from 5 x 107 cells with NP-40 
lysis buffer containing 10 mM Tris-HC1, pH 7.4, 10 mM NaC1, 
3 mM MgC12, and 0.5% NP-40 and stored in 50 mM Tris-HCl, 
pH 8.3, 40% glycerol, 5 mM MgC12, and 5 mM EDTA in liquid 
nitrogen. For in vitro transcription, c~[32p]UTP (800 Ci/mmol, 

100/~Ci/5 x 107 nuclei) was used. Plasmids (piNOSL3 and m~5- 
tubulin, see above), linearized with EcoRI, were spotted to Dura- 
lon-UV nylon membranes using a dot blot (2.5/~g/dot) apparatus 
and bound by UV-cross-linking. Freshly transcribed 32p-labeled 
RNA was hybridized to membranes for 48 h at 65~ applying 
equal amounts of TCA-precipitable counts. Filters were then washed 
twice in 2 • SSC at 65~ for I h, treated with RNase A, washed 
twice in 2 x SSC at 37~ and exposed to x-ray films at -80~ 

Protein Determination. Protein concentration of cell lysates was 
estimated according to Bradford (32) using the protein dye reagent 
from BioRad Laboratories (Richmond, CA) and BSA as a standard. 

Iron Determination. Concentration of low molecular weight iron 
in cell lysates was estimated by the ferrozine-ascorbic acid method 
at 550 nm modified from Siedel et al. (33) using a microplate reader 
(model 2001; Anthos Labtec Instruments, Salzburg, Austria). 

Results 

Iron Regulates NOS Activity in Induced j774 Cells. To study 
the effect of  iron on induction of NOS,  we determined NOS 
activities in homogenates from J774 cells treated with 50/~M 
Fe(3 +), applied as ferric nitrate nonahydrate, or the iron che- 
lator desferrioxamine (100/~M) in the absence or presence 
of  IFN-y/LPS.  Administration of iron or desferrioxamine to 
unstimulated J774 cells did not significantly alter the low 
NOS activity present in otherwise untreated control cells (p 
>0.05, Student's t test) (Table 1). As reported (17), stimula- 
tion with  IFN-3,/LPS for 20 h strongly induced NOS ac- 
tivity in this cell line. Concurrent treatment wi th  50 # M  
Fe(3 +) reduced enzyme activity by about 45% ~ <0.001). 
In contrast, 100/~M desferrioxamine added at the time of 
stimulation with IFN-3' /LPS yielded a 2.5-fold increase of  
NOS activity (p <0.0001). The difference in enzyme activi- 
ties of  iron-supplemented cells as compared to cells treated 
with  desferrioxamine was about fourfold (p <0.0001) (Table 
1). Further administration of N M A ,  a stereospecific inhib- 
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Figure 1. In vitro effects of iron and desferrioxamine on IFN-3,/LPS-in- 
duced NOS activity. Cells were stimulated with IFN-3//LPS for 20 h and 
extracts were prepared as described under Materials and Methods. Increasing 
concentrations of [Pe(3+)] or desferrioxamine were added to the enzyme 
incubation mixture for determination of NOS activity which was mea- 
sured as described in Materials and Methods. Values are means of triplicate 
incubations • SD for one of three experiments. 
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Figure 2. Expression of murine MHC class II antigens in J774 cells 
supplemented with iron and desferrioxamine and stimulated with IFN-3, 
and/or LPS. Confluent monolayers were treated with Fe(3 § ) (50/zM) or 
desferrioxamine (100/zM) and stimulated with [FN-3'/LPS for 20 h. Im- 
munofluorescence staining of expressed murine MHC class II antigens (I- 
E k) was carried out as described in Materials and Methods. Data are ex- 
pressed as mean channel log fluorescence minus fluorescence of isotype 
control and reagent control for three different experiments performed in 
triplicate (mean _+ SD). 

itor of NOS, to J774 cells, strongly reduced cytokine-induced 
NOS activity but did not alter the modulating effect of iron 
supplementation or withdrawal on enzyme activity (Table 
1). The regulation of NOS activity by cellular iron is also 
reflected in the amount of NO released into the supernatants 
of J774 cells, which was estimated by determination of ni- 
trite (for nitrite levels see Fig. 3). 

As expected, addition of Fe(3 +) to J774 cells resulted in 
an increase of the intracellular concentration of this metal 
up to 195/zg/dl after 20 h of treatment, as compared to un- 
treated cells (means 13/xg/dl), whereas supplementation with 
desferrioxamine reduced intraceUular iron amounts below the 
limit of detection (<5/~g/dl) (details not shown). It is well 
established that 5,6,7,8-tetrahydrobiopterin is an essential 
cofactor of NOS (for a review see reference 1) and that its 
intracellular levels modulate NOS activity in various cell types 
(20, 34, 35). Since Fe(3 +) is known to affect reduced pteri- 
dines (24), we examined whether the effect of iron on NOS 
activity could originate from alterations in intracellular tetra- 
hydrobiopterin concentrations. No significant changes in in- 
tracellular levels of tetrahydrobiopterin or in its ratio to the 
oxidized species 7,8-dihydrobiopterin and biopterin could be 
observed after treatment with Fe(3 § or desferrioxamine 
(Table 1). The minor decrease in tetrahydrobiopterin levels 
in cells treated with IFN-3//LPS as compared to controls may 
be caused by cell damage after prolonged exposure to LPS. 

Iron Availability Does Not Influence NOS Activity In Vitro. 
Since NOS is a heine protein (36, 37), we studied whether 
iron salts or iron chelation could directly influence the en- 
zyme itself. We therefore tested NOS activity in homogenates 
of IFN-3dLPS--treated J774 cells in presence of increasing con- 
centrations of Fe(3 +) or desferrioxamine. As shown in Fig. 
1, administration of desferrioxamine to the incubation mix- 
ture did not significantly alter NOS activity. In contrast, ad- 

dition of Fe(3 § to the assay mixture caused a concentration- 
dependent inhibition of NOS activity showing half maximal 
effects at about 50/zM (Fig. 1). As expected, tetrahydrobi- 
opterin was destroyed in these samples by Fe(3 +) and no 
tetrahydroderivative was detectable, thus explaining the in- 
hibitory effect of Fe(3 +) in these assays (data not shown). 

Influence of Fe(3 +) and Desferrioxamine on MHC Class II 
Expression. To test whether Fe(3 +) and desferrioxamine 
exert their effects on NOS activity by modulating the signals 
mediated by IFN-'y and/or LPS, we investigated whether iron 
availability influenced MHC class II antigen expression in- 
duced in J774 cells by either IFN-y alone or by IFN-'y/LPS 
(38). As shown in Fig. 2, MHC class II antigen expression 
(determined as I-E k) was not significantly altered with ei- 
ther supplement after stimulation with IFN-'y/LPS or with 
IFN-"/alone. Addition of desferrioxamine alone to otherwise 
untreated cells, which did not influence NOS activity (see 
Table 1), showed a significant (F <0.001) increase of I-E k ex- 
pression which will be subject of further investigation. 

Iron Modulates the Steady-state mRNA Levels of iNOS. Since 
our previous analyses argued against a posttranslational effect 
of iron on NOS expression, we examined the NOS mRNA 
levels in cells treated with Fe(3 +) and desferrioxamine by 
Northern blotting. Low levels of NOS mRNA were detect- 
able in untreated J774 cells which were strongly induced after 
treatment with IFN-'y/LPS for 20 h (Fig. 3). The high levels 
of NOS mRNA after IFN-'y/LPS stimulation were strongly 
reduced when Fe(3 +) was present and notably enhanced by 
desferrioxamine. Addition of NMA to IFN-y/LPS-stimu- 
lated cells did not alter the modulating effects of iron and 
desferrioxamine on iNOS-mRNA levels. As expected from 
the NOS activity determinations (Table 1), the low mRNA 
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Figure 3. Modulation of mRNA levels for inducible NOS by Fe(3 § 
desferrioxamine, and IFN-'y/LPS. J774 cells were treated with ferric ni- 
trate nonahydrate (/), desferrioxamine (D), NMA (N), and/or IFN-y/LPS 
(IFN/L) for 20 h as described. Cellular mRNA was isolated and Northern 
blotting for inducible NOS mRNA and ~-actin mRNA were carried out 
as detailed in Materials and Methods. Concentrations of nitrite (#mol/liter) 
in cell culture superuatants were determined by the Griess reaction (22) 
in order to ascertain whether modulations of cytoplasmatic concentration 
of NOS mRNA by different treatments correlated with alterations of ni- 
trite formation, used as a measure for NO production. One of three similar 
experiments is shown. 

levels observed in unstimulated cells were not changed by 
Fe(3 +) or by desferrioxamine (Fig. 3). 

Effect of Iron and Desferrioxamine on NOS mRNA Half- 
I~. To assess the contribution of Fe(3 +) or desferrioxamine 
to the regulation of N O S  m R N A  stability, we estimated the 
half-life of  N O S  m R N A  in the presence of the transcription 
inhibitor actinomycin D. No  pronounced differences in the 
decay patterns of  N O S  m R N A  were obtained from cells 
treated with  IFN-q,/LPS alone or in combination with  
Fe(3 +) or desferrioxamine (Fig. 4). Densitometric evaluation 
showed that the half-life o f N O S  m R N A  was 3.86 _+ 0.77 h 
(mean _+ SD from three independent experiments) for treat- 
ment  with IFN-q,/LPS and 3.26 _+ 0.81 h for further addi- 
tion of Fe(3 +). Supplementation with desferrioxamine results 

Figure 5. Modulation of inducible NOS gene transcription by iron and 
desferrioxamine. Nuclei of J774 cells treated with IFN-q'/LPS alone or 
in combination with 50 ~M ferric nitrate nonahydrate (/)or 100/~M des- 
ferrioxamine (D)were prepared after 12 h of stimulation. Purification of 
nuclei and in vitro transcription were performed as described in Materials 
and Methods using the plasmid piNOSL3 and m35-tubulin. One of two 
similar experiments is shown. For densitometric evaluation of the runoff 
plots see Results. 

in prolongation of NOS m R N A  half-life to 5.50 _+ 1.3 h, 
which, however, was not significant as compared to treat- 
ment with IFN-y /LPS alone (p >0.05). The levels of 3-actin 
m R N A  did not change during the incubation period (Fig. 4). 

Transcriptional Regulation of NOS Gene Expression by Iron 
and Desferrioxamine. Although a nonspecific effect of  ac- 
tinomycin D on the half-life of  NOS m R N A  cannot be ex- 
cluded, the data suggested that the changes in iNOS m R N A  
levels were more likely be caused by transcriptional regula- 

tion. To test this hypothesis directly, we performed nuclear 
runoff analyses. NOS transcription induced by IFN-3' /LPS 
is indeed reduced by Fe(3 +) as compared to IFN-3' /LPS 
treated controls. Similarly, nuclear transcription of  NOS was 
strongly increased by combined treatment with IFN-q' /LPS 
and desferrioxamine (Fig. 5). In contrast to the iNOS gene, 
the transcription of m53-tubulin was not changed by Fe(3 +) 
or desferrioxamine (Fig. 5). Densitometric evaluation of runoff 
experiments more dearly demonstrated that nuclear transcrip- 
tion for N O S  was significantly reduced by supplementation 
of iron to 47.8 + 8.3% (means + SD for two independent 
experiments wi th  two exposures scanned for each) as com- 
pared to IFN-q' /LPS treated control cells, which were esti- 
mated as 100% ~ <0.01), whereas N O S  transcription was 

Figure 4. Effects of iron and des- 
ferrioxamine on NOS mRNA sta- 
bility. In J774 cells, which were 
treated with ferric nitrate nonahy- 
drate or desferrioxamine and IFN- 
3'/LPS for 20 h, transcription was 
inhibited by addition of actinomycin 
D (5/zg/ml) for up to 7.5 h. Cells 
were harvested every 1.5 h after ad- 
dition of actinomycin D. RNA was 
isolated and Northern blotting for 
NOS mRNA was carried out as de- 
scribed in Materials and Methods. 

Filters were exposed between 8 and 72 h to XRP-5 x-ray films in order to obtain optimal conditions for densitometric evaluation of mRNA half-life. 
One of three similar experiments is shown. 
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Figure 6. Proposed feedback regulation between 
iron metabolism and the NO/NOS pathway. Based 
on the data presented here and on previous results on 
NO-iron interactions (11, 12), a suitable model is de- 
signed demonstrating regulatory loops between iron 
and NOS. (f) Increase or (~) decrease of either free 
cellular iron concentration, transcription and activity 
of inducible NOS (iNOS), formation of NO, IRE- 
binding activity of IRP (IRE-BP), translation of fer- 
ritin, or storage of iron. 

enhanced by desferrioxamine treatment to 284.0 + 24.2% 
<0.001). As evidenced from Fig. 5 nuclear transcription 

for 3-tubulin was not significantly altered by either treat- 
ment which was confirmed by densitometric evaluation (con- 
trol, i.e. treatment with IFN-3,/LPS, estimated as 100%; iron 
supplementation 96.4 _+ 11.3%; desferrioxamine 109.4 _+ 
18.6%). It is important to note that the changes in NOS 
transcription rates appear to account quantitatively for the 
observed alterations in iNOS mRNA levels and activity (com- 
pare with Table 1). We conclude that alterations (increases 
as well as decreases) in cellular iron availability cause regula- 
tion of NOS transcription in J774 cells. 

D i s c u s s i o n  

It was recently recognized that N O  can directly control 
the activities of IRP, the central regulatory protein for cel- 
lular iron metabolism, and that NO thereby directly represses 
the synthesis of the iron storage protein ferritin (11-13). Based 
on these findings, we investigated in the present study whether 
N O  production is conversely controlled by iron availability. 
We examined the effect of iron addition or withdrawal on 
NOS enzyme activity, m R N A  levels, mRNA stability, and 
gene transcription in the murine macrophage cell line J774. 
Our results show that increased intracellular iron levels led 
to a decrease of NOS activity, whereas depletion of intracel- 
lular iron strongly enhances the enzyme activity in IFN- 
3'/LPS-stimulated cells. These differences in enzyme activity 
are due to altered NOS mRNA levels rather than to direct 
interference of Fe(3 +) and desferrioxamine with the NOS 
protein. Determinations of mRNA half-life and nuclear runoff 
experiments indicate that the regulatory effects of Fe(3 § 
and desferrioxamine are primarily caused by influencing nu- 
clear gene transcription for inducible NOS. 

It was shown previously (39, 40) that heine and non-heine 
iron reduced IFN-3'-mediated effects on neopterin formation, 
trytophan degradation, and MHC  class II expression in a 
human myelomonocytic cell line (THP-1), whereas iron che- 
lation by desferrioxamine enhanced IFN-3, activity in these 
cells. In the case of the murine macrophage cell line J774, 
no such general effects of iron on pteridine formation or MHC 

class II expression could be observed. This may be explained 
by species-specific differences concerning cytokine-induced for- 
mation of pteridines and NO among human and murine cells. 
In contrast to human cells or murine fibroblasts (for a review 
see reference 41), the activity of GTP cyclohydrolase I, the 
first enzyme in the biosynthetic pathway of tetrahydrobi- 
opterin, is already high in J774 cells and is not further en- 
hanced by IFN-3' or IFN-3' plus TNF-ol (42). On the other 
hand, THP-1 cells, like many other human cell lines, cannot 
be induced for NO formation in vitro. In the murine macro- 
phage cell line J774, however, profound effects of intracel- 
lular iron concentration on NOS gene transcription can be 
observed. The generality of this regulation will have to be 
assessed in other cell lines and in human blood cells. Taken 
together, the results reported previously for the regulation 
of IRP and ferritin by N O  (11, 12) and the results presented 
in this study suggest the existence of a regulatory loop be- 
tween iron and N O / N O S  (Fig. 6): iron deprivation of cells 
results in increased NOS gene transcription leading to en- 
hanced NO formation. NO stimulates IRE-binding by IRP, 
the central regulatory factor of intracellular iron metabolism, 
possibly by withdrawing iron from the central iron-sulfur 
cluster of this protein (11, 12). High-a~nity binding to the 
IREs in the 5'-untranslated region of ferritin represses fer- 
ritin translation (12) and thus iron storage, which in turn 
would lead to an increase in "free" cellular iron. Although 
an effect of NO on transferrin receptor mRNA stabilization 
has not yet been observed (13), increased stability of trans- 
ferrin receptor mRNA and consequently, enhanced expres- 
sion of transferrin receptors, would lead to increased cellular 
iron uptake and could thus augment the effect resulting from 
ferritin repression. Increasing intracellular concentrations of 
free iron could induce the opposing feedback response by 
inhibition of NOS transcription and NO formation as is 
indicated by the data presented here. This would consecu- 
tively result in reduction of IRE-binding activity of IRP 
and therefore lead to increased ferritin translation and iron 
storage (Fig. 6). 

Formation of NO has been shown to be involved in the 
antitumor and antimicrobial cytotoxic effector function of 
activated macrophages (43-46). The mechanism suggested 
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Formation of NO has been shown to be involved in the 
antitumor and antimicrobial cytotoxic effector function of 
activated macrophages (43-46). The mechanism suggested 
here could therefore provide a tool for cytokine-activated mac- 
rophages to link maintenance of iron homeostasis within the 
effector cell with optimal NO formation for host defense. 
On the other hand, parasites consuming iron (14) would con- 
tribute to increased formation of NO and therefore to en- 
hanced cytotoxicity towards themselves. In this respect, re- 
cent in vivo data which report that patients suffering from 
Plasmodiurn fakiparum infection improved after treatment with 
desferrioxamine are of clinical interest (47, 48). Since NO 

was shown to be involved in the destruction of malaria para- 
sites (49, 50), the beneficial effect of desferrioxamine may not 
only be due to limitation of iron availability for the parasites 
(as suggested by the investigators) but also be based on en- 
hancement of NO production by desferrioxamine. Kegula- 
tory linkage of intraceUular iron availability and the NO/NOS 
pathway might also account for altered iron traffic causing 
anemia in chronic inflammatory disorders which is charac- 
terized by low concentrations of nonferritin-bound iron and 
increased macrophage activity, caused by enhanced levels of 
circulating cytokines, such as IFN-3, (14-16, 51). 
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