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In the presence of a circularly polarized mid-infrared radiation graphene develops dynamical band gaps in its

quasienergy band structure and becomes a Floquet insulator. Here, we analyze how topologically protected edge

states arise inside these gaps in the presence of an edge. Our results show that the gap appearing at ��/2, where

�� is the photon energy, is bridged by two chiral edge states whose propagation direction is set by the direction

of the polarization of the radiation field. Therefore, both the propagation direction and the energy window where

the states appear can be controlled externally. We present both analytical and numerical calculations that fully

characterize these states. This is complemented by simple topological arguments that account for them and by

numerical calculations for the case of the semi-infinite sample, thereby eliminating finite-size effects.

DOI: 10.1103/PhysRevB.90.115423 PACS number(s): 73.22.Pr, 73.20.At, 72.80.Vp, 78.67.−n

I. INTRODUCTION

Graphene is an extraordinary material with unusual electri-

cal [1,2], mechanical, thermal [3] and optical properties [4].

However, probably one of the most desirable but still missing

properties is the presence of topologically protected states such

as those found in topological insulators (TIs) [5–7]. Although

one of the pioneering works that propelled the whole field of

TIs was based on Dirac fermions in graphene [5], the spin-orbit

coupling turns out to be too weak for a topological phase to

be observed. Since the number of known materials behaving

as TIs is limited, bringing these properties to carbon-based

materials [8] with the addition of a full-fledged tunability may

enormously expand their prospects.

Manipulating the electronic structure of matter by coupling

electrons and photons into entangled states has been a subject

of intense activity for many years. In the present context,

harnessing light-matter interaction [9,10] may offer a wealth

of novel phenomena [11–14], such as Floquet-Majorana

modes [15–18], or may allow the manipulation of Dirac

points [19,20]. Furthermore, time-dependent driving may

provide for unexpected ways of turning a normal material

into a special topological insulator [21–24], also called a

Floquet topological insulator (FTI) [22,25–27]. The interest

in these novel nonequilibrium phases of topological order is

increasing [28–31] not only in condensed matter [32–34] and

cold atoms [35–37] but also from a more general point of view

as a new classification may be needed [27,38,39].

First, one would need to open up a gap in the material’s bulk,

and then one should check for the presence of topological edge

states. Laser-induced bandgaps were predicted to occur for

Dirac fermions under a circularly polarized laser [21,40–43]

in a feasible range of parameters [mid-infrared range (MIR)]

that is polarization tunable [44,45]. Two recent experiments

have added new thrill to this area from different perspectives:

The first is the realization of a FTI in a hexagonal lattice crafted

in a photonic crystal [46]; the second one is the observation

of a polarization-tunable band structure at the surface of a

topological insulator through angle-resolved photoemission

spectroscopy (ARPES) [47]. This last experiment showed the

emergence of the dynamical gaps by using circularly polarized

light in the MIR.

Here, we extend on our recent proposal for achieving

Floquet chiral edge states in graphene through laser illumi-

nation [48]. Previously, we showed that a carefully tuned

circularly polarized laser may introduce a bulk dynamical

band gap at half the photon energy [44] (a scheme of the

bulk dispersion is shown in Fig. 1) while keeping propagating

states through the edges of a zigzag ribbon [48]. Interestingly,

these Floquet edge states turn out to be chiral. Many important

fundamental and technical aspects, however, remained. The

search for Floquet topological states may benefit from more

accurate and diverse experimental proposals [49]. Here, we

provide a detailed analytical derivation which is complemented

by a simple discussion of the topological character of the bulk

bands. The topological analysis provides hints for predicting

the fate of these states when disorder is included. Moreover,

the role of different types of ribbon terminations and the

band structure of a semi-infinite sample are also addressed

numerically. The latter eliminates finite-size effects and allows

direct verification of the strengths and limits of the topological

analysis.

II. IRRADIATED GRAPHENE: BULK PROPERTIES

In the presence of electromagnetic radiation, the electronic

states of bulk graphene close to the Dirac point are described

by the following time-dependent Hamiltonian:

Ĥ(t) = vF σ ·
[

p +
e

c
A(t)

]

, (1)

where vF ≃ 106 m/s denotes the Fermi velocity, σ = (σx,σy)

are the Pauli matrices describing the pseudospin degree of

freedom, e is the absolute value of the electron charge, c

is the speed of light, and A(t) = Re{A0e
i�t } is the vector

potential of the electromagnetic field (incident perpendicular

to the graphene sheet). We consider the circularly polarized

case, where A0 = A0(x̂ + i ŷ), and assume that the laser spot

is much larger than the system size in order to neglect any

spatial dependence. The choice of circular rather than linear

polarization is a subtle but important one: In contrast to

linear polarization, circular polarization breaks time-reversal
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FIG. 1. (Color online) (a) Scheme of a bulk graphene sheet

being illuminated by a laser (perpendicular to the graphene plane).

(b) Scheme showing how the Dirac cone is being modified by the

laser. The opening of dynamical gaps at ±��/2 is evident. The bands

shown in this scheme are weighted on the m = 0 Floquet channel;

that is, these bands are the ones contributing to the dc density of

states.

symmetry and allows for nontrivial topological properties

[21,27] and Floquet chiral edge states [48].

A. Floquet theory

For what follows, it is instructive to briefly introduce the

basic ideas of the Floquet formalism [50,51] used to deal with

time-dependent periodic Hamiltonians (for more extensive

general reviews we refer to Refs. [52,53]; in the context

of graphene a shorter account of this technique is given in

Ref. [8]).

Floquet theorem guarantees the existence of a set of solu-

tions of the time-dependent Schrödinger equation of the form

|ψα(t)〉 = exp(−iεαt/�)|φα(t)〉, where |φα(t)〉 has the same

time periodicity as the Hamiltonian, |φα(t + T )〉 = |φα(t)〉,
with T = 2π/� [50,52,54]. The Floquet states |φα〉 are the

solutions of the equation

ĤF |φα(t)〉 = εα|φα(t)〉 , (2)

where ĤF = Ĥ − i� ∂
∂t

is the Floquet Hamiltonian and εα is

the quasienergy.

Using the fact that the Floquet eigenfunctions are periodic

in time, it is customary to introduce an extended R ⊗ T space,

where R is the usual Hilbert space and T is the space of

periodic functions with period T . In this space, also called

Floquet or Sambe space [51], we can define the inner product

〈〈φα(t)|φβ(t)〉〉 =
1

T

∫ T

0

〈φα(t)|φβ(t)〉 dt , (3)

from which it is easy to show that ĤF is a Hermitian operator.

This implies that 〈〈φα|φβ〉〉 = δαβ for any pair of eigenvectors.

However, it is important to note that while |φ(n)
α 〉 = ein�t |φα〉,

which is also a solution of Eq. (2) with quasienergy ε(n)
α =

εα + n�ω for an arbitrary integer n, and |φα〉 are orthogonal

in R ⊗ T (for n �= 0),

〈〈φα(t)|φ(n)
α (t)〉〉 = δn0 , (4)

they correspond to the same physical state. Namely,

|ψα(t)〉 = e−iεα t/�|φα(t)〉 = e−iε(n)
α t/�|φ(n)

α 〉. (5)

Therefore, all nonequivalent physical states are restricted to a

quasienergy window of �� around any given quasienergy εα

[the so-called Floquet zone (FZ)]. Of course, we can still use

an “extended FZ” picture as in the more usual case of Bloch

band states; we use that picture in the following sections as it

is better suited to a physical interpretation of the results.

The Floquet eigenfunctions, when restricted to a given FZ,

satisfy the following orthogonality and closure relations in R
for a fixed time t :

〈φα(t)|φβ(t)〉 = δαβ , (6)

∑

α

|φα(t)〉〈φα(t)| = I . (7)

A convenient basis of R ⊗ T can be built from the product

of an arbitrary basis of R (the eigenfunctions of the time-

independent part of the Hamiltonian, for instance) and the set

of orthonormal functions eim�t , with m = 0,±1,±2, . . . , that

span T . Then,

|φα(t)〉 =
∞

∑

m=−∞
|uα

m〉 eim�t , (8)

or, in vector notation in R ⊗ T ,

|φα〉 = {. . . ,|uα
1 〉,|uα

0 〉,|uα
−1〉, . . .}

T . (9)

Written in this basis, ĤF is a time-independent infinite matrix

operator H̃∞
F with Floquet replicas shifted by a diagonal term

m�� and coupled by the radiation field with the condition for

pure harmonic potentials, m = ±1,

H̃∞
F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋰

⋯ vF p · σ + 2��I vF e
2c

A0σ− 0 0 ⋯

⋯
vF e
2c

A0σ+ vF p · σ + ��I vF e
2c

A0σ− 0 ⋯

⋯ 0 vF e
2c

A0σ+ vF p · σ vF e
2c

A0σ− ⋯

⋯ 0 0 vF e
2c

A0σ+ vF p · σ − ��I ⋯

⋰ ⋮ ⋮ ⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10)

Here, σ± = (σx ± iσy). Thus, Eq. (2) becomes a time-

independent eigenvalue problem.

Since we are interested in the Floquet spectrum around

the dynamical gap, that is, ε ∼ ��/2, we restrict the Floquet
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Hamiltonian to the m = 0 and m = 1 subspaces (or replicas)

for the analytical calculations; the numerical results can retain

a larger number (NFR) of replicas. As we will show, this restric-

tion is enough to get the main features of the energy dispersion

and the Floquet states. The reduced Floquet Hamiltonian

describing states close to the K point of graphene’s Brillouin

zone then corresponds to the central blocks of Eq. (10),

H̃F =
(

vF p · σ + ��I vF e
2c

A0σ−
vF e
2c

A0σ+ vF p · σ

)

. (11)

In the notation of Eq. (9), the Floquet equation H̃F |φ〉 = ε|φ〉
involves finding a four-component wave function

φ(r) = {[u1A(r),u1B(r)],[u0A(r),u0B(r)]}T, (12)

where each component umi(r) refers to the m = 0,1 subspace

and the i = A,B of the lattice site; we include the square

brackets in the notation to emphasize the spinor character of

the wave function of each replica.

B. The bulk states

The Floquet states in a bulk graphene sheet have been

discussed in several works for both linear [55] and circular

polarization [21]. They are the starting point for our study of

the formation of laser-induced band gaps and the emergence

of nontrivial topological properties, and for the sake of

completeness, we present here a simple derivation.

Due to the translational invariance the wave function takes

the form

φkα(r) = eik·r{[ukα
1A,ukα

1B

]

,
[

ukα
0A,ukα

0B

]}T
, (13)

where the index α denotes the four solutions of the Floquet

Hamiltonian

H̃F =

⎛

⎜

⎜

⎜

⎝

��
2

�vF k− 0 0

�vF k+
��
2

vF e
c

A0 0

0 vF e
c

A0 −��
2

�vF k−

0 0 �vF k+ −��
2

⎞

⎟

⎟

⎟

⎠

+
��

2
I, (14)

with energies εkα and k± = kx ± iky . For A0 = 0 the

Hamiltonian H̃F has four eigenenergies: ±�vF k and �� ±
�vF k. Two of these eigenstates, �� − �vF k and �vF k, become

degenerate at k = k0 = �/2vF , where the quasienergy value

is ��/2. A finite amplitude A0 of the radiation mixes these

two states, generating an anticrossing and opening a gap [56].

By introducing Eq. (13) into the Floquet equation, one can find

the ukα
mi coefficients. In this case, however, it is convenient to

further reduce the problem by solving the eigenvalue equation

in the subspace of the two degenerate branches. The Floquet

quasienergies of these branches near the degeneracy point are

then given by

εk± =
��

2
(1 + μ±), μ± = ±

√

(

1 −
k

k0

)2

+ η2, (15)

where

η =
evF A0

c��
(16)

is the dimensionless parameter controlling the transition from

the weak- to the strong-coupling regime; we will always

FIG. 2. (Color online) Scheme of the Floquet bands with m =
−1,0,1 as used for the calculation of the number of chiral edge states

hosted within each gap. The column on the right indicates the number

N of chiral edges states at each crossing of the m = 0 replica.

consider the case η ≪ 1 so the perturbative approach remains

valid (the strong-coupling regime was considered recently

for a linearly polarized laser [57]). The dynamical gap is

η�� = evF A0/c. The resulting dispersion of the Floquet

quasienergies is shown in Fig. 2.

Finally, the time-dependent solutions of the Schrödinger

equation are

ψk±(r,t) = e−iεk±t/�eik·r 1
√

2A

[

− sin (ϕ±
k /2)

(

eiθk

−1

)

ei�t

+ cos (ϕ±
k /2)

(

eiθk

1

)]

. (17)

Here,A is the area of the graphene sheet, θk is the angle formed

by k and the x axis, and

tan ϕ±
k = η

k0

k − k0

. (18)

The instantaneous expectation values of the velocity operator,

v = vF σ , evaluated in these states are

〈v‖〉k± = vF cos ϕ±
k = vF

k0 − k

k0 μ±
,

〈v⊥〉k± = vF sin ϕ±
k sin �t = −vF

η

μ±
sin �t, (19)

with v‖ and v⊥ being the velocity components parallel and

perpendicular to the wave vector k, respectively. The time-

averaged velocity is

〈〈v‖〉〉k± = vF cos ϕ±
k ,

〈〈v⊥〉〉k± = 0. (20)

One can verify that 〈〈v〉〉k± = (1/�)∇kεk± as expected from the

Hellmann-Feynman theorem [51]. The eigenstates in Eq. (17)

then propagate (on average) in the direction of the wave vector

k. One can also verify that 〈σz〉k± = sin ϕ±
k cos �t , so that the
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pseudospin is precessing around the k̂ axis with frequency �,

〈σ 〉k± = cos ϕ±
k k̂ + sin ϕ±

k (sin �t ẑ × k̂ + cos �t ẑ). (21)

The amplitude of the oscillation is maximum at k = k0, where

the states do not propagate (〈〈v‖〉〉k± = 0).

C. Topological character of the Floquet bands

While the description of the topological character of the

energy bands for a time-independent system is a mature field,

discussions of driven systems in this context began much more

recently [21–23,27,58]. Here, we present a simple analysis

highlighting the main features of interest for our discussion of

Floquet chiral edge states. This analysis of the bulk properties

allows us to infer the existence of robust edge states such as

the ones obtained analytically and numerically in the following

sections.

To calculate the number of states inside a given Floquet gap

one needs to look at the Chern numbers of the entire Floquet

spectrum [27]. The Chern number of each Floquet band Cn

gives the difference between the number of chiral states above

and below the band [7,27], while the sum of all the Chern

numbers below a given band gives the number of chiral states

above it. A proper calculation of Cn requires, in principle,

taking into account all replicas, or at least the O(D/��)

replicas that overlap in the region of the gap of interest, where

D is graphene’s bandwidth, since only in that case is the

Floquet spectrum actually gapped. The main contribution to Cn

comes from the region in k space where anticrossings between

replicas occur (see the Appendix). While in a time-independent

problem there is no distinction between the contributions

to Cn coming from different regions in k space, we argue

in the following that in Floquet space there is a hierarchy

of contributions and thus a hierarchy of edge states. This

hierarchy is based on the weight of the Floquet band on a

given subspace, say the one with m = 0, which is determined

by the parameter η. The reason for this is that the calculation

of the dc properties of the system, such as the time-averaged

density of states, implies a projection on one replica.

We start by truncating the Floquet Hamiltonian and consider

the Floquet channels with m = −1,0,1. Then, the unperturbed

spectrum projected on a given k direction looks like the one

represented in Fig. 2. Switching on the radiation opens band

gaps at the crossings located at the Dirac point and ±��/2.

To infer the topological properties of these bands one could do

either a numerical calculation of the Chern numbers for the full

band structure (in the tight-binding model) or an approximate

calculation, as outlined below.

For the approximate calculation one needs (see the

Appendix for more details) (i) to isolate each crossing where

a band gap opens, (ii) to obtain an effective Hamiltonian at

each of those points [a 2 × 2 matrix of the form Heff
F (k,ν) =

hν(k) · σ , with ν = ±1 being the valley index], and (iii) to

compute from it the contribution to the Chern number at each

crossing (and sum over the two valleys), assuming that the

associated Berry curvature decays fast enough away from

them (similar to what is done with bilayer graphene where

one defines a valley Chern number [59]).

Let us start analyzing what happens to the Dirac point

(k ∼ 0) in the m = 0 replica (this region is marked with a

rectangle in Fig. 2). A virtual photon process (absorption and

then reemission of one photon and vice versa) originates a

gap [21,44], which is of second order in the electron-photon

coupling. In the large frequency limit, the effective

Hamiltonian has hν(k) = �vF (kx,νky,ν η eA0/�c). This

effective Hamiltonian describes the stroboscopic evolution

of the system at each period T = 2π/�, just as if we had a

time-independent system [23]. The contribution to the Chern

number from each valley is 1/2 (taking the limit η → 0 at

the end of the calculation), and since these contributions

have the same sign, we get a total of 1. Note that to get an

integer number one needs to sum up the contributions from

each valley, just as in Haldane’s model [60] but this time in

Floquet space [32]. Also, it should be kept in mind that this is

a contribution of +1 to the Chern number of the Floquet band

that is right below zero quasienergy. The band just above zero

gets a contribution of −1.

The calculation around ��/2 is more subtle since it

involves a first-order process in η (circle in Fig. 2). We

start by considering the truncated Floquet Hamiltonian of

Eq. (14). As before, to simplify the analysis even more

it is convenient to consider only the subspace of the two

degenerate branches with m = 0 and m = 1. The effective

Floquet Hamiltonian has h(k) = �vF [(k − k0) k̂ − k0η ζ̂ k],

with ζ̂ k = sin θk θ̂ k + cos θk ẑ, which gives a contribution of

−2 (−1 for each valley) to the Chern number of the Floquet

band below ��/2. Adding this to the contribution coming

from the region around k ∼ 0, we get a total contribution to

the Chern number arising from these anticrossings of −3. We

conclude that there should be a difference of 3 in the chirality

of the edge states [7,27] appearing at the dynamical and the

Dirac point gaps. Extending this procedure to all the Floquet

bands in Fig. 2, we conclude that two edge states are expected

to emerge at the dynamical gap (twice those at the smaller gap

at the Dirac cone) with an O(1) weight on the m = 0 subspace.

Notice that the different signs of these contributions to

the Chern number imply that the propagation direction of

the associated edge states is also the opposite. This can also

be appreciated in Fig. 7, where the dispersion weighted on the

m = 0 channel for a semi-infinite graphene sheet is shown; one

distinguishes two states propagating to the left at the dynamical

gap and one to the right close to the Dirac point. Given that

the dynamical gaps are linear in the laser strength, they are the

best candidates for an experimental observation (indeed, the

recent observation at the surface of a topological insulator [47]

highlights the dynamical gaps).

A more careful inspection of Fig. 2 shows that there are also

other crossings taking place at zero energy and at ��: the ones

marked with triangles in Fig. 2. The situation in these cases is

similar: laser-induced band gaps emerge close to those points

and turn out to host Floquet chiral edge states. But this is not

the whole picture as the number of crossing points with zero

energy grows with the number of replicas considered when

truncating the Floquet Hamiltonian; (a similar situation occurs

for energies close to ��/2). Although this may seem irrelevant

since those gaps turn out to be smaller and smaller (higher order

in the radiation strength), an important question is whether

this reduction of the gap in the overall quasienergy spectrum

effectively limits the range where topological properties are

expected and, equally important, if it somehow weakens
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the topological protection. We argue that those ever-smaller

anticrossings do not give a significant contribution to the

time-averaged quantities, provided that the electron-radiation

coupling is small, η ≪ 1. The main point is that those higher-

order states have a parametrically smaller weight (of order

ηδm) on the m = 0 channel and therefore do not contribute

to the time-averaged density of states; δm is the difference

in the Floquet index of the two coupled replicas that leads

to the high-order gap. Indeed, this can be appreciated (for

the ��/2 gap) in Fig. 8, where we show a very fine detail

close to the dynamical gap; a more detailed discussion is

given in Sec. IV B. We therefore propose to use the m = 0

Floquet-projected Chern number for our purposes.

In the next section we will pursue a different path to

explicitly determine these states, their propagation velocity,

and the decay length.

III. FLOQUET TOPOLOGICAL STATES IN ZIGZAG

EDGES: ANALYTICAL SOLUTION

In this section, we present an analytical solution for the edge

states near the dynamical gap by retaining only the m = 0

and m = 1 subspaces. While some particular cases of this

solution [see Eqs. (30) and (38) below] have been presented

in Ref. [48], here, we discuss the solution for the full range of

parameters and provide more details about its properties, such

as the energy dispersion, velocity, and chirality of the edge

states for both Dirac cones; in particular we analytically prove

that both cones give rise to states with the same chirality. We

also comment on a shortcoming of our solution at the end of

this section.

To obtain analytical expressions for the Floquet edge states

within the dynamical gap, we consider a semi-infinite graphene

sheet with a zigzag termination. Translational invariance along

the edge (y axis) implies that umi(r) ∝ eikyy . Since we are

interested in Floquet states that are localized near the edge, we

look for solutions of the form exp(κx), with κ = ikx + q and

kx ,q ∈ Re. If we take the semi-infinite sheet to be restricted to

the x > 0 region, the physical solution corresponds to q < 0;

we will keep track of both signs, however, for reasons that will

became clear later on.

The boundary condition at the edge of the graphene sheet

requires the wave function to vanish at one of the lattice sites,

say, umB(x = 0) = 0, which, in turn, requires us to combine

solutions with ±kx . After a tedious but straightforward algebra

we find that the solutions have the form

umi(r) = C eikyyeqxQmi(x) , (22)

with

Q1A(x) = −

√

1 + 4η2 − μ2

1 + μ
sin (kxx + θk) ,

Q1B(x) = i
√

1 − μ sin(kxx) ,

Q0A(x) = ±i
√

1 + μ sin(kxx + ϕk) ,

Q0B(x) = ∓
√

1 + μ sin(kxx) , (23)

where C is a normalization constant and

eiϕk =
ky − q + ikx

|ky − q + ikx |
, eiθk =

ky + q + ikx

|ky + q + ikx |
. (24)

The exponential decay of the wave function towards the bulk

of the graphene sheet is set by

q = ∓
eA0

2�c

√

1 − μ

1 + μ
. (25)

If we recall that the amplitude of the electric field is E0 =
�A0/c, the prefactor in Eq. (25) defines half the inverse of the

characteristic length

ξ =
��

eE0

. (26)

Hence, the spatial profile of the Floquet topological edge

states has a characteristic distance that is independent of

graphene’s microscopic parameters. This is consistent with

the expectation that ξ must be proportional to �vF divided

by the gap, ξ ∼ �vF /(evF A0/c) = �c/eA0. The cancella-

tion of vF is a consequence of the linear dispersion of

graphene.

The oscillating part of the wave function towards the bulk

of the sample is given by

kx =

√

ε2

(�vF )2
− (ky − q)2 = k0

√

1 + μ

1 − μ

√

1 −
μ2

2
, (27)

where  = η/
√

1 + η2 [�� is the bulk energy gap when

calculated with the full 4 × 4 matrix of Eq. (14)]. The

corresponding energy dispersion ε(ky) is obtained from the

solution of the following equation:

μ(1 + μ) − η2(1 − μ) ∓ η ky/k0

√

1 − μ2 = 0 , (28)

which gives two solutions inside the dynamical gap with a

real value for kx . We denote these two solutions as φA
K,∓(r) to

emphasize they correspond to a given Dirac cone K and to an

edge that ends in A atoms; recall, however, that for the chosen

x > 0 region the physical solution corresponds to q < 0. The

general solution of Eq. (28) can be written in an analytical

form, but the expression is rather involved to present here.

However, close to the middle of the dynamical gap, one can

approximate the solution as

ε̄ =
ε

��
≈

(1 + 2η2)

2(1 + η2)
±

η

2(1 + η2)

ky

k0

. (29)

This a linear dispersion, corresponding to massless edge states

with a constant velocity (see below).

For ε = ��/2 the solution has a particularly simple form

since in that case ky = q = −1/2ξ , kx = k0, and the wave

function becomes

ψA
K,−(r,t) = e−iy/2ξ e−x/2ξ (2ξLy)−

1
2

×
[(

− cos k0x + 2η sin k0x

i sin k0x

)

ei�t

+
(

i cos k0x

− sin k0x

)]

, (30)
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where we introduced the sample length Ly in the y direction

(assumed to have periodic boundary conditions). Note that the

oscillation in the direction perpendicular to the edge does not

depend on A0 but on the frequency, k0 = �/2vF , and that there

are many periods in the decay length as 2k0ξ = 1/η ≫ 1.

For the case of a nanoribbon, we can use this approach

to calculate the edge states on the other side of the sample

provided the width W ≫ ξ . In that case, we look for a solution

such that ũmA(x = W ) = 0. If we define x̃ = x − W < 0, we

then require an exponential decay exp(q̃x̃) < 1. Hence, the

physical solution corresponds to q̃ > 0, which is consistent

with the previous solution; nevertheless, we track both signs

of q̃ as before. Following the same procedure, we obtain

ũmi(r) = C ′ eikyyeq̃x̃Q̃mi(x̃), (31)

with

Q̃1A(x̃) =
√

1 − μ sin(kx x̃) ,

Q̃1B(x̃) = −i
√

1 − μ sin (kx x̃ − θk) ,

Q̃0A(x̃) = ±i
√

1 + μ sin(kx x̃) ,

Q̃0B(x̃) = ∓

√

1 + 4η2 − μ2

1 − μ
sin(kx x̃ − ϕk), (32)

and

q̃ = ±
1

2ξ

√

1 + μ

1 − μ
. (33)

Interesting enough, for a given energy, the decay is different

from the one obtained on the other edge (for a single Dirac

cone); in particular,

qq̃ = −
1

4ξ 2
. (34)

In addition,

kx = k0

√

1 − μ

1 + μ

√

1 −
μ2

2
, (35)

while the energy dispersion is obtained from

− μ(1 − μ) − η2(1 + μ) ∓ η ky/k0

√

1 − μ2 = 0. (36)

Note that this solution can be obtained from the previous one

by changing μ → −μ. Following the previous notation, we

denote the corresponding wave function as φB
K,±(r). Near the

middle of the dynamical gap,

ε̄ ≈
1

2(1 + η2)
∓

η

2(1 + η2)

ky

k0

, (37)

which again corresponds to massless excitations. Figure 3(a)

shows the Floquet quasienergy dispersion for both solutions,

q < 0 (red solid line) and q̃ > 0 (blue dashed line), for η =
0.25, a large value to emphasize the symmetries. The symmetry

of the spectrum around ��/2 is apparent from Fig. 3(a).

The two branches cross at ky/k0 = −η. A comparison with

a numerical solution of a tight-binding model with a larger

number of replicas is presented in the next section (Fig. 4).

The excellent agreement shows that our solution correctly

describes the system for small values of η.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

-1 -0.5 0 0.5 1

ε̄

ky/k0

-1 -0.5 0 0.5 1

ky/k0

ψA
K−

ψB
K+

ψA
K +

ψB
K −

(a) (b)

FIG. 3. (Color online) Quasienergy dispersion of the edge states,

ε̄ = ε/��, for the (a) K and (b) K ′ Dirac cones and η = 0.25. The

vertical and horizontal dashed lines indicate the position of the Dirac

cone and the center of the dynamical gap, respectively. The red solid

line corresponds to the edge states on a given side of a wide W ≫ ξ

ribbon, while the blue dashed line corresponds to the opposite side.

Note that the velocity is positive for the former and negative for the

latter.

For ε = ��/2 we get ky = −q̃ = −1/2ξ , kx = k0, and the

wave function becomes

ψB
K,+(r,t) = e−iy/2ξ ex̃/2ξ 1

√

2ξLy

[(

i sin k0x̃

− cos k0x̃

)

ei�t

+
(

sin k0x̃

− cos k0x̃ − 2η sin k0x̃

)]

. (38)

The average velocity of the edge states can be readily

obtained from the relation v = (1/�)∂ε/∂ky or, equivalently,

by explicitly calculating the average value of the velocity

0.35

0.4

0.45

0.5

0.55

0.6

-1 -0.5 0 0.5 1

ε̄

ky/k0

0

0.2

0.4

0.6

0.8

1

FIG. 4. (Color online) Comparison of the tight-binding

quasienergy dispersion (small dots) projected onto the m = 0

subspace (weight given by the color scale), with the analytical

expression (blue open circles) for h� = 0.3γ0 and z = 10−3. The

tight-binding data were obtained by numerically solving the Floquet

equation with NFR = 4 (see main text) and M = 1000 transverse

sites.
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operator vF 〈〈σy〉〉. It is clear from Fig. 3 that the edge states

belonging to opposite sides of a finite sample, φA
K,−(r) and

φB
K,+(r), have opposite velocities. This can be seen explicitly

by examining Eqs. (29) and (37), from which we find that the

velocities are given by

vA
K,− = −vB

K,+ =
η

1 + η2
vF (39)

near the middle of the gap.

The edge states coming from the other Dirac cone

K ′ can be obtained from the ones of the K cone if

we write the four-component wave function as φK ′(r) =
{[−ū1B(r),ū1A(r)],[−ū0B(r),ū0A(r)]}T; such rearrangement

is equivalent to applying the operator −iσyτ0 to the usual four-

component wave function. In that case, the form of the Hamil-

tonian for both cones is the same, and the physical solutions are

φA
K ′,−(r) = −iσyτ0φ

B
K,−(r) and φB

K ′,+(r) = −iσyτ0φ
A
K,+(r);

here, the reason we kept both signs in the previous calculation

becomes clear. The corresponding quasienergy dispersion is

shown in Fig. 3(b). This implies that

vA
K ′,− = vB

K,− , vB
K ′,+ = vA

K,+ . (40)

Hence, the velocities of the two edge states on a given side

of the sample, say, φA
K,−(r) and φA

K ′,−(r), have the same sign.

That is, there are two chiral edge states on each side of the

sample.

Before ending this section it is important to mention a subtle

issue regarding the normalization of the wave functions (6).

In the notation of Eq. (8), the normalization condition implies

that
∞

∑

m=−∞
〈uα

m|uβ
m+n〉 = δn0δαβ (41)

for any integer n. This relation is satisfied by the eigenvectors

of H̃∞
F but not necessarily by the ones of the truncated Floquet

Hamiltonian H̃F (with any finite number of replicas). This is

the case for the solutions shown in Eqs. (22) and (31), except

for the important case of ε = ��/2 [Eqs. (30) and (38)]. That

is, the solutions in the m = 0 and m = 1 subspaces are not

orthogonal in real space (〈u1|u0〉 �= 0), so the normalization

condition is only satisfied on average and not at all times.

While this is a drawback of our solutions or any other solution

obtained with a finite number of replicas, it could, in principle,

be solved by expanding the solution in powers of the small

parameter η and incorporating the different orders coming

from the different replicas perturbatively. Indeed, if we expand

the solutions (22) and (31) to linear order in η, we can verify

that they are correctly normalized at any time to that order. In

any case, one can always compare the approximate analytical

solutions with the numerical ones with many replicas, in order

to check the validity of the former. We do precisely this in the

following section.

IV. ATOMISTIC DESCRIPTION FOR

LASER-ILLUMINATED GRAPHENE

In this section we obtain numerical results for the

quasienergy spectrum and the Floquet states using a tight-

binding model for laser-illuminated graphene. Our numerical

results compare well with the analytical expressions obtained

in the previous section based on the continuum low-energy

model. Moreover, we also explore the laser-induced edge states

in (i) ribbons with terminations other than zigzag and (ii) a

semi-infinite graphene sheet.

An atomistic model for a graphene sheet illuminated by a

laser field can be obtained by using a tight-binding Hamilto-

nian to describe the electrons near the Fermi energy [61,62],

Hg =
∑

i

ǫi c
†
i ci −

∑

〈i,j〉

[γij c
†
i cj + H.c.] . (42)

Here, c
†
i and ci are the electronic creation and annihilation

operators at the π orbital on site i, with energy ǫi , and

γij is the nearest-neighbor carbon-carbon hopping matrix

element, taken to be equal to γ0 = 2.7 eV [63]. The effect

of the laser is described through a time-dependent electric

field E(t) [21,41,42]. We choose a gauge such that E(t) =
−(1/c) ∂ A/∂t , where A is the vector potential. In this way,

the time dependence of the Hamiltonian enters only through

the hopping matrix elements, which acquire a time-dependent

phase [21,45,64],

γij = γ0 exp

(

i
2π

�0

∫ rj

r i

A(t) · dℓ

)

, (43)

where �0 is the magnetic flux quantum.

By using Floquet theory [53,65–67] as described before,

one can compute the Floquet spectrum. Once again, one ends

up with a time-independent problem in an expanded space.

In this case one can picture it as tight-binding problem in

a multichannel system where each channel represents the

graphene sheet with a different number of photons [8,50,64].

The Floquet Hamiltonian has the same structure as in

Eq. (10), where the Dirac Hamiltonian is replaced by Hg

and the coupling between replicas is changed accordingly.

It is worth mentioning that in the tight-binding method the

time-dependent perturbation is never purely harmonic given

the exponential dependence of Eq. (43) on the radiation

field amplitude. Hence, there is a coupling among all the

replicas [64] and not just those with m = ±1; nevertheless,

for η ≪ 1, only the latter are relevant. The results of the

continuous model are recovered if the dimensionless parameter

z = 2πaccA0/�0 is much smaller than unity [68]. Here, acc

is the carbon-carbon distance. In terms of this parameter, the

relevant magnitudes can be written as η = (3γ0/2��)z and

ξ = acc/z.

A. Comparison between analytical and numerical

results for a finite ribbon

The tight-binding model can be solved for a ribbon of finite

width (M is the number of transverse sites) or for a semi-

infinite sheet. We deal with the former case in this section. To

this end we obtain the Floquet spectrum and the corresponding

wave functions by numerical diagonalization of the Floquet

Hamiltonian on the Bloch basis,

H̃k
gF = H̃uc

gF + V eikyd + V †e−ikyd . (44)

Here, H̃uc
gF is the Floquet Hamiltonian corresponding to one

unit cell (transverse layer), V is the hopping matrix between

unit cells, d is the distance between them, and ky is the Bloch
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FIG. 5. (Color online) Comparison of the squared modulus of a

numerically obtained wave function (symbols) projected onto the

m = 0 subspace with the analytical expression (solid and dashed

lines). The empty circles (empty squares) correspond to the numerical

results for the A sites (B sites), while the analytical expressions are

shown with solid and dashed lines, respectively. These results were

computed for a laser with h� = 0.3γ0 and z = 0.01. The plotted

wave functions correspond to the two branches with ε ∼ 0.15γ0 and

NF = 4.

wave vector along the ribbon. The size of this matrix is M ×
NFR, which imposes a limitation on both size M and number

of Floquet replicas NFR; we typically used M � 2000 and

NFR � 6.

A comparison of the results, which includes the m = 2,1,

0,−1 replicas (NFR = 4), with the analytical solution is shown

in Fig. 4 for a finite-width zigzag ribbon (M = 1000 transverse

sites). The agreement is very good in the entire gap, despite

the fact that the tight-binding calculation shows signatures of

trigonal warping for the chosen energies.

Figure 5 shows a comparison of the wave function for

ε = 0.1503γ0 obtained with the tight-binding method and the

analytical result [Eqs. (30) and (38)] for a 212-nm-wide ribbon;

the other parameters are indicated in the caption. Each panel

corresponds to one of the two branches of a given Dirac cone.

Note that they are located at opposite sides of the ribbon.

Besides zigzag ribbons we have also tested the emergence

of laser-induced edge states for other ribbon terminations.

Figure 6 shows a few typical cases: armchair ribbons [Fig. 6(b)]

and zigzag nanoribbons with Klein edges [69] [Fig. 6(c)] and

cove edges [70] [Fig. 6(d)]. The case of a zigzag ribbon is also

shown for comparison in Fig. 6(a). In all cases laser-induced

edge states bridging the dynamical gap do emerge. In contrast,

the smallness of the gap at the Dirac point and the finite system

size conspire against the formation of the edge states at the

Dirac point, which are hardly developed for the parameters

used in Fig. 6. Moreover, one can observe that the quasienergy

dispersion of the laser-induced edge states close to the Dirac

point is much more sensitive to the edge type. While for zigzag

and zigzag-like edges [Figs. 6(a), 6(c), and 6(d)] the laser

slightly bends the naturally occurring flat bands, for armchair

edges the bands crossing at the Dirac point remain while the

FIG. 6. (Color online) Quasienergy spectrum for different ribbon

terminations: (a) zigzag, (b) armchair, (c) zigzag with Klein edges,

and (d) zigzag with cove edges. The color scale indicates the weight

contributing to the average density of states. In the calculation the

ribbons are illuminated with circularly polarized light with �� =
0.8γ0 and z = 0.04; (a), (c), and (d) have ribbons with W = 31.95 nm,

while (b) has W = 31.48 nm. All calculations include the Floquet

replicas between n = −2 and n = +2. The laser-induced states

bridging the bulk dynamical gap are evident, while those at the Dirac

point are barely developed.

others move away from the Dirac point, thereby forming the

bulk gap.

B. Laser-induced edge states in a semi-infinite graphene sheet

For the semi-infinite case we use the recursive Green’s

function method to obtain the local Floquet-Green’s functions

near the edge of a very wide ribbon (M ≈ 220–225 and, even-

tually, a large NFR). Namely, we calculate G0
jj (ε + i0+,k) =

〈j,0|[(ε + i0+)I − H̃k
gF ]−1|j,0〉, where |j,0〉 represents the

state on the j -transverse site on the m = 0 replica. This

is an extremely efficient method that allows us to obtain,

among other quantities, the time-averaged local spectral

function [21,42]

ρjj (ε,k) = −
1

π
Im

[

G0
jj (ε + i0+,k)

]

. (45)

This way, we can visualize the quasienergy dispersion by

plotting the density of states near the edge,

ρedge(ε,k) =
∑

j<r

ρjj (ε,k) , (46)

where r is chosen to satisfy r ≫ ξ/acc in order to capture the

total weight of the edge states.

Figure 7 present the results for �� = 3γ0 and z = 0.5,

which corresponds to ξ = 2acc (so we took r = 50). Here,

we used very large parameters for the radiation fields that

are unrealistic for graphene but that allow us to make a few

important points: (a) there is only one chiral edge state in each

valley that bridges the dynamical gap as we are looking at

one edge of a semi-infinite sheet; (b) there is a single edge
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FIG. 7. (Color online) Color map of the averaged local density of

states ρedge(ε,k) projected onto several sites near the edge of the semi-

infinite sheet, r = 50, as a function of ky and ε. Here, �� = 3γ0, z =
0.5, a =

√
3acc, and NFR = 5. The appearance of edge states bridging

the gaps is apparent. Notice that the two states at the dynamical gap

have chirality opposite the one appearing inside the gap developed at

the Dirac point.

state at the Dirac point with the opposite chirality (∂ε/∂ky is

negative at the dynamical gap and positive at the Dirac point).

The extended dark areas on the plot correspond to the bulk

states; normalization of the color scale is done for presentation

purposes only.

In contrast to the finite-size case, where one has to tune

the parameters of the radiation field so that ξ is several times

smaller than the ribbon width or the edge channels mix and

split [48], the Green’s function method imposes essentially no

limit to the radiation intensity. This is shown in Fig. 8(a),

where we plot ρedge(ε,k) for a realistic mid-infrared field

in graphene: �� = 0.05γ0 (135 meV), z = 2.8 × 10−3. We

included here a large number of replicas, NFR = 16, although

there is essentially no difference in the results if we use, say,

NFR = 6 (not shown). The large energy span allows us to see

both the gap at ��/2 and that at the Dirac point. The latter is

narrower, and the corresponding edge state is less developed.

In particular, near ky = 0, the mixing with the m = ±1 replicas

is strong enough to completely blur it, becoming more clearly

resolved only beyond ky = 2k0, where the above-mentioned

replicas have no states (the mixing with higher-order replicas

is not discernible on this scale). This is yet another indication

of the weakness of the edge state at the Dirac point compared

with the ones that occur at the dynamical gap.

A closer view of the dynamical gap (��/2) is shown

in Fig. 8(b). The absence of finite-size effects allows for a

clear development of the edge states, in agreement with the

analytical results (indicated by the open dots).

At this point it is worth mentioning a subtle point that

is usually overlooked when discussing Floquet edge states:

the effect of the mixing with high-order replicas (m � 2 and

m � −1) on the edge state that occurs inside the first-order

dynamical gap. This effect is barely visible for the realistic

parameters used in Fig. 8, but a close-up allows u to detect

such anomalies: Fig. 8(c) shows the development of a second

generation gap with additional edge states. The appearance of a

(m
e
V
)
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FIG. 8. (Color online) Color map of ρedge(ε,k) for a realistic set of

radiation parameters. The color scale is set for visualization purposes.

(a) Large energy span showing both the dynamical ��/2 gap (1 ∼
η��) and the Dirac point gap with the corresponding edge states.

(b) Close-up of the ��/2 gap; dots correspond to the analytical

solution. (c) Further close-up near the middle of the first-order gap

showing the emergence of a second-generation gap (2 ∼ η3
��)

and the corresponding edge states. Note that the energy (momentum)

scale is reduced (enlarged). Inside this gap there are three additional

states; one of them leads to an anticrossing with the first-order edge

state.

hierarchy of “gaps” deserves some clarification. The first-order

gap (1 ∼ η��) arises from the mixing of the m = 0 and

m = 1 replicas. As we have shown in the previous section,

it contains one edge state (per valley). As the next-order

replicas are included, m = −1 and m = 2, the first-order

gap is partially filled, and a second-generation gap develops

inside it of order 2 ∼ η3
��. In this case, the first-order

edge state acquires some broadening [Fig. 8(c)] and, related

to this, a parametrically small extended component of the

wave function. In addition, three additional edge states appear

inside the second-generation gap, giving a total of four edge

states. This scheme continues upon adding more and more

replicas, leading to a further reduction of the actual gap of

the Floquet spectrum. While in the continuous Dirac-like

approximation [Eq. (10)] there is never a true gap, there are

always higher-order replicas that contribute to the density

of states at any quasienergy, and thus, close it, in the tight-

binding model there is always a gap since replicas with

δm � O(D/��) do not overlap [27]. Here, D is the bandwidth

of graphene. The actual energy gap in the tight-binding

model, however, is much smaller than the first-order gap of

Eq. (15), roughly ηD/��
��. It is only inside this latter gap that

true topologically protected states exist. Nevertheless, when

η ≪ 1, the contribution to ρedge(ε,k) decays exponentially

with the number of replicas, so that the average density of

states is dominated by the first-order effect, as shown in

Fig. 8. If we are interested in dc properties, such as dc
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currents, the average density is what matters for identifying the

dominant contributions.

While the high-order edge states are beyond the scope

of the present work since they are not relevant for realistic

implementations in graphene (a detailed analysis will be

presented elsewhere), we would like to briefly mention the

following. The number of edge states N appearing inside

a given gap depends on the number of Floquet replicas

considered in the calculation. The rule is (for a given

valley)

N =
∑

i

|δmi |, (47)

where δmi is the difference of the Floquet indexes of the

pairs of replicas that become degenerated at the dynamical

gap, leading to a high-order gap of order η|δmi |, and i runs

over the replicas retained. For instance, the first generation

gap contains 1 = |1 − 0| edge states, the second one contains

4 = |1 − 0| + |2 − (−1)|, the third contains 9 = |1 − 0| +
|2 − (−1)| + |3 − (−2)|, and so on; we have checked this for

the mentioned generations. This result is valid as long as the

continuum approximation remains a good description of the

band and can be obtained by constructing an effective 2 × 2

Hamiltonian that describes the crossing between each pair of

replicas (see the Appendix). Notice that δmi also corresponds

to the number of photon processes involved. What we would

like to stress is that while this number of edge states is what

a calculation of the Chern number would give, converging

only when O(D/��) replicas are retained, only the first-order

state gives a significant contribution to the averaged density of

states. Hence, caution should be taken when deducing transport

properties from the Chern numbers of the Floquet Hamiltonian

alone.

V. SUMMARY AND CONCLUSIONS

We focused on the emergence of Floquet edge states in

irradiated graphene by using complementary approaches: a

simple analysis of the topological character of the bulk Floquet

bands based on a continuum model, an explicit analytical

solution for the states developing at the dynamical gaps, and

numerical calculations. The topological arguments contain a

discussion of a few novel aspects: (i) the analysis close to the

dynamical gaps which suggests a topological phase which is

different from the one at the gap close to the Dirac point (one

has two chiral edge states bridging the gap, and the other has

just one) and (ii) a discussion of the relevance of different

Floquet replicas for the calculation of Chern numbers, where

we argue that a Floquet-projected calculation (on the m = 0

channel) captures the physics of time-averaged magnitudes

such as the dc density of states.

On the other hand, the analytical solutions provide valuable

information such as the scaling of the decay length of these

Floquet chiral edge states with the system parameters, which

is not easily accessible through either a bulk calculation or

numerical simulations and which could serve as a guide for

experiments. Those results are complemented by numerics for

different ribbon terminations, highlighting the generality of

the physics described for zigzag ribbons. Further insight is

also provided by a numerical calculation for a semi-infinite

graphene sheet. This allows us to discuss subtle issues that are

hard to access when considering a finite width.

All these results highlight the experimental accessibility of

the edge states at the dynamical gap in graphene as opposed

to the one found at the Dirac point. The former offer also

the possibility to tune the transport energy window where they

appear. As for the experimental signature of these Floquet edge

states, one can anticipate [71] the appearance of a Hall-like

voltage in a radiated graphene sample whenever the Fermi

energy of the reservoirs lines up with the dynamical gap.

This voltage should change sign if the circular polarization

is reversed from, say, clockwise to counterclockwise. A

Hall signal should also develop at the Dirac point [23] but,

interestingly enough, with the opposite sign.
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APPENDIX: CHERN NUMBER CALCULATION

OF THE FLOQUET BANDS

In the time-independent case, the topology of a system can

be characterized by the Chern numbers associated with each

of the Bloch bands. Namely,

Cn =
i

2π

∮

C

〈unk|∇k|unk〉 · dk

=
1

π
Im

∫

BZ

〈∂ky
unk|∂kx

unk〉 d2k , (A1)

where n is the band index, |unk〉 is the periodic part of the

Bloch eigenfunction, and C is the contour of the Brillouin

zone. Alternatively, the latter expression can be cast in the

following form:

Cn =
1

2π

∫

BZ

Ŵnk · dSk , (A2)

with

Ŵnk = Im
∑

m�=n

〈unk|∇kHk|umk〉 × 〈umk|∇kHk|unk〉
(εnk − εmk)2

. (A3)

The latter expression makes evident that the main contribution

to Cn comes from the points in the Brillouin zone near an

avoided crossing, that is, where the gap between the n band

and the nearest bands is small.

In our case, we can apply the same procedure to the bulk

Floquet Hamiltonian to characterize the topological properties

of the Floquet bands and the corresponding edge states [27].

While a direct calculation using the above expression with

the full tight-binding Hamiltonian is possible, although nu-

merically rather demanding if �� ≪ D [recall that O(D/��)

replicas are required to include all anticrossings], we used the

continuous model and some further approximations to gain

some insight.
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The dynamical gap at ��/2 occurs in k space near a

point where, in the absence of radiation, there is a degeneracy

between a pair of replicas at that energy for the same value of

k. Such degeneracies appear at kp = (2p + 1)k0, with p being

an integer number. That is, the m = 0 and m = 1 replicas

become degenerated at k = k0, the m = 2 and the m = −1

replicas become degenerated at k = 3k0, and so on. Since,

as we pointed out above, the Chern number is dominated by

the contribution near the degeneracy points, in order to get the

contribution from a given region it is sufficient to obtain a 2 × 2

effective Hamiltonian valid for k ∼ kp. In that case, by writing

it as Heff
F (k,p) = hp(k) · σ , one can obtain the contribution to

the Chern by calculating [7]

cp =
1

4π

∫

ĥp ·
(

∂kx
ĥp × ∂ky

ĥp

)

d2k. (A4)

Following this procedure and explicitly calculating hp(k), we

found that the number of edge states N appearing inside the

dynamical gap depends on the number of Floquet replicas, and

it is given by

N =
∑

p

cp =
∑

i

|δmi |, (A5)

where δmi is the difference of the Floquet indexes of the pairs

of replicas that become degenerated at the dynamical gap,

leading to a high-order gap of order η|δmi |, and i runs over

the replicas retained. It is worth emphasizing that N becomes

independent of the number of replicas only when O(D/��)

are included and that |δmi | corresponds to the number of

photons involved in the process that couples the corresponding

replicas.
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