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Abstract. In this paper, we study the dynamics of the mappings{
θ1 = θ + 2απ + 1

r
µ1(θ) + o(r−1),

r1 = r + µ2(θ) + o(1), r → +∞,
where α is a irrational rotation number. We prove the existence of orbits that
go to infinity in the future or in the past by using the well-known Birkhoff
Ergodic Theorem. Applying this conclusion, we deal with the unboundedness
of solutions of Liénard equations with asymmetric nonlinearities.

1. Introduction

We are concerned with the unboundedness of solutions of the second order dif-
ferential equations

x′′ + f(x)x′ + ax+ − bx− = p(t),(1.1)

where a and b are positive constants, x+ = max{x, 0}, x− = max{−x, 0}, f(x) is
a continuous function and p(t) is a continuous 2π-periodic function. Throughout
this paper, we define F (x) =

∫ x
0
f(x)dx and so F (x) ∈ C1(R).

When f(x) ≡ 0, Eq. (1.1) becomes

x′′ + ax+ − bx− = p(t),(1.2)

which was first studied by Dancer in [1], [2] and Fucik in [3]. Up to now, there have
appeared many results about the existence of periodic solutions and boundedness
(or unboundedness) of solutions of Eq. (1.2) [4], [12]. When a and b are different
and satisfy

1√
a

+
1√
b
∈ Q,

J. M. Alonso and R. Ortega [12] proved the existence of periodic functions p(t) such
that all the solutions of (1.2) with large initial conditions are unbounded. In order
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to prove the unboundedness of solutions of Eq. (1.2), they studied the dynamics of
a class of mappings defined on the plane, which have an asymptotic expression{

θ1 = θ + 2π pq + 1
rµ1(θ) + o(r−1),

r1 = r + µ2(θ) + o(1), r → +∞,

where p/q is a rational number and µ1, µ2 are continuous and 2π-periodic functions.
They proved the existence of orbits that go to infinity in the future provided that
there exists ω ∈ R such that

µ2(ω) > 0, µ1(ω) = 0, µ1(θ)(θ − ω) < 0 for θ 6= ω and |θ − ω| is small

or in the past provided that there exists ω ∈ R such that

µ2(ω) < 0, µ1(ω) = 0, µ1(θ)(θ − ω) > 0 for θ 6= ω and |θ − ω| is small.

In the present paper, we will study the unboundedness of solutions of Eq. (1.1)
when a and b satisfy

1√
a

+
1√
b
∈ R\Q.

Similarly, we will study the dynamics of mappings{
θ1 = θ + 2απ + 1

rµ1(θ) + o(r−1),
r1 = r + µ2(θ) + o(1), r → +∞,

where α is an irrational number. Under certain conditions, we prove the existence
of orbits that go to infinity in the future or in the past by using the well-known
Birkhoff Ergodic Theorem. On the basis of this conclusion, we obtain the following
theorems.

Theorem 1. Assume that 1/
√
a + 1/

√
b ∈ R\Q and the limits limx→+∞ F (x) =

F (+∞), limx→−∞ F (x) = F (−∞) exist and are finite. Moreover, F (+∞) < 0 <
F (−∞). Then there exists R0 > 0 such that every solution x(t) of (1.1) with

x(t0)2 + x′(t0)2 ≥ R2
0

with some t0 ∈ R goes to infinity in the future.

Theorem 2. Assume that 1/
√
a + 1/

√
b ∈ R\Q and the limits limx→+∞ F (x) =

F (+∞), limx→−∞ F (x) = F (−∞) exist and are finite. Moreover, F (−∞) < 0 <
F (+∞). Then there exists R0 > 0 such that every solution x(t) of (1.1) with

x(t0)2 + x′(t0)2 ≥ R2
0

with some t0 ∈ R goes to infinity in the past.

2. Unbounded orbits of planar mappings

Let σ > 0 be a sufficiently large constant. Set

Eσ = {(x, y) : x2 + y2 ≥ σ2}.
Assume that P : Eσ → R2 is a one-to-one and continuous mapping, whose lift

can be expressed in the form{
θ1 = θ + 2απ + 1

rµ1(θ) +H(θ, r),
r1 = r + µ2(θ) +G(θ, r),

(2.1)
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where

α ∈ R\Q, µ1, µ2 : S1 → S1 are Lipschitz continuous , S1 = R/2πZ(2.2)

and H , G are 2π-periodic in θ and satisfy

r|H(θ, r)| + |G(θ, r)| → 0 as r → +∞,(2.3)

uniformly with respect to θ ∈ R.
Given a point (θ0, r0), denote by {(θn, rn)} the orbit of the mapping P through

the point (θ0, r0). That is to say

(θn+1, rn+1) = P(θn, rn).

Proposition 2.1. Assume that conditions (2.2), (2.3) hold and∫ 2π

0

µ2(θ)dθ > 0.

Then there exists R0 > σ such that if r0 ≥ R0, the orbit {(θn, rn)} satisfies

lim
n→+∞

rn = +∞.

Proof. From the expression of the mapping P we have that{
θ2 = θ1 + 2απ + 1

r1
µ1(θ1) +H(θ1, r1),

r2 = r1 + µ2(θ1) +G(θ1, r1).

Therefore,{
θ2 = θ0 + 4απ + 1

r0
µ1(θ0) +H(θ0, r0) + 1

r1
µ1(θ1) +H(θ1, r1),

r2 = r0 + µ2(θ0) +G(θ0, r0) + µ2(θ1) +G(θ1, r1).

Since
1
r1

=
1

r0 + µ2(θ0) +G(θ0, r0)
=

1
r0

+O(
1
r2
0

)

and

µ1(θ1) = µ1(θ0 + 2απ +
1
r0
µ1(θ0) +H(θ0, r0)) = µ1(θ0 + 2απ) +O(

1
r0

),

we know that
1
r1
µ1(θ1) =

1
r0
µ1(θ0 + 2απ) +O(

1
r2
0

).

Then θ2 can be expressed in the form

θ2 = θ0 + 4απ +
1
r0

[µ1(θ0) + µ1(θ0 + 2απ)] +H2(θ0, r0),

where H2(θ0, r0) = H(θ0, r0) + H(θ1, r1) + 1
r1
µ1(θ1) − 1

r0
µ1(θ0 + 2απ). Obviously,

we have that

lim
r0→+∞

r0|H2(θ0, r0)| = 0.

On the other hand, since

µ2(θ1) = µ2(θ0 + 2απ +
1
r0
µ1(θ0) +H(θ0, r0)) = µ2(θ0 + 2απ) +O(

1
r0

),

we get that

r2 = r0 + µ2(θ0) + µ2(θ0 + 2απ) +G2(θ0, r0),
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where G2(θ0, r0) = G(θ0, r0) +G(θ1, r1) +µ2(θ1)−µ2(θ0 + 2απ). It is easy to check
that

lim
r0→+∞

|G2(θ0, r0)| = 0.

Inductively, we have that{
θn = θ0 + 2nαπ + 1

r0

∑i=n−1
i=0 µ1(θ0 + 2iαπ) +Hn(θ0, r0),

rn = r0 +
∑i=n−1

i=0 µ2(θ0 + 2iαπ) +Gn(θ0, r0),

where Hn(θ0, r0) and Gn(θ0, r0) satisfy

r0|Hn(θ0, r0)|+ |Gn(θ0, r0)| → 0 as r0 → +∞.
Next, we define a transformation T : S1 → S1, T (θ) = θ + 2απ. Since α is an
irrational number, T is ergodic. By the Birkhoff Ergodic Theorem [13] we get that

lim
n→+∞

1
n

i=n−1∑
i=0

µ2(θ + 2iαπ) = lim
n→+∞

1
n

i=n−1∑
i=0

µ2(T iθ) =
1

2π

∫ 2π

0

µ2(θ)dθ > 0

for almost every θ ∈ S1. Since µ2 is continuous and S1 is compact, we can further
obtain that

lim
n→+∞

1
n

i=n−1∑
i=0

µ2(θ + 2iαπ) =
1

2π

∫ 2π

0

µ2(θ)dθ > 0

uniformly for every θ ∈ S1. Therefore, there exist a positive integer m >> 1 and a
constant c > 0 such that

1
m

i=m−1∑
i=0

µ2(θ0 + 2iαπ) ≥ c > 0

for all θ0 ∈ S1. Recalling that limr0→+∞Gm(θ0, r0) = 0, we have that there exists
a constant R0 > σ such that for r0 ≥ R0, |Gm(θ0, r0)| ≤ c. Then for r0 ≥ R0, we
get that

rm = r0 +m · 1
m

i=m−1∑
i=0

µ2(θ0 + 2iαπ) +Gm(θ0, r0) ≥ r0 +mc+Gm(θ0, r0)

≥ r0 + (m− 1)c.

Meanwhile, we have that

r2m = rm +m · 1
m

i=m−1∑
i=0

µ2(θm + 2iαπ) +Gm(θm, rm)

≥ rm +mc+Gm(θm, rm) ≥ rm + (m− 1)c ≥ r0 + 2(m− 1)c.

Inductively, we have that

rkm = r(k−1)m +m · 1
m

i=m−1∑
i=0

µ2(θ(k−1)m + 2iαπ) +Gm(θ(k−1)m, r(k−1)m)

≥ r(k−1)m +mc+Gm(θ(k−1)m, r(k−1)m) ≥ r0 + k(m− 1)c.

Therefore, we get that

lim
k→+∞

rkm = +∞.(2.4)
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Because µ2(θ) is continuous and limr0→+∞G(θ0, r0) = 0, there exists a constant
d > 0 such that

|µ2(θ0) +G(θ0, r0)| ≤ d,
for θ0 ∈ S1 and r0 > σ. From

r(km+i) = r(km+i−1) + µ2(θ(km+i−1)) +G(θ(km+i−1), r(km+i−1)), i = 1, · · · ,m− 1,

we get that

|r(km+i) − r(km+i−1)| ≤ d, i = 1, · · · ,m− 1.

Consequently, we have that

|r(km+i) − rkm| ≤ id, i = 1, · · · ,m− 1.(2.5)

From (2.4) and (2.5) we know that

lim
n→+∞

rn = +∞.

Proposition 2.2. Assume that conditions (2.2), (2.3) hold and∫ 2π

0

µ2(θ)dθ < 0.

Then there exists R0 > σ such that if r0 ≥ R0, the orbit {(θn, rn)} satisfies

lim
n→−∞

rn = +∞.

The proof of Proposition 2.2 is identical to the proof of Proposition 2.1. We only
give some explanations. At first, from (2.2), (2.3) we know that P(Eσ) contains a
neighborhood of infinity. Next, by using the inductive method, we can also obtain
that {

θ−n = θ0 − 2nαπ − 1
r0

∑i=n−1
i=0 µ1(θ0 − 2iαπ)−H−n(θ0, r0),

r−n = r0 −
∑i=n−1
i=0 µ2(θ0 − 2iαπ)−G−n(θ0, r0),

where H−n(θ0, r0) and G−n(θ0, r0) satisfy

r0|H−n(θ0, r0)|+ |G−n(θ0, r0)| → 0 as r0 → +∞.
Thus, by applying the same ideas in proving Proposition 2.1, we can prove that the
conclusion of Proposition 2.2 holds.

3. Action and angle variables

At first, we consider the piecewise linear equation

x′′ + ax+ − bx− = 0(3.1)

and denote by C(t) the solution of (3.1) satisfying the initial condition x(0) =
1, x′(0) = 0. It is a periodic function with period

τ =
π√
a

+
π√
b

and can be expressed by

C(t) =

cos
√
at, 0 ≤ |t| ≤ π

2
√
a
,

−
√

a
b sin

√
b(t− π

2
√
a
), π

2
√
a
≤ |t| ≤ τ

2 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



528 ZAIHONG WANG

The derivative of C(t) will be denoted by S(t) = C′(t). Obviously, C(t) and S(t)
satisfy the following properties,

(i) C(t+ τ) = C(t), S(t+ τ) = S(t) and C(0) = 1, S(0) = 0.
(ii) C(t) ∈ C2(R), S(t) ∈ C1(R).
(iii) C′(t) = S(t), S′(t) = −(aC+(t)− bC−(t)).
(iv) S(t)2 + aC+(t)2 + bC−(t)2 = a, ∀t ∈ R.
Define the mapping

Φ : (θ, I) ∈ S1 × (0,+∞)→ (x, y) ∈ R2\{0}
with

x = γI
1
2C(

θ

ω
), y = γI

1
2S(

θ

ω
),

with ω = 2π
τ , γ =

√
2ω
a . It is easy to check that Φ is an area-preserving C1-

diffeomorphism.
Now, we deal with Eq. (1.1). Consider the equivalent system of Eq. (1.1)

x′ = y − F (x), y′ = −(ax+ − bx−) + p(t).(3.2)

Under the transformation Φ, Eq. (3.2) becomes
dθ
dt

= ω + γ
2 I
− 1

2F (γI
1
2C( θω ))S( θω )− γ

2 I
− 1

2 p(t)C( θω ),

dI
dt

= 2
aγ I

1
2 [−aC+( θω ) + bC−( θω )]F (γI

1
2C( θω )) + 2

aγ I
1
2 p(t)S( θω ).

(3.3)

Denote by (θ(t; θ0, I0), I(t; θ0, I0)) the solution of (3.3) satisfying an initial condition
θ(0) = θ0, I(0) = I0. If F (x) is bounded, then for large values of I0, this solution
is defined for all t ∈ [0, 2π]. Thus we can define the Poincaré mapping

θ1 = θ(2π; θ0, I0), I1 = I(2π; θ0, I0).

From the second equality of (3.3) we get that

dI
1
2

dt
=

4
aγ

[(−aC+(
θ

ω
) + bC−(

θ

ω
))F (γI

1
2C(

θ

ω
)) + p(t)S(

θ

ω
)].(3.4)

It follows from (3.4) that

I(t)
1
2 = I

1
2
0 +O(1), t ∈ [0, 2π], I0 → +∞.

Furthermore, we have that

I(t)−
1
2 = I

− 1
2

0 +O(I−1
0 ), t ∈ [0, 2π], I0 → +∞.(3.5)

From (3.5) and the first equality of (3.3) we know that
dθ

dt
= ω +O(I−

1
2

0 ).

Consequently,

θ(t) = θ0 + ωt+O(I−
1
2

0 ), t ∈ [0, 2π],(3.6)

which, together with (3.4), yields

dI
1
2

dt
=

4
aγ

[(−aC+(t+
θ0

ω
)+bC−(t+

θ0

ω
))F (γI

1
2
0 C(t+

θ0

ω
)+O(1))+p(t)S(t+

θ0

ω
)]

+O(I−
1
2

0 ).
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An integration shows that

I
1
2
1 = I

1
2
0 +

4
aγ

∫ 2π

0

(−aC+(t+
θ0

ω
) + bC−(t+

θ0

ω
))F (γI

1
2
0 C(t+

θ0

ω
) +O(1))dt

+
4
aγ

∫ 2π

0

p(t)S(t+
θ0

ω
)dt+O(I−

1
2

0 ).

Similarly, substituting (3.6) in the first equality of (3.3), we obtain that for t ∈
[0, 2π]

dθ

dt
=ω +

γ

2
I
− 1

2
0 F (γI

1
2
0 C(t+

θ0

ω
) +O(1))S(t +

θ0

ω
)− γ

2
I
− 1

2
0 p(t)C(t +

θ0

ω
)+O(I−1

0 ).

Therefore, we have that

θ1 = θ0 + 2πω + γ
2 I
− 1

2
0

∫ 2π

0
F (γI

1
2
0 C(t+ θ0

ω ) +O(1))S(t+ θ0
ω )dt

−aγ2 I
− 1

2
0

∫ 2π

0 p(t)C(t + θ0
ω )dt+O(I−1

0 ).

Set r = I1/2. Then we get

θ1 = θ0 + 2πω + γ
2 r
−1
0

∫ 2π

0
F (γr0C(t+ θ0

ω ) +O(1))S(t+ θ0
ω )dt

−γ2 r
−1
0

∫ 2π

0 p(t)C(t+ θ0
ω )dt+O(r−2

0 ),

r1 = r0 + 4
aγ
∫ 2π

0 (−aC+(t+ θ0
ω ) + bC−(t+ θ0

ω ))F (γr0C(t+ θ0
ω ) + O(1))dt

+ 4
aγ
∫ 2π

0
p(t)S(t+ θ0

ω )dt+O(r−1
0 ).

Write

ψ1(θ0, r0) =
∫ 2π

0

F (γr0C(t+
θ0

ω
) +O(1))S(t+

θ0

ω
)dt,

ψ2(θ0, r0) =
∫ 2π

0

(−aC+(t+
θ0

ω
) + bC−(t+

θ0

ω
))F (γr0C(t+

θ0

ω
) +O(1))dt,

ψ3(θ0) =
∫ 2π

0

p(t)C(t+
θ0

ω
)dt,

ψ4(θ0) =
∫ 2π

0

p(t)S(t+
θ0

ω
)dt.

Lemma 1. Assume that the limits limx→+∞ F (x) = F (+∞), limx→−∞ F (x) =
F (−∞) exist and are finite. Then, for r0 → +∞,

ψ1(θ0, r0) = F (+∞)
∫
J1

S(t+
θ0

ω
)dt+ F (−∞)

∫
J2

S(t+
θ0

ω
)dt+ o(1),

ψ2(θ0, r0) = −aF (+∞)
∫
J1

C+(t+
θ0

ω
)dt+ bF (−∞)

∫
J2

C−(t+
θ0

ω
)dt+ o(1),

where J1 = {t : t ∈ (0, 2π), C(t+ θ0
ω ) ≥ 0}, J2 = {t : t ∈ (0, 2π), C(t+ θ0

ω ) ≤ 0}.

Proof. We only check that

lim
r0→+∞

∫
J1

F (γr0C(t+
θ0

ω
) +O(1))S(t+

θ0

ω
)dt = F (+∞)

∫
J1

S(t+
θ0

ω
)dt.
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From limx→+∞ F (x) = F (+∞) we have that, for any sufficiently small η > 0,

lim
r0→+∞

∫
J11

F (γr0C(t+
θ0

ω
) +O(1))S(t+

θ0

ω
)dt = F (+∞)

∫
J11

S(t+
θ0

ω
)dt,

with J11 = {t : t ∈ (0, 2π), C(t+ θ0
ω ) ≥ η}. On the other hand, it is easy to see that

lim
η→0+

∫
J12

F (γr0C(t+
θ0

ω
) +O(1))S(t +

θ0

ω
)dt = 0, lim

η→0+

∫
J12

S(t+
θ0

ω
)dt = 0,

where J12 = {t : t ∈ (0, 2π), 0 ≤ C(t+ θ0
ω ) ≤ η}. Thus we get the conclusion.

Lemma 2.
∫ 2π

0
ψ4(θ0)dθ0 = 0.

Proof. Since ψ4(θ0) = ψ′3(θ0) and ψ4(θ0), ψ3(θ0) are 2π-periodic functions, we have∫ 2π

0 ψ4(θ0)dθ0 = 0.

Now, we prove Theorem 1. The proof of Theorem 2 can be treated similarly.

Proof of Theorem 1. Consider the Poincaré mapping P : (θ0, r0) → (θ1, r1). From
Lemma 1 we know that P can be expressed in the form:{

θ1 = θ0 + 2πω + r−1
0 µ1(θ0) +H(θ0, r0),

r1 = r0 + µ2(θ0) +G(θ0, r0),

where H , G are continuous functions and satisfy

H(θ0, r0) = o(
1
r0

), G(θ0, r0) = o(1) as r0 → +∞

and µ1(θ0) = γ
2 [φ1(θ0)− ψ3(θ0)], µ2(θ0) = 4

aγ [φ2(θ0) + ψ4(θ0)] with

φ1(θ0) = F (+∞)
∫
J1

S(t+
θ0

ω
)dt+ F (−∞)

∫
J2

S(t+
θ0

ω
)dt,

φ2(θ0) = −aF (+∞)
∫
J1

C+(t+
θ0

ω
)dt+ bF (−∞)

∫
J2

C−(t+
θ0

ω
)dt,

where J1 and J2 are defined in Lemma 1. Clearly, µ1, µ2 : S1 → S1 are Lipschitz
continuous. Since 1/

√
a+ 1/

√
b ∈ R\Q and ω = 2π/τ , τ = π/

√
a+ π/

√
b, we have

that ω is an irrational number. On the other hand, it follows from F (+∞) < 0 <
F (−∞) that φ2(θ0) > 0 for θ0 ∈ S1. Therefore, from Lemma 2 we get that∫ 2π

0

µ2(θ0)dθ0 =
4
aγ

∫ 2π

0

φ2(θ0)dθ0 > 0.

Applying the result of Proposition 2.1, we obtain the conclusion of
Theorem 1.
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