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1. Introduction. Recently the author [4] studied the rational approxi-
mations to the values of logarithm, dilogarithm and trilogarithm at partic-
ular rational points, such as log 2, π/

√
3, ζ(2) and ζ(3), using the following

Legendre type polynomials:

Hn,m(x) =
1
n!

(xn−m(1− x)n+m)(n)(1.1)

=
n∑

j=0

(−1)m+j

(
n+m

m+ j

)(
n+ j

n

)
xj .

In the present paper we continue the similar researches by introducing an-
other kind of Legendre type polynomial:

Pn,m,δ(x) =
xδ

n!
(xn−δ(1− x)n+m)(n)(1.2)

=
n+m∑
j=0

(−1)j

(
n+m

j

)(
n+ j − δ

n

)
xj ,

where δ = a/b ∈ (0, 1), a, b ∈ N, is a fixed rational number. Applying
the above polynomials to some one-dimensional integrals we can construct
rational approximations to the values of the following particular Gaussian
hypergeometric function:

(1.3) 2F1(1, 1− δ, 2− δ;x) = (1− δ)
∞∑

n=1

xn−1

n− δ

at rational points x. Here we restrict ourselves to the case x = 1/s, where
s is an integer satisfying

(1.4) s ≡ 1
(
mod b ·

∏
p|b

p prime

p
)
.
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Although this restriction is stronger than the condition (b) of Huttner’s the-
orem ([5], p. 169), this enables us to obtain comparatively good irrationality
measures of the corresponding values (1.3); indeed, some of them improve
the earlier results obtained by Huttner [5] and by the author [3].

Note that the polynomials (1.1) and (1.2) for δ = 1/2 are closely related.
In fact, since

1∫
0

xjPn,m,1/2((2x− 1)2) dx

=
1
4

1∫
0

{(
1 +

√
y

2

)j

+
(

1−√
y

2

)j}
Pn,m,1/2(y)

dy
√
y

and since the function in { } is a polynomial of y of degree [j/2], it follows
that Pn,m,1/2((2x − 1)2) is orthogonal to xj for 0 ≤ j < 2n. Moreover, it
vanishes at x = 0 and x = 1 with order at least m. Therefore it follows from
Lemma 2.1 in [4] that Pn,m,1/2((2x−1)2) and xmH2n+m,m(x) differ only by
a constant multiple. Comparing their coefficients of the highest order, we
thus have

Pn,m,1/2((2x− 1)2) = (−1)n+m

(
n+m

m

)
(

2n+ 2m
m

) (4x)mH2n+m,m(x) .

Concerning the values of logarithm at rational points such as log 2 and π/
√

3,
our polynomial Pn,m,1/2(x) reproduces the same irrationality measures as
obtained in the previous paper [4]. For the approximations by algebraic
numbers to such numbers, see Reyssat [6].

Our polynomial Pn,m,1/2(x) can also produce good irrationality measures
of some numbers involving logarithm at algebraic points. For example, as a
special case of our main theorem, we have

Theorem 1.1. For any ε > 0, there exists a positive integer q0(ε) such
that ∣∣∣∣√5 log

(
1 +

√
5

2

)
− p

q

∣∣∣∣ ≥ q−ν−ε

for any integer q ≥ q0(ε) and for all p ∈ Z, where ν is given by

ν = 1 +
logα0 + β0

logα0 − β0

with α0 = (65821 + 2929
√

505)/108 and β0 = 6− π(2/
√

3− 1/2). (Numeri-
cally one has ν = 4.4937113 . . .)
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Similarly our polynomials Pn,m,δ(x) in the cases b = 3 and b = 4 can
produce the following new irrationality measures of some numbers involv-
ing π.

Theorem 1.2. For any ε > 0, there exists a positive integer q1(ε) such
that ∣∣∣∣( π√

3
± log 3

)
− p

q

∣∣∣∣ ≥ q−µ−ε

for any integer q ≥ q1(ε) and for all p ∈ Z, where µ is given by

µ = 1 +
log(

√
3α1) + β1

logα1 − β1

with α1 = 3−9/4(960991 + 129580
√

55) and β1 = 9 − π(3/2 +
√

3/6 −
(cot(π/9) + cot(2π/9) + cot(4π/9))/4). (Numerically one has µ =
4.5586217 . . .)

Theorem 1.3. For any ε > 0, there exists a positive integer q2(ε) such
that ∣∣∣∣( π√

3
±
√

3 log(2 +
√

3)
)
− p

q

∣∣∣∣ ≥ q−ξ−ε

for any integer q ≥ q2(ε) and for all p ∈ Z, where ξ is given by

ξ = 1 +
logα2 + β2

logα2 − β2

with α2 = 2−21/2(153333125 + 7734633
√

393) and β2 = 32/3 − π(1/
√

2 +√
1 + 1/

√
2− 5/4). (Numerically one has ξ = 6.1382145 . . .)

Unfortunately, our method seems to be inappropriate to obtain any irra-
tionality measures of other kind of numbers such as log 3 and

√
3 log(2+

√
3).

For the rational approximations to such numbers, see Rhin [7].
In applications of the polynomials (1.2) to some one-dimensional inte-

grals the exact asymptotic behaviour of the remainder terms of our rational
approximations can be easily obtained by using the following fact:

(1.5) lim
n→∞

( 1∫
0

|f(t)|nϕ(t) dt
)1/n

= max
0≤t≤1

|f(t)|

where f(t) is continuous and ϕ(t) is a non-negative integrable weight func-
tion such that there exists a point t0 ∈ [0, 1] at which |f(t)| attains its
maximum and ϕ(t) 6≡ 0 in any neighbourhood of t0. So we do not need any
further information on the polynomials (1.2), such as the uniqueness, the
distribution of zeros, the recurrence formula, etc., except for some arithmeti-
cal properties of their coefficients. (1.5) will be easily proved by modifying
the proof of the usual case in which ϕ(t) ≡ 1.
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2. Arithmetical properties of the coefficients. In this section
we investigate some arithmetical properties of the coefficients of Pn,m,δ(x)
where δ = a/b ∈ (0, 1) and a, b are positive integers with (a, b) = 1. First
of all, we need the following elementary arithmetical lemma, which gives
a generalization of the well-known fact that the exponent of any prime p
in the resolution of n! into its prime factors is precisely equal to v(n, p) ≡
[n/p] + [n/p2] + . . .

Lemma 2.1. Let a < b be positive integers with (a, b) = 1. Then

(2.1)
n∏

k=1

(kb− a) =
∏
p - b

p prime

pv(n,p;a,b)

for every n ≥ 1, where

v(n, p; a, b) =
∞∑

j=1

[
n

pj
+
wj

b

]
and wj ≡ wj(p; a, b) ∈ [1, b) is the unique solution of the congruence

pjwj ≡ a (mod b) .

P r o o f. The proof is easily given by modifying the method of the reso-
lution of n! into its prime factors.

Since (kb− a, b) = 1 for every k ≥ 1, no prime factors of b appear in the
resolution of the number (2.1) into its prime factors. So it is sufficient to
show that the following n integers:

(2.2) b− a, 2b− a, . . . , nb− a

include just [n/pj + wj/b] multiples of pj for each j ≥ 1 and for any prime
number p with p - b. To see this, let uk be the least non-negative residue
of kb − a to modulus pj for k ≥ 1. Then, since (p, b) = 1, the pj integers
u1, u2, . . . , upj form a complete system (mod pj); so there exists a unique
kj ∈ [1, pj ] such that ukj

= 0. Therefore the integers (2.2) include just N
multiples of pj , where N is the largest integer satisfying kj +(N −1)pj ≤ n;
hence N = [(n− kj)/pj ] + 1. Thus

n− kj

pj
+ 1 ≤ N +

pj − 1
pj

.

On the other hand, put pjwj = a + brj for some integer rj < pj . Then
b(pj − rj)− a = pj(b− wj); hence kj = pj − rj . Thus we have

N ≤ n− kj

pj
+ 1 ≤ n− kj

pj
+ 1 +

a

bpj
< N +

pj − 1
pj

+
1
pj

= N + 1 ,
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which then implies

N =
[
n− kj

pj
+ 1 +

a

bpj

]
=

[
n

pj
+
wj

b

]
,

as required.

In the above lemma we note that the sequence {wj} also satisfies the
congruence pwj+1 ≡ wj (mod b) with w0 = a and that wj runs through some
subset of a complete set of residues prime to b periodically. The period of
{wj} is equal to the order of p (mod b); that is, the smallest positive integer
r for which pr ≡ 1 (mod b).

Lemma 2.2. Let λ > 1 be a real parameter. Then the following n + 1
positive integers:

(2.3)
(
n+ [n/λ]
[n/λ] + j

)
1
j!

∏
p|b

p prime

pv(j,p)
n∏

k=n−j+1

(kb− a) ,

0 ≤ j ≤ n, have a common divisor dn(λ; a, b) such that

lim
n→∞

1
n

log dn(λ; a, b) =
1

λψ(b)

∑
1≤k<b
(k,b)=1

∫
E(λ,k/b)

dy

y2

where ψ(b) is Euler’s function and E(λ, k/b) is a countable union of open
intervals defined by

E(λ, k/b) = {x > 0; {λx} > k/b and 1 < {x}+ {λx} < 1 + k/b}
({x} denotes the fractional part of x).

P r o o f. Clearly the numbers (2.3) are positive integers, since

v(n, p; a, b) ≥ v(n− j, p; a, b) + v(j, p)

for any prime number p with p - b. For any integer k ∈ [1, b) with (k, b) = 1,
we first define

En(λ, k/b) = {x > 0; {λx} > k/b and
1 + 1/

√
n < {x}+ {λx} < 1 + k/b− 1/

√
n}

for every n > 4b2. Then En(λ, k/b) is a countable union of disjoint open
intervals and {En(λ, k/b)} is a monotone increasing sequence of open sets
with respect to n satisfying⋃

n

En(λ, k/b) = E(λ, k/b) .

Let Sn(λ, k; a, b) be the set of all prime numbers p such that p >
√
bn,

p ≡ k′ (mod b), and that n/λp ∈ En(λ, k/b), where k′ ∈ [1, b) is the unique
solution of the congruence −kk′ ≡ a (mod b). Note that if k runs through a
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complete set of residues prime to b, then k′ also runs through the same set.
We then define

dn(λ; a, b) =
∏

1≤k<b
(k,b)=1

∏
p∈Sn(λ,k;a,b)

p .

We first show that each prime number p ∈ Sn(λ, k; a, b) divides all the
integers (2.3) for 0 ≤ j ≤ n. To see this, for an arbitrarily fixed j ∈ [0, n],
let ω, η and θ be the fractional parts of n/p, [n/λ]/p and j/p respectively.
Then{
n

λp

}
> 1+

1√
n
−ω > 1√

n
and

{
n

λp

}
< 1+

k

b
− 1√

n
−ω < 1− 1√

n
,

since n/λp ∈ En(λ, k/b). Therefore, since∣∣∣∣ nλp − [n/λ]
p

∣∣∣∣ =
{n/λ}
p

<
1
p
<

1√
n
,

we have |{n/λp} − η| < 1/
√
n; hence

ω + η >

{
n

p

}
+

{
n

λp

}
− 1√

n
> 1

and

ω + η − k

b
<

{
n

p

}
+

{
n

λp

}
+

1√
n
− k

b
< 1 .

Thus we obtain

(2.4) [ω + η]− [η + θ]− [ω − θ] + [ω − k/b]− [ω − θ − k/b] ≥ 1 ,

since [ω− θ] ≤ 0 and [ω− k/b] = 0 = [ω+ η− k/b] ≥ [η+ θ] + [ω− θ− k/b].
Hence, since w1(p; a, b) = b− k and v(n, p; a, b) = [n/p− k/b] + 1, it follows
from Lemma 2.1 that (2.4) means that p divides all the integers (2.3) since
j is arbitrary.

We next study the asymptotic behaviour of dn(λ; a, b). First we consider
the lower estimate. For an arbitrarily fixed integer L > 4b2, let IL = (α, β)
be any connected component of the set EL(λ, k/b). Then any prime number
p with p ≡ k′ (mod b) contained in the interval JL = (n/βλ, n/αλ) must
belong to the set Sn(λ, k; a, b) if n > max{L, b(βλ)2}. Hence we have∑

p∈Sn(λ,k;a,b)

log p ≥ π

(
1
βλ

,
1
αλ

; k′, b;n
)

log
(
n

βλ

)
,

where π(c, d; k′, b;n) is the number of prime numbers p ∈ (cn, dn) with
p ≡ k′ (mod b). Then, using the well-known prime number theorem for
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arithmetic progressions, we obtain

lim inf
n→∞

1
n

∑
p∈Sn(λ,k;a,b)

log p ≥ 1
λψ(b)

(
1
α
− 1
β

)
=

1
λψ(b)

∫
IL

dy

y2
.

Therefore, since L is arbitrary, it can be seen that

(2.5) lim inf
n→∞

1
n

log dn(λ; a, b) ≥ 1
λψ(b)

∑
1≤k<b
(k,b)=1

∫
E(λ,k/b)

dy

y2
,

as required.
The desired upper estimate of dn(λ; a, b) can be easily obtained by a

similar argument. (Or one can make (2.5) an asymptotic equality just by
replacing dn(λ; a, b) by some subdivisor, which does exist since it is highly
composite.) This completes the proof.

For brevity, we put

eb(λ) =
∑

1≤k<b
(k,b)=1

∫
E(λ,k/b)

dy

y2
.

If λ = l ≥ 2 is an integer, then eb(l) can be written as a finite sum of values
of the digamma function Γ ′(z)/Γ (z) at rational points; hence, as a sum of
values of elementary functions by Gauss’ formula ([2], p.19). In particular,
we have the following formulae for the cases in which b = 2, 3 and 4:

(2.6) e2(l) = − log 2 +
π

2
{χ(l + 1)− χ(l)}

where

χ(l) =
l−1∑
j=1

cot
(
jπ

2l

)
;

(2.7) e3(l) = −3
2

log 3 +
π

2
{χ2(l + 1)− χ1(l)}

where

χi(l) =
l−1∑
j=1

cot
(
jπ

3l

)
+

[l/3]∑
j=1

cot
(
jπ

l

)
+

∑
l<j<2l

j≡i(mod 3)

cot
(
jπ

3l

)
;

(2.8) e4(l) = −3 log 2 +
π

2
{χ̃3(l + 1)− χ̃1(l)}
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where

χ̃i(l) =
l−1∑
j=1

j 6≡2(mod 4)

cot
(
jπ

4l

)
+

[l/4]∑
j=1

cot
(
jπ

l

)
+

∑
l≤j<3l

j≡i(mod 4)

cot
(
jπ

4l

)
.

For example, for the proofs of Theorems 1.1, 1.2 and 1.3, we will use the
exact values of e2(2), e3(3) and e4(3) respectively.

3. Main theorem. To state our main theorem we need some defini-
tions. Let λ > 1 be a real parameter. For any integer s 6= 0, let gλ(s) be
the unique solution of the quadratic equation

(3.1) (λ+ 1)x2 − s(2λ+ 1)x+ sλ = 0

in the unit interval (0, 1) and let hλ(s) be the second real solution of (3.1);
so, hλ(s) > s if s > 1 and hλ(s) < s if s ≤ −1. For any x ∈ R, we define

Fλ(x) = |x− 1| ·
∣∣∣∣(2 +

1
λ

)
x− 1

∣∣∣∣λ .
Finally, for any integer b ≥ 2, we define

γλ(b) = (λ+ 1)
b

ψ(b)

∑
1≤k<b
(k,b)=1

1
k
−

(
log b+

∑
p|b

p prime

log p
p− 1

+
eb(λ)
ψ(b)

)
.

Our main theorem can now be stated as follows:

Theorem 3.1. Let δ = a/b ∈ (0, 1) where a, b are positive integers with
(a, b) = 1 and let s 6= 1 be an integer satisfying the condition (1.4). Suppose
that there exists λ > 1 satisfying

(3.2) logFλ(gλ(s)) + γλ(b) < 0 .

Then, for any ε > 0, there exists a positive integer q(ε) such that

|2F1(1, 1− δ, 2− δ; 1/s)− p/q| ≥ q−κ−ε

for any integer q ≥ q(ε) and for all p ∈ Z, where κ is given by

κ = 1− logFλ(hλ(s)) + γλ(b)
logFλ(gλ(s)) + γλ(b)

.

Theorem 1.1 stated in Section 1 is now verified by taking (δ, s, λ) =
(1/2, 5, 2) in the above main theorem. Theorem 1.2 also follows by taking
(δ, s, λ) = (1/3,−8, 3) and (2/3,−8, 3). Similarly one has Theorem 1.3 by
taking (δ, s, λ) = (1/4, 9, 3) and (3/4, 9, 3).
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P r o o f. Let Dn(a, b) be the least common multiple of {b − a, 2b − a,
. . . , nb− a}. Then it is well known that

(3.3) lim
n→∞

1
n

logDn(a, b) =
b

ψ(b)

∑
1≤k<b
(k,b)=1

1
k
.

(For the proof, see Alladi & Robinson [1; Lemma 1].) For every n ≥ 1, we
put

Kn ≡ Kn(λ; a, b) =
Dn+m(a, b)
dn(λ; a, b)

b1−m
∏
p|b

p prime

pC(n)−v(m−1,p) ,

where C(n) = [2 log(2n)] and m = [n/λ]. Then it easily follows from (3.3)
and Lemma 2.2 that

(3.4) lim
n→∞

1
n

logKn = γλ(b)/λ .

On the other hand, by the definition (1.2), we have

Pn,m,δ(x) =
xδ

n!

n∑
j=0

(
n

j

)
(xn−δ)(j)((1− x)n+m)(n−j)

= (−1)n
n∑

j=0

(
n− δ

j

)(
n+m

n− j

)
xn−j(1− x)j+m

=
n∑

j=0

Aj,nx
n−j(1− x)j+m , say.

Note that each Aj,n is a rational number, which is also dependent on λ and
δ. Clearly we have from Lemma 2.2

(3.5) Aj,n ∈
dn(λ; a, b)

bj
∏

p|b, p prime p
v(j,p)

Z

for every 0 ≤ j ≤ n. We then define

Qn,λ,δ(x) = KnPn,m,δ(1− x)(3.6)

= Kn

n∑
j=0

Aj,nx
j+m(1− x)n−j ≡

n+m∑
j=m

Bj,nx
j ,

where

Bj,n = Kn

[
Aj−m,n −

(
n+m− j + 1

1

)
Aj−m−1,n + . . .

. . .+ (−1)j−m

(
n

j −m

)
A0,n

]
.
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Therefore, from (3.5), we have

(3.7) Bj,n ∈
Dn+m(a, b)

bj−1
∏

p|b, p prime p
v(j−1,p)−C(n)

Z

for m ≤ j ≤ n+m, since v(j − 1, p) ≥ v(m− 1, p) + v(j −m, p).
We now consider the following integral:

pn ≡ pn(λ, δ; s) = s(1− δ)
1∫

0

Qn,λ,δ(1− s)−Qn,λ,δ(1− y)
s− y

· dy
yδ
.

Then we have immediately

Qn,λ,δ(1− s) 2F1(1, 1− δ, 2− δ; 1/s)− pn

= s(1− δ)
1∫

0

Qn,λ,δ(1− y)
s− y

· dy
yδ

= εn(λ, δ; s) ≡ εn , say .

We first show that pn ∈ Z. For brevity, put s̃ = 1− s; so, s̃ is neither 0 nor
1. Then we have from (3.6)

pn = −s(1− δ)
1∫

0

Qn,λ,δ(s̃)−Qn,λ,δ(y)
s̃− y

· dy

(1− y)δ

= −s(1− δ)
n+m∑
j=m

Bj,n

1∫
0

(s̃j−1 + s̃j−2y + . . .+ yj−1)
dy

(1− y)δ

= −s(1− δ)
n+m∑
j=m

Bj,n

j∑
l=1

s̃j−l
1∫

0

yl−1(1− y)−δ dy .

Here we note that

(3.8)
1∫

0

yl−1(1− y)−δdy =
Γ (l)Γ (1− δ)
Γ (l + 1− δ)

=
bl(l − 1)!

(b− a) . . . (lb− a)

∈ bl

Dl(a, b)

∏
p|b

p prime

pv(l−1,p)Z .

To see this, it suffices to show that

(3.9) v(l, p; a, b)− v(l − 1, p) ≤ Lp

for each prime number p with (p, b) = 1, where Lp is the exponent of p in
the resolution of Dl(a, b) into its prime factors. Since the left-hand side of
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(3.9) is equal to
Lp∑
j=1

([
l

pj
+
wj

b

]
−

[
l − 1
pj

])
from Lemma 2.1, it is sufficient to show that[

l

pj
+
wj

b

]
−

[
l − 1
pj

]
≤ 1

for each j ≥ 1. Suppose, on the contrary, that the left-hand side of the
above inequality is greater than 1 for some l and some j. Let r be the least
non-negative residue of l to modulus pj . Then clearly[

r

pj
+
wj

b

]
−

[
r − 1
pj

]
≥ 2 .

Since r = 0 does not satisfy the above inequality, we have r ≥ 1; hence
[(r − 1)/pj ] = 0, so [r/pj + wj/b] ≥ 2. This is clearly a contradiction, since
r < pj and wj < b. Thus we have proved (3.8).

For any integer b ≥ 2, we put

M(b) = b ·
∏
p|b

p prime

p .

Then it follows from (3.7) and (3.8) that

Bj,ns̃
j−l Γ (l)Γ (1− δ)

Γ (l + 1− δ)
∈ b

(
s̃

M(b)

)j−l

Z

for every 1 ≤ l ≤ j and m ≤ j ≤ n+m, since

v(j − 1, p)− v(l − 1, p) ≤ j − l +
[
log(2n)
log p

]
≤ j − l + C(n) .

Thus we have pn ∈ Z as required, since s̃ ≡ 0 (modM(b)) by the condition
(1.4).

Similarly we have

qn ≡ qn(λ, δ; s) = KnPn,m,δ(s) = Qn,λ,δ(s̃) ∈ Z ,
since Bj,ns̃

j ∈ b(s̃/M(b))jZ for every j. Thus we obtain

(3.10) qn 2F1(1, 1− δ, 2− δ; 1/s)− pn = εn

for some integers pn and qn.
Note that the coefficient of yj of the polynomial Qn,λ,δ(1− y) is

(−1)jKn

(
n+m

j

)(
n+ j − δ

n

)
,

which is not an integer in general.
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In order to obtain an irrationality measure of 2F1(1, 1 − δ, 2 − δ; 1/s)
from the approximation (3.10), we first study the asymptotic behaviour of
the remainder terms {εn}. We have

εn = s(1− δ)Kn

1∫
0

Pn,m,δ(y)
s− y

· dy
yδ

= s(1− δ)(−1)nKn

1∫
0

yn−δ(1− y)n+m

(s− y)n+1
dy

from an n-fold partial integration; hence from (3.4) we have

lim
n→∞

1
n

log |εn| = γλ(b)/λ+ log
(

max
0≤y≤1

y(1− y)1+1/λ

|s− y|

)
(3.11)

≡ −τ/λ, say .

Then it can be seen that the maximum of the right-hand side of (3.11) is
attained at y = gλ(s) and that from (3.2)

τ = −γλ(b)− logFλ(gλ(s)) > 0 .

We next study the asymptotic behaviour of {qn}. Let C be the circle
centered at z = %2/(%2 − 1) with radius %/(%2 − 1), where

% =
hλ(s)

hλ(s)− s
> 1 .

Then it follows from Cauchy’s integral formula that

qn = Qn,λ,δ(s̃) = KnPn,m,δ(s) =
Kn

2πi

∫
C

zn−δ(1− sz)n+m

(z − 1)n+1
dz ;

therefore

(3.12) lim sup
n→∞

1
n

log |qn|

≤ γλ(b)/λ+ log
(

max
z∈C

∣∣∣∣ z

z − 1

∣∣∣∣ · |1− sz|1+1/λ

)
≡ σ/λ , say .

It can be easily verified that the maximum of the right-hand side of (3.12)
is attained at z = %/(%− 1) and that

σ = γλ(b) + logFλ(hλ(s)) .

Thus, by Lemma 3.1 in [4], the number 2F1(1, 1 − δ, 2 − δ; 1/s) has an
irrationality measure 1 + σ/τ . This completes the proof of Theorem 3.1.
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Math. 71, Birkhäuser, 1987, 155–164.

INSTITUTE OF MATHEMATICS

YOSHIDA COLLEGE

KYOTO UNIVERSITY

KYOTO 606, JAPAN

Received on 10. 9. 1990
and in revised form on 13.5.1991 (2079)


