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Abstract Let f (x) = (x − a1) · · · (x − am), where a1, . . . , am are distinct rational
integers. In 1908 Schur raised the question whether f (x) ± 1 is irreducible over
the rationals. One year later he asked whether ( f (x))2k + 1 is irreducible for every
k ≥ 1. In 1919 Pólya proved that if P(x) ∈ Z[x] is of degree m and there are m
rational integer values a for which 0 < |P(a)| < 2−N N ! where N = �m/2�, then
P(x) is irreducible. A great number of authors have published results of Schur-type
or Pólya-type afterwards. Our paper contains various extensions, generalizations and
improvements of results from the literature. To indicate some of them, in Theorem 3.1
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416 K. Győry et al.

a Pólya-type result is established when the ground ring is the ring of integers of an
arbitrary imaginary quadratic number field. In Theorem 4.1 we describe the form of
the factors of polynomials of the shape h(x) f (x) + c, where h(x) is a polynomial
and c is a constant such that |c| is small with respect to the degree of h(x) f (x). We
obtain irreducibility results for polynomials of the form g( f (x)) where g(x) is a monic
irreducible polynomial of degree ≤ 3 or of CM-type. Besides elementary arguments
we apply methods and results from algebraic number theory, interpolation theory and
diophantine approximation.

Keywords Irreducibility · Factors · Polynomials · Schur-type · Pólya-type

Mathematics Subject Classification (2000) 11R09 · 11C08

1 Introduction

In 1908 Schur [33] raised the question of the irreducibility of polynomials of the form

P±(x) := (x − a1)(x − a2) · · · (x − am) ± 1

where a1, a2, . . . , am are distinct rational integers. One year later Westlund [47] and
Flügel [16] found that P−(x) is always irreducible over Q, and that P+(x) can be
reducible only if, for some c ∈ Z,

P+(x − c) = x(x − 2) + 1 = (x − 1)2

or

P+(x − c) = x(x − 1)(x − 2)(x − 3) + 1 = (x(x − 3) + 1)2 .

We call polynomials P1(x) and P2(x) with integral coefficients equivalent if P1(x) =
P2(x −c) for some integer c. Clearly, equivalent polynomials are either both reducible
or both irreducible in Z[x].

In 1919 Pólya [30] found the following irreducibility criterion. If P(x) ∈ Z[x] is
of degree m and there are m values a ∈ Z for which

0 < |P(a)| < 2−N N !

where N := �m/2�, then P(x) is irreducible over Q. This result implies that P±(x) is
irreducible over Q for m > 6. By a different method Pólya proved that a polynomial
P(x) ∈ Z[x] of odd degree m is irreducible if m ≥ 17 and |P(x)| = p for m different
integral arguments, where p is a rational prime.

Write

f (x) = (x − a1)(x − a2) · · · (x − am) (1)
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Irreducibility criteria of Schur-type and Pólya-type 417

where the integers a1, a2, . . . , am are distinct. Schur [34] (see also [6]) also asked
whether ( f (x))2k + 1 is irreducible for k ≥ 1. In 1926 Brauer, et al. [7] answered the
question in the affirmative for k = 1 and 2, and treated many other polynomials of the
type g( f (x)) where g(x) is an irreducible polynomial of low degree. For example,
they treated the irreducibility of g( f (x)) for g(x) = ax2 + 1, ax4 + 1, ax6 + 1 where
a ∈ Z>0 and g(x) = x8 + 1. See also Ille [26]. Similarly Wegner [45] proved the
irreducibility of ( f (x))4 + d where m > 5, d > 0, d �≡ 3 mod 4.

In 1933 Dorwart and Ore [12] generalized various of the above mentioned results.
They showed that a polynomial P(x) ∈ Z[x] of degree n taking the values ±1 at points
a1, . . . , am ∈ Z where 4 < m ≤ n can have factors only of the form h(x) f (x) ± 1
for some h(x) ∈ Z[x]. The degree of a nonconstant factor of P(x) is therefore never
less than m, and when m > n/2, P(x) is irreducible over Q. They derived a similar
result for polynomials taking many values ±p with p prime. They further proved that
g( f (x)) is irreducible if g(x) = b0x2 + b1x + 1 ∈ Z[x] is irreducible and m ≥ 5,
and gave all exceptions for m ≤ 4. Furthermore, they obtained results for polynomials
over fields K = Q(

√−d) where d ∈ Z>0, squarefree. For example, they proved that
polynomials of the form a f (x)±1, with a ∈ OK \ {0} and distinct a1, . . . , am ∈ OK ,
are irreducible for m > 8, where OK denotes the ring of integers of K .

Seres [35–37] answered the question of Schur [34] in full generality, proving the
irreducibility of the polynomials g( f (x)) for all g(x) = x2k + 1 with k ≥ 3 and,
more generally for all cyclotomic polynomials g(x), except for the case g(x) = x4 −
x2 + 1, f (x) = (x + a)(x + a + 1)(x + a + 2), a ∈ Z. Further, he extended his
results (cf. [38]) to every irreducible g(x) of degree > 5 whose zeros are nonreal
units of a cyclotomic field. Later, Győry [17–20] generalized Seres’ results to the even
more general case when the zeros of f (x) are distinct integers from a fixed totally
real number field and the splitting field of g(x) is a CM field, i.e. a totally imaginary
quadratic extension of a totally real number field.

In the present paper we want to add some new results to the investigations men-
tioned above. We distinguish two types of results and present them in two parts. In
both parts we study the irreducibility of polynomials with coefficients in Z or, more
generally, in the ring of integers of an imaginary number field. More precisely, in some
cases we investigate as well for which k the polynomials under consideration can have
a factor of degree k.

In Part I we study so-called Pólya-type results in which we consider polynomials
with integer coefficients which at many integer points take small, nonzero absolute
values. In Sect. 2 we derive the above mentioned result of Pólya and some refinements
(essentially) due to Levit [27]. In Sect. 3 we extend these results to the case that the
coefficients and the integer points come from a quadratic imaginary number field.

In Part II we obtain so-called Schur-type results by which we mean irreducibility cri-
teria for polynomials of the form g(h(x) f (x)) where f (x), g(x), h(x) ∈ Z[x], f (x)

has only simple zeros from some algebraic number field, and g(x) is an irreducible
polynomial. In Sects. 4–6 we assume that g(x) is linear. In Sect. 7 the degree of g(x)

is 2 or 3. The degree of g(x) in Sect. 8 is unrestricted, but here g(x) is of CM-type.
Theorems 4.1 and 4.2 extend the above mentioned results of Dorwart and Ore

to polynomials P(x)∈ Z[x] taking the same value c, or dividing the same value c,
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418 K. Győry et al.

respectively, for many integral values x . Theorem 5.1 presents a generalization to
polynomials

P(x) = (x − a1) · · · (x − am)g1(x) · · · gt (x) ± 1

where a1, . . . , am ∈ Z are distinct and g1(x), . . . , gt (x)∈ Z[x] are of degree 2 and have
negative discriminants. Such polynomials occur in relation with so-called ABC-fields.

In Sect. 6 Corollary 6.1 gives an upper bound for |c| for which the polynomial
h(x) f (x) + c is irreducible if f (x) is given by (1) and h(x) f (x) has only simple
zeros, where the upper bound depends only on the degrees of f (x) and h(x) and the
minimal distance between the zeros of h(x) f (x).

In Theorems 7.1 and 7.2 we deal with the case when the degree of g(x) equals 2
or 3 and g( f (x)) is reducible. Finally Theorem 8.1 is a quantitative version of the
main result of [20]. It gives an upper bound for the number of equivalence classes of
monic polynomials f (x) ∈ Z[x] of degree m with distinct zeros in a fixed totally real
algebraic number field K of degree d for which g( f (x)) is reducible over Q, where
g(x) ∈ Z[x] is a fixed monic irreducible polynomial having splitting field of CM-type.
This upper bound depends only on d, m, g(0), the degree of g and the discriminant of
K .

Part I: Pólya-type results

2 The rational case: results of Levit

Pólya’s irreducibility result on integral polynomials P(x) having small nonzero abso-
lute values at many distinct integers was based on a lemma proved by interpolation
theory (cf. the proof of Lemma 3.1). The lemma has been sharpened by several authors,
see Tatuzawa [42], Brauer and Ehrlich [8], and Levit [27]. We note that Tverberg
[43,44] has given asymptotic results which are asymptotically better than Proposi-
tion 2.1 below. We write (a)k for a(a + 1) · · · (a + k − 1).

Proposition 2.1 [27, Theorem 1] Let Q(x) be a monic polynomial of degree k with
real coefficients, and let a1 < · · · < am be integers. If m > k > 0 then, for some
r ∈ {1, . . . , m},

|Q(ar )| ≥ 21−k ((m − k)/2)k .

The original lower bound of Pólya was 2−kk!. Pólya’s argument combined with
Proposition 2.1 leads immediately to the following result.

Proposition 2.2 Let P(x) ∈ Z[x] be a polynomial of degree m > 1. Let 0 < k < m.
Suppose there are k + 1 distinct integers a such that

0 < |P(a)| < 21−k((m − k)/2)k.

Then P(x) has no factor of degree k over Q.
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Irreducibility criteria of Schur-type and Pólya-type 419

Proof If P(x) has a factor Q(x) ∈ Z[x] of degree k, then 0 < |Q(a)| < 21−k

((m − k)/2)k for k + 1 distinct integers a, in contradiction to Proposition 2.1. 
�

Put N := �m/2�. A straightforward extension of Levit’s argument yields the fol-
lowing result in which the upper bound for |P(a)| is independent of k in contrast to
Proposition 2.2.

Theorem 2.1 Let P(x) ∈ Z[x] be a polynomial of degree m ≥ 8. Let N ≤ l < m
and m − l ≤ k ≤ l. Suppose there are l + 1 distinct integers a such that

0 < |P(a)| < 21−N ((m − N )/2)N .

Then P(x) has no factor of degree k over Q.

Proof If P(x) has a factor Q(x) ∈ Z[x] of degree k, then it has a factor of degree
m − k. In view of Proposition 2.2 it therefore suffices to prove that

21−N ((m − N )/2)N ≤ 21−k ((m − k)/2)k

for N ≤ k ≤ l. Let k − N be even. Then it suffices to prove that

4k−N ≤(m−k)(m−k+2) · · · (m − N − 2)(m + N )(m + N + 2) · · · (m + k − 2).

This inequality is valid if (m − k)(m + k − 2) ≥ 16, thus for m ≥ 10. If k − N is odd,
then it suffices to prove that

4k−N ≤(m−k)(m−k+2) · · · (m−N −1)(m+N +1)(m+N +3) · · · (m+k−2).

This is satisfied if both (m − k)(m + k − 2) ≥ 16 and m − N − 1 ≥ 4, so if m ≥ 10.
The remaining cases (m, k) can be checked one by one. 
�

Levit [27], Theorem 3, obtained a similar result in case l = m − 2. Besides, his
Theorem 4 (and its proof) says that, for m − N ≤ l < m − 2, if there are l + 1 distinct
integers a such that 0 < |P(a)| < �(l2 + 4)/8
, then P(x) has no factor of degree k
with 2 ≤ k ≤ m − 2, and that this upper bound for |P(a)| cannot be improved upon.

By applying Theorem 2.1 for l = m − 1 we obtain the following irreducibility
result due to Levit.

Corollary 2.1 [27, Theorem 2] Let P(x) ∈ Z[x] be a polynomial of degree m. If there
are m distinct integers a such that

0 < |P(a)| < 21−N ((m − N )/2)N ,

then P(x) is irreducible over Q.
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420 K. Győry et al.

3 The imaginary quadratic case

We extend the results to imaginary quadratic fields. In what follows, we write, for a
positive integer m,

Tm =
m∏

r=5

(
√

r − 1), T ∗
m = 2min(9−m,0)

m∏

r=10

(
√

r − 1).

Here we define the empty product to be 1.

Theorem 3.1 Let K = Q(
√−d) where d is a positive squarefree integer, and write

OK for the ring of integers of K . Let again N := �m/2� and 0 < m − l ≤ k ≤ l. Let
P(x) ∈ OK [x] of degree m. Suppose there are l + 1 distinct integers a ∈ OK such
that

0 < |P(a)| < (N + 1)−1T ∗
N+1.

Then P(x) cannot have a factor of degree k in OK [x].
Remark 3.1 Note that for m < 27 we have

(N + 1)−1T ∗
N+1 ≤ 1.

Hence in this case the statement of Theorem 3.1 is empty.

As an immediate consequence of the above theorem we obtain the following state-
ment.

Corollary 3.1 Using the notation of Theorem 3.1, assume that

0 < |P(a)| < (N + 1)−1T ∗
N+1

holds for m distinct integers a ∈ OK . Then P(x) is irreducible in OK [x].
To prove Theorem 3.1 we need the following lemma similar to Proposition 2.1.

Lemma 3.1 Using the notation of Theorem 3.1, if P(x) ∈ OK [x] is of degree m
and a0, a1, . . . , am are elements of OK , then for some t ∈ {0, 1, . . . , m} we have
|P(at )| ≥ (m + 1)−1T ∗

m+1.

The proof of this lemma is based on the following assertion which will also be used
later on.

Lemma 3.2 Let α1, . . . , αm (m ≥ 2) be complex numbers such that |αr −αs | ≥ δ for
all 1 ≤ r < s ≤ m with some δ > 0. Suppose that z ∈ C such that |z −α1| ≤ |z −αr |
for all r = 2, . . . , m. Then we have

m∏

r=2

|z − αr | ≥
(

δ

2

)m−1

Tm,
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Irreducibility criteria of Schur-type and Pólya-type 421

where the right-hand side can be replaced by δm−1T ∗
m if z = α1.

Proof Let α1 = γ1, γ2, . . . , γm be a rearrangement of α1, α2, . . . , αm such that

|z − γ1| ≤ |z − γ2| ≤ · · · ≤ |z − γm |

and let dr = |z − γr | for r = 2, . . . , m. By the definition of δ, the open discs with
centers αr (r = 1, . . . , m) of radius δ/2 are pairwise disjoint. Thus for r = 2, . . . , m
we have

r · π

(
δ

2

)2

≤ π

(
dr + δ

2

)2

.

Hence we immediately obtain that

dr ≥ δ

2

(√
r − 1

)
for r = 2, . . . , m. (2)

Further, for every r > 1 we clearly have dr ≥ δ
2 , and even dr ≥ δ if z = α1. This

yields

m∏

r=2

|z − αr | ≥
(

δ

2

)m−1

Tm

where the right-hand side can be replaced by δm−1T ∗
N if z = α1. 
�

Proof of Lemma 3.1 By the interpolation formula of Lagrange we have

P(x) =
m∑

r=0

P(ar )

m∏

s=0
s �=r

x − as

ar − as
.

Since the absolute value of the leading coefficient of P(x) is at least 1, we get

∣∣∣∣∣∣∣∣

m∑

r=0

P(ar )

m∏

s=0
s �=r

1

ar − as

∣∣∣∣∣∣∣∣
≥ 1.

Let t be an index such that

|P(at )| = max
s=0,1,...,m

|P(as)|.
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Then we have

|P(at )| ≥

⎛

⎜⎜⎝
m∑

r=0

m∏

s=0
s �=r

1

|ar − as |

⎞

⎟⎟⎠

−1

.

Using that |ar − as | ≥ 1 for all r �= s and taking z = as in Lemma 3.2, we get

m∏

s=0
s �=r

|ar − as | ≥ T ∗
m+1.

Hence the statement follows by a simple calculation. 
�

Proof of Theorem 3.1 Suppose that P(x) has a factor in OK [x] of degree k with
m − l ≤ k ≤ l. Then it has a factor Q(x) of degree k with N ≤ k ≤ l. Since
Q(a) | P(a) in OK , there are l + 1 integers a ∈ OK such that

0 < |Q(a)| ≤ |P(a)| < (N + 1)−1T ∗
N+1.

One can easily check that m−1T ∗
m is a monotone increasing function of m for m ≥ 10.

Hence, as m ≥ 27 and Q(a) �= 0, we get that

0 < |Q(a)| < (l + 1)−1T ∗
l+1

is valid for l + 1 distinct integers a. However, this contradicts Lemma 3.1, and the
statement follows. 
�

Part II: Schur-type results

4 Polynomials with many rational integer zeros

By τ(c) we denote the number of positive divisors of a nonzero integer c. Further, for
α ∈ R we define the integers �α
 and �α� by α − 1 < �α
 ≤ α ≤ �α� < α + 1.

Theorem 4.1 Let c and m be nonzero integers with

m > 2τ(c)(2 + �log2 |c|
).

Let f (x) be given by (1), h(x) a polynomial with integral coefficients and put P(x) =
h(x) f (x)+c. Then every divisor of P(x) in Z[x] is of the shape h(x) f (x)+c1 where
h(x) is a polynomial with integral coefficients and c1 is an integer dividing c.
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Irreducibility criteria of Schur-type and Pólya-type 423

Corollary 4.1 Suppose the conditions of the theorem hold. Then P(x) is reducible
over Q if and only if h(x) can be written as

h(x) = h1(x)h2(x) f (x) + c2h1(x) + c1h2(x)

where h1(x), h2(x) are nonzero polynomials with integral coefficients and c1, c2 are
integers with c1c2 = c.

Proof It is easy to see that with the above choice of h(x) we have

P(x) = (h1(x) f (x) + c1)(h2(x) f (x) + c2).

On the other hand, if P(x) is reducible, then by Theorem 4.1 it has a factorization
of the above shape with c1c2 = c and it follows that h(x) is as in the statement of
Corollary 4.1. 
�
Corollary 4.2 [12], cf. [29,39] Suppose the conditions of the theorem hold.

(i) If deg(h) < m, then P(x) is irreducible.

(ii) If deg(h) = m and P(x) is reducible over Q then h(x) = a f (x) + b where a
and b are nonzero integers.

Proof In case (i) h(x) cannot be written in the way displayed in Corollary 4.1. In case
(ii) it follows from Corollary 4.1 that both h1 and h2 are constants. 
�
Remark 4.1 If c = ±1, then the condition on m in Theorem 4.1 becomes m > 4.
The condition is necessary, even if deg(h) = m, as is demonstrated by the following
example. Let m = 4 and

f (x) = x(x − 1)(x − 2)(x − 3) and h(x) = x4 − 8x3 + 20x2 − 14x − 3.

Then we have

h(x) f (x) + 1 = (x(x − 1)(x − 3)2 − 1)2.

However, x(x − 1)(x − 3)2 − 1 is not of the form given in the theorem.

Dorwart also classified all polynomials which take the values ±1 at more places than
their degrees, see [11, p. 378].

Remark 4.2 In case c is a prime p, Dorwart and Ore [12], Theorem 14, obtained an
absolute lower bound for m. Let P(x) take the values ±p at m > 5 integral points
a1, . . . , am . They proved that if f (x) is defined by (1), then P(x) = h(x) f (x) ± p
for some h(x) ∈ Z[x]. Consequently, P(x) can have only factors of degree ≥ m if
m > 5. They further showed that a polynomial a f (x) ± p is irreducible if m is odd
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and m �= 3, and when m is even it may have only two factors of the degree m/2. The
exceptions for m = 3 are given by

P(x) = (x − 1)(x + 1)(x + p) + p = x(x2 + px − 1),

P(x) = 4x(x − 1)(2x + p − 1) + p = (2x − 1)(4x2 + 2px − 4x − p).

Brauer [5] and Dorwart [10] have investigated the situation more closely, see Dorwart
[11] for more information. Weisner [46] studied for general nonzero integer c the
polynomials of degree n which assume the value c for n distinct integral values of x .

Remark 4.3 Corollary 4.2 (i) can be compared with the following result of Győry and
Rimán [24, Theorem 2]. If c �= 0, m ≥ 2 are integers, h(x) ∈ Z[x] is of degree < m,
and f (x) is given by (1) such that

max
r,s

|ar − as | >

{ |c| + 1 if m = 2,

|c| + 2 if m ≥ 3,

then P(x) = h(x) f (x) + c is irreducible over Q. A similar result is proved in [24,
Theorem 1], with a smaller lower bound when h(x) is constant.

The argument in the proof below is an extension of proofs given by Dorwart and
Ore [12].

Proof of Theorem 4.1 Put S = τ(c), T = 2 + �log2 |c|
. Assume that

P(x) = h(x) f (x) + c = H1(x)H2(x)

for nonconstant polynomials H1(x), H2(x) ∈ Z[x]. (The statement is clearly true if
any of H1(x), H2(x) is constant.) For each r = 1, . . . , m we have H1(ar )|c.

Suppose that there exists a c1 such that H1(ar ) = c1 for more than T + 1 integers
ar , say a1, . . . , aT +2. Since H1(x) is nonconstant, it follows that deg(H1) ≥ T + 2
and

H1(x) − c1 = (x − a1) · · · (x − aT +2)H3(x) (3)

for some polynomial H3(x) with integral coefficients. If now H1(ar ) = c2 �= c1 for
some r > T + 2, then H1(x) − c2 = (x − ar )H4(x) for some H4(x) with integral
coefficients, and hence, by (3),

(ar − a1) · · · (ar − aT +2) | c2 − c1. (4)

At most two factors on the left-hand side are ±1. Each other factor contributes at least
one prime factor to the product. Hence the number of prime factors of c2 − c1 counted
according to multiplicities is at least T which contradicts that |c2 − c1| ≤ 2|c| < 2T.
Thus H1(ar ) = c1 for each r = 1, . . . , m, i.e.

H1(x) = h1(x) f (x) + c1 (5)
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Irreducibility criteria of Schur-type and Pólya-type 425

for some h1(x) ∈ Z[x]. Further H2(ar ) = c2 with c2 = c/c1 for each r = 1, . . . , m
whence

H2(x) = h2(x) f (x) + c2 (6)

where h2(x) ∈ Z[x].
Suppose next that for every divisor c1 of c the number of ar with H1(ar ) = c1 is at

most T + 1. Then m ≤ 2S(T + 1). Since the total number of divisors of c is 2S and
m > 2ST , there exists some c1 such that H1(ar ) = c1 for exactly T + 1 integers ar ,
say a1, . . . , aT +1. We distinguish between the cases S = 1 and S > 1.

If S = 1, then c1 ∈ {−1, 1}, T = 2 and m is 5 or 6. We get that the only possibility
is that H1(ar ) = c1 for r = 1, 2, 3 say, and H1(ar ) = −c1 for r = 4, 5 (and also for
r = 6 if m = 6). Then by a similar argument as before we deduce that

(a4 − a1)(a4 − a2)(a4 − a3) | 2 and (a5 − a1)(a5 − a2)(a5 − a3) | 2.

The first relation gives that two out of the numbers |a4 − a1|, |a4 − a2| and |a4 − a3|
equal 1 and the third one is 2, while the second one yields the same conclusion for
the numbers |a5 − a1|, |a5 − a2|, |a5 − a3|. However, since ar �= as for r �= s, this is
impossible. Hence we get that (5) is valid anyhow, and the same is true for (6).

If S > 1 then m > ST +T +1. Hence either there exists some c2 such that c1c2 > 0
and H1(ar ) = c2 for some r > T + 1 or there exist a c∗

1 and c∗
2 �= c∗

1 with c1c∗
1 < 0

and c∗
1c∗

2 > 0 such that H1(ar ) = c∗
1 for exactly T + 1 integers r and H1(ar ) = c∗

2 for
another r . In the latter case, after renaming, we also have T + 1 integers a1, . . . , aT +1
such that H1(as) = c1 for s = 1, . . . , T + 1 and integers c2 and r > T + 1 with
c1c2 > 0 such that H1(ar ) = c2. Reasoning as for (4) we derive

(ar − a1) · · · (ar − aT +1) | c2 − c1.

Using that |c2 − c1| < 2T −1 we obtain (5) and (6) in this case too. 
�
Remark 4.4 The condition on m in Theorem 4.1 and Corollary 4.1 can be improved
upon when c is large. In the first place in (4) the left-hand side can be bounded from
below by (� T +2

2 
)!(� T +3
2 
)! by using that at most two factors are ±2, at most two

are ±3, and so on. The result is an improvement of order log log |c| for large |c|.
Another improvement is obtained by replacing the upper bound 2|c| in the above
proof by |c| + 1: If |c1| = |c|, |c2| > 1 or |c2| = |c|, |c1| > 1, then we consider the
corresponding expression for H2. We find instead of (4) that

(ar − a1) · · · (ar − aT +2)|
(

c

c1
− c

c2

)

and use that | c
c1

− c
c2

| ≤ |c| + 1. Otherwise either |c1| = |c|, |c2| = 1 or |c2| =
|c|, |c1| = 1 or |c1| ≤ |c|

2 , |c2| ≤ |c|
2 , and in each case |c1 − c2| ≤ |c| + 1.

In the following variant of Theorem 4.1 we only require that P(ar )|c for r =
1, . . . , m.
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Theorem 4.2 Let c and m be positive integers with

m > 2τ(c)(3 + �log2 |c|
). (7)

Let P(x) ∈ Z[x] such that there exist integers a1, . . . , am for which P(ar ) divides c
for r = 1, . . . , m. Then every divisor of P(x) is of the shape h(x) f (x) + c1 where
f (x) is given by (1), h(x) ∈ Z[x] and c1 is an integer dividing c.

As in Remark 4.4 the lower bound on m can be improved if |c| is large.

Remark 4.5 In case c is a prime p, Dorwart and Ore [12] proved Theorem 4.2 with
m > 10 instead of (7). It follows that a polynomial from Z[x] taking the values
dividing p at more than 10 integer points cannot have factors of degree less than m/2.

The method was used by Ore [28] to show that a polynomial P(x) ∈ Z[x] of degree
m taking values dividing a prime at m+5 integer points is irreducible. The bound m+5
is best possible in view of the example P(x) = ((x −1)(x −2)−1)((x −5)(x −6)−1)

taking prime values or their opposites for x = 0, 1, 2, 3, 4, 5, 6, 7.

Proof of Theorem 4.2 As in the proof of Theorem 4.1 put S = τ(c) and T = 2 +
�log2 |c|
. Assume that

P(x) = H1(x)H2(x)

for nonconstant polynomials H1(x), H2(x) ∈ Z[x]. (If any of H1(x), H2(x) is con-
stant then the statement is trivial.) For each r = 1, . . . , m we have H1(ar )|c.

Using the box principle we know that there exists a c1 such that H1(ar ) = c1 for
more than T + 1 integers ar . Following the proof of Theorem 4.1 we conclude that

H1(x) = h(x) f (x) + c1 (8)

for some h(x) ∈ Z[x]. Since H1(x) is an arbitrary divisor of P(x), the conclusion
follows. 
�

5 Polynomials with rational and imaginary quadratic zeros

In the formulation of Theorems 4.1 and 4.2 the condition that the zeros of f and the
coefficients of g are in Z can be replaced by the condition that they are in the ring of
integers of Q(

√−d) where d is some positive integer, not a square. However, in this
case the lower bound on m will depend on c and d. We do not work this out as it is
straightforward.

In this section we investigate the irreducibility of polynomials of the shape

(x − a1) · · · (x − am)g1(x) · · · gt (x) ± 1 (9)

where m, t ≥ 0, the ar -s are distinct integers and the distinct monic polynomials
gs(x) ∈ Z[x] are of degree two and have negative discriminants. Under the assump-
tion that all the zeros of the polynomials gs (s = 1, . . . , t) belong to the same quadratic
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Table 1 Factors of exceptional polynomials

No. Polynomial No. Polynomial No. Polynomial

1 x − 1 5 x2 + 1 9 x2 − x + 2

2 x 6 x2 + 2 10 x2 + x + 2

3 x + 1 7 x2 − x + 1 11 x2 − x + 3

4 x2 − 2x + 2 8 x2 + x + 1

number field, Dorwart and Ore [12] have described all reducible polynomials of the
form (9). Getting rid of the assumption, our next theorem yields a complete character-
ization of the reducible polynomials of the form (9). As a motivation of our work, we
remark that irreducible polynomials of the form (9) define generalizations of so-called
ABC-fields; see e.g. [1,2,40] and the references given there.

By tuple [i1, . . . , il ] we denote the product of the corresponding polynomials from
Table 1.

Theorem 5.1 Put

P±(x) = (x − a1) · · · (x − am)g1(x) · · · gt (x) ± 1

and

F(x) = (x − a1) · · · (x − am)g1(x) · · · gt (x),

where m + t > 0, the ar -s are distinct integers and the gs(x) ∈ Z[x] are distinct
monic quadratic polynomials with negative discriminants. Then P±(x) is irreducible
over Q except for the following cases:

• P+(x) is reducible if and only if either F(x) is equivalent to one of the polynomials

[1, 5], [1, 8], [2, 8], [1, 3, 5], [1, 3, 7], [1, 3, 8], [1, 5, 7], [1, 5, 8],
[1, 5, 9], [1, 7, 8], [2, 3, 10], [2, 6, 8], [1, 2, 4, 5], [1, 2, 5, 10],
[1, 2, 6, 9], [1, 3, 5, 7], [1, 3, 5, 8], [1, 3, 7, 8], [1, 5, 6, 7], [1, 5, 7, 8],
[2, 3, 5, 9], [2, 3, 6, 10], [2, 5, 8, 10], [5, 6, 9, 10], [1, 2, 4, 5, 9],
[1, 2, 7, 9, 11], [1, 3, 5, 7, 8], [1, 2, 5, 6, 7, 9], [1, 2, 5, 7, 8, 9],
[2, 3, 5, 6, 8, 10], [2, 3, 5, 7, 8, 10],

or F(x) is of the form

p(x)(p(x) + 2) or p(x)(p(x) + 1)(p(x) + 2)(p(x) + 3)

where p(x) is an arbitrary monic linear polynomial or a monic quadratic polyno-
mial with negative discriminant.
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• P−(x) is reducible if and only if F(x) is equivalent to one of the polynomials

[5], [8], [3, 5], [3, 7], [3, 8], [4, 5], [5, 7], [5, 8], [7, 8], [2, 6, 7], [3, 5, 7], [3, 5, 8],
[3, 5, 10], [3, 7, 8], [4, 5, 9], [5, 7, 8], [6, 7, 8], [2, 5, 7, 9], [3, 5, 6, 8], [3, 5, 7, 8].

Proof of Theorem 5.1 Suppose that we have P±(x) = H1(x)H2(x) with some monic
polynomials H1(x), H2(x) ∈ Z[x]. Then we have H1(βs)H2(βs) = ±1 for all s =
1, . . . , t , where βs is a zero of gs . Thus, using that the βs-s are quadratic imaginary
algebraic integers, we deduce that

H1(βs) ∈ U := {±1,±i,±ε,±(1 − ε)}, (10)

where ε = (1 + i
√

3)/2. Certainly, the same holds for H1(βs), while H1(as) (s =
1, . . . , m) may assume the values ±1 only.

We split the proof into several parts, in accordance with (10).

Case I Suppose that H1(βs) = ±i for some s. Then H1(βs) ∈ Q(βs) yields that
βs ∈ Q(i). Since H1(βs) = ±i , we get that

H1(x) ∓ i = (x − βs)h1(x) (11)

holds with some h1(x) ∈ Z[i][x]. Taking complex conjugates we obtain that

H1(x) ± i = (x − βs)h2(x)

is also valid with the appropriate h2(x) ∈ Z[i][x]. The last two equalities give

(x − βs)h1(x) − (x − βs)h2(x) = ∓2i,

whence

βs − βs | 2 in the ring Z[i]. (12)

Write βs = u + vi with some integers u, v with v �= 0. Then βs = u − vi , which
by (12) implies that v = ±1 (and further that βs − βs = ±2i). Observe that this
also implies gs(x + u) = x2 + 1. From this point on we shall always assume that
βs = u + i , which we can do without loss of generality.

Now we look at all the possible other factors of F(x) in turn.
Assume first that F(x) has a linear factor x − ar . Then by H1(ar ) = ±1 we have

H1(x) ∓ 1 = (x − ar )h3(x) with some h3(x) ∈ Z[x]. Hence we deduce that βs − ar

divides 1 + i in Z[i], whence one of ar = u − 1, u, u + 1 must be valid. This clearly
yields that

x + u − ar ∈ {x − 1, x, x + 1}.
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Assume next that for some βr with r �= s we have H1(βr ) = ±i . Then by the
previous argument we already know that βr = w ± i must be valid for some w ∈ Z.
Further, we also get that either

(x − βs)(x − βr )h4(x) − (x − βs)(x − βr )h5(x) = ∓2i

or

(x − βs)(x − βr )h4(x) − (x − βs)(x − βr )h5(x) = ∓2i

with some h4(x), h5(x) ∈ Z[i][x]. Since βs −βs = ±2i , and without loss of general-
ity we may assume that �(βr ) ≥ u, this implies that w = u + 1. Hence we can write
gr (x + u) = x2 − 2x + 2.

Suppose now that H1(βr ) ∈ {±ε,±(1 − ε)} for some r . Then we have βr ∈ Q(ε),
and further,

H1(x) + u0 = (x − βr )h6(x) (13)

holds with some u0 ∈ {∓ε,∓(1 − ε)} and h6(x) ∈ Z[ε][x]. Taking conjugates we get
that

H1(x) + u0 = (x − βr )h7(x) (14)

is also valid with some h7(x) ∈ Z[ε][x]. Using the last two equalities we obtain

(x − βr )h6(x) − (x − βr )h7(x) = ±(1 − 2ε),

implying βr − βr | 1 − 2ε in Z[ε]. Let βr = w + zε with w, z ∈ Z, z �= 0. Then
as ε = 1 − ε, we get βr = w + z − zε, whence z = ±1. Obviously, without loss of
generality we may assume that βr = w + ε. Now a similar argument as before yields
that u − w + i − ε divides an element of the following set

H := {±i ± ε,±i ± (1 − ε)},

in the ring of integers of the number field L := Q(i, ε). A simple calculation shows
that all elements of H are units in L . Hence u − w + i − ε should be a unit of this
field, which after taking norm, turns out to be possible only if w = u or w = u − 1.
Hence we get that either gr (x + u) = x2 − x + 1, or gr (x + u) = x2 + x + 1 must
hold.

Finally, let gr (x) be a polynomial with H1(βr ) = ±1. Observe that then we also
have H1(βr ) = ±1, which implies that gr (x) divides H1(x) ∓ 1 in Z[x]. Then using
our previous arguments, we get that gr (u + i) ∈ {±1,±i,±1 ± i}. Hence a simple
calculation gives that gr (x + u) is one of

x2 + 2, x2 + x + 1, x2 − x + 1, x2 + x + 2, x2 − x + 2.
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Summarizing the above facts, we conclude that if H1(βs) = ±i is valid for some
s, then there exists an integer u such f (x + u) should have factors exclusively from
the following set:

{x − 1, x, x + 1, x2 + 1, x2 − 2x + 2, x2 − x + 1,

x2 + x + 1, x2 + 2, x2 + x + 2, x2 − x + 2}.

Considering now all subsets of the above set and checking the irreducibility of the
implied polynomials P±(x), we obtain that all the reducible cases are included in the
statement. From each equivalence class we selected one representative. (For example,
[1, 2, 9] is not mentioned, since it is equivalent to [2, 3, 10].)
Case II Suppose that H1(βs) ∈ {±ε,±(1 − ε)} for some s. As we have already
seen in Case I, we may assume that βs = u + ε with some integer u. This yields
gs(x + u) = x2 − x + 1.

As before, we look at all the possible other factors of F(x) in turn. In view of
Case I, without loss of generality we may clearly assume that there is no βr with
H1(βr ) = ±i .

Assume first that F(x) has a linear factor x − ar . Then using again H1(ar ) = ±1,
we get that H1(x) ∓ 1 = (x − ar )h8(x) with some h8(x) ∈ Z[x]. Similarly as above,
we can deduce that βs − ar divides one of ±ε,±1 ± ε,±(2 − ε) in Z[ε]. Hence we
obtain that one of ar = u − 1, u, u + 1, u + 2 must be valid. This clearly yields that

x + u − ar ∈ {x − 2, x − 1, x, x + 1}.

Assume next that for some βr with r �= s we also have H1(βr ) ∈ {±ε,±(1 − ε)}.
We already know that βr = w ± ε must be valid with some w ∈ Z. Without loss of
generality we may assume that w ≥ u. Further, we also have that

H1(x) + v0 = (x − βr )h9(x)

and

H1(x) + v0 = (x − βr )h10(x)

hold with some v0 ∈ {∓ε,∓(1 − ε)} and h9(x), h10(x) ∈ Z[ε][x]. Using (13) and
(14) we get that

βs − βr |v0 − u0 and βs − βr |v0 − u0 in Z[ε].

Checking all the possibilities one can easily verify that w = u +1 must be valid. Then
we clearly have gr (x + u) = x2 − 3x + 3.

Finally, suppose that H1(βr ) = ±1 holds for some r . Then we also have H1(βr ) =
±1, i.e. gr (x) divides H1(x)∓1 in Z[x]. Applying our previous argument, we get that
gr (u + ε) divides one of ±ε,±1 ± ε,±(2 − ε) in Z[ε]. Hence a simple calculation
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gives that gr (x + u) is one of

x2 + 1, x2 + 2, x2 − x + 2, x2 − 2x + 2, x2 − 2x + 3.

Gathering all the above information, we get that in this case there is an integer u
such that f (x + u) can have factors exclusively from the following set:

{x − 2, x − 1, x, x + 1, x2 − x + 1, x2 − 3x + 3,

x2 + 1, x2 + 2, x2 − x + 2, x2 − 2x + 2, x2 − 2x + 3}.

Now by a similar process as for Case I we get that also in Case II all the reducible
polynomials of the form P±(x) are listed in the statement.

Case III Since H1(as) = ±1 for all s = 1, . . . , m and since H1(x) ± 1 and H1(x)

are of the same degree, we have 2 deg(H1) = deg(P±). Suppose that H1(βs) = ±1
for each index s. Then gs(x) | H1(x) ∓ 1 for all s = 1, . . . , t . We distinguish two
subcases.

(i) Assume first that there exists a βs of the form βs = u + α with u ∈ Z and

α ∈ {i, ε, i
√

2, (1 + i
√

7)/2}. (15)

In these cases we have that gs(x + u) is given by

x2 + 1, x2 − x + 1, x2 + 2, x2 − x + 2,

respectively. Write H1(βs) = u0 with u0 ∈ {−1, 1}. Then by similar arguments as
before, using that H1(x) − u0 − (H1(x) + u0) = ±2, we get that for the above values
of α the only possible factors of f (x + u) dividing H1(x + u) + u0 are given by

x − 1, x, x + 1, x2 + 2, x2 + 3, x2 − x + 1, x2 + x + 1,

x2 + x + 2, x2 − x + 2 (α = i),

x − 1, x, x2 − x + 2, x2 − x + 3, x2 + 1, x2 − 2x + 2, x2 + x + 1,

x2 − 3x + 3 (α = ε),

x, x2 + 1, x2 + 3, x2 + 4, x2 − x + 2, x2 + x + 2 (α = i
√

2),

x − 1, x, x2 − x + 1, x2 − x + 3, x2 − x + 4, x2 + 1, x2 + 2,

x2 − 2x + 2, x2 − 2x + 3 (α = (1 + i
√

7)/2),

respectively. We handle these cases in turn. We only explain our method for α = i , the
other cases are similar. We take a subset of the possible factors of H1(x +u)+u0. For
example, choose {x2 − x + 1, x2 − x + 2}. Then we have (x2 − x + 1)(x2 − x + 2) |
H1(x + u) + u0. However, these factors immediately restrict the possible factors
of H1(x + u)− u0. Namely, we get that the only possible factors of f (x + u) dividing
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H1(x + u) − u0 are

x − 1, x, x2 + 1, x2 − x + 3, x2 − 2x + 2.

Hence we obtain a finite (in fact rather small) set, such that all possible factors of
f (x + u) belong to it. In other cases we have to produce similar lists and to compare
them. Checking all possibilities, a computer calculation shows that all the cases with
P±(x) reducible are given in the statement.

(ii) Finally, we are left with the case where there is no βs of the form u + α with
α satisfying (15). In this case a simple calculation shows that if gs(x) | H1(x) − u0
then there is no linear polynomial dividing H1(x) + u0. Let now gr (x) | H1(x) + u0
for some r �= s. We recall the well-known fact (which can also be readily checked)
that if 2 has a divisor different from ±1,±2 in the ring of integers of an imaginary
quadratic number field K then we have K = Q(α) with α satisfying (15). Hence a
simple calculation yields that now gr (βs) ∈ {−2,−1, 1, 2} must be valid. However,
since gs(βs) = 0, this implies that gs(x) − gr (x) ∈ {−2,−1, 1, 2}. Hence using that
2 deg(H1) = deg(P±), fixing any p(x) := gs(x), all the possible factors of F(x) can
be listed, in terms of p(x). Hence the statement follows by a simple calculation.

Case IV Finally, assume that t = 0, i.e. F(x) has only linear factors. This case has
been completely treated by Flügel [16], however, for the sake of completeness we
include this possibility as well. Let x − as | g1(x) − u0 with u0 = ±1. Then for any
r �= s we have that x − ar | g1(x) + u0, which implies as − ar ∈ {−2,−1, 1, 2}.
Hence the statement easily follows in this case, too. 
�

6 Polynomials of the form h(x) f (x) + c

In this section we use some lemmas from Sect. 3 to derive some new Schur-type
results. These results depend on the minimal distance Sep(P) between the zeros of a
polynomial P(x) ∈ Z[x].
Theorem 6.1 Let m and n be integers with 1 ≤ m ≤ n, f (x) be given by (1), and
h(x) ∈ Z[x] a polynomial of degree n − m. Let h(x) f (x) have only simple zeros and
write δ = Sep( f g). Let k be an integer with k < m and c an integer with

0 < |c| <

(
δ

2

)k

Tk . (16)

Then the polynomial P(x) := h(x) f (x)+c has no factor of degree k over Z. Further,
if all the zeros of h(x) are real, then the statement remains valid with Tk replaced by
(k − 1)!.
Remark 6.1 Observe that the expression (k − 1)! is larger than Tk , so in the real case
c can come from a larger interval.

We immediately obtain the following consequence of Theorem 6.1, since every
factorization of P(x) implies a factor of degree at most n/2 and a factor of degree at
least n/2.
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Corollary 6.1 Under the assumptions and notation of Theorem 6.1, let 2 ≤ n < 2m. If

|c| < min
1≤k≤n/2

{(
δ

2

)k

Tk

}

then P(x) is irreducible over Z. Further, if h(x) has only real zeros, then in the above
inequalities Tk can be replaced by (k − 1)!, and the statement remains valid.

To prove Theorem 6.1 we need some lemmas. The first one will be used in the real
case.

Lemma 6.1 Let δ > 0. Let Q(x) = a(x −α1)(x −α2) · · · (x −αn) ∈ Z[x] have real
zeros such that αr+1−αr ≥ δ for r = 1, 2, . . . , n−1. Let c be a real number satisfying
|c| < (n − 1)!|a|( δ

2 )n. Write P(x) := Q(x) + c = a(x − β1)(x − β2) · · · (x − βn).

Then, for r = 1, 2, . . . , n, the number βr is real and, if β1 ≤ β2 ≤ · · · ≤ βn, then

|αr − βr | ≤ 2n−1|c|
(n − 1)!|a|δn−1 <

δ

2
. (17)

Proof Let αr,r+1 denote the real number with αr+1 − αr,r+1 = αr,r+1 − αr . We put
α0,1 = α1 − δ and αn,n+1 = αn + δ. Then, for r = 0, . . . , n,

|Q(αr,r+1)| = |a|
n∏

s=1

|αr,r+1 − αs |

≥ |a| · δ

2
· δ

2
· 3δ

2
· 3δ

2
· 5δ

2
· · · ≥ |a|(n − 1)!

(
δ

2

)n

> |c|.

Observe that P(α0,1), P(α1,2), . . . ,P(αn,n+1) have alternating signs. By continuity
it follows that for r = 1, . . . , n there is a zero βr of P(x) between αr−r,r and αr,r+1.
Hence the numbers βr are all real. It further follows that, for r = 1, 2, . . . , n, the
number αr is the zero of Q(x) which is the nearest to the number βr . We have, for
such an r ,

|αr − βr | = |Q(βr )|
|a| ∏s �=r |βr − αs | ≤ |c|

|a| · δ
2 · δ · 3δ

2 · 2δ · · · (n−1)δ
2

≤ 2n−1|c|
(n − 1)!|a|δn−1 .


�
One of the basic tools in the proof of Theorem 6.1 in the complex case is the

following lemma which is a straightforward consequence of Rouché’s theorem.

Lemma 6.2 Let Q(z) be a nonzero polynomial with complex coefficients and c ∈ C.
Further, let αr−1 ∈ C, R ∈ R, R > 0, and put

C(αr−1,r , R) = {z ∈ C : |αr,r+1 − z| < R}.
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If for every z ∈ C with |α − z| = R we have |Q(z)| > |c| then the numbers of
complex zeros of the polynomials Q(z) and Q(z) + c in C(α, r), counted according
to multiplicities, coincide.

The following lemma is the complex variant of Lemma 6.1.

Lemma 6.3 Let α1, . . . , αn be distinct complex numbers and let a be a nonzero com-
plex number. Put δ = min

1≤r<s≤n
|αr − αs | and

Q(z) = a(z − α1) · · · (z − αn).

Let c ∈ C with

|c| < |a| ·
(

δ

2

)n

· Tn .

Then for each zero αr of Q(z) there exists a unique zero βr of the polynomial P(z) =
Q(z) + c such that

|βr − αr | ≤ |c|
|a|Tn

·
(

2

δ

)n−1

<
δ

2
.

Further, if βs1 , . . . , βst are distinct zeros of P(z) all different from βr , then we have

t∏

j=1

|βs j − αr | ≥
(

δ

2

)t

· Tt+1. (18)

Proof Let αr be any zero of Q(z), and let z be an arbitrary complex number with
|z − αr | = δ/2. Let γ1, γ2, . . . , γn be a rearrangement of the zeros α1, . . . , αn such
that

|z − γ1| ≤ |z − γ2| ≤ · · · ≤ |z − γn|

and let dr = |z − γr | for r = 1, . . . , n. Then we have d1 = δ/2. Further, following
the proof of Lemma 3.2 we obtain that, for r > 1,

dr ≥ δ

2
and also dr ≥ δ

2

(√
r − 1

)
. (19)

This yields

|Q(z)| = |a| ·
n∏

r=1

|z − αr | = |a| ·
n∏

r=1

|z − γr | = |a| ·
n∏

r=1

dr ≥ |a| ·
(

δ

2

)n

· Tn .
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Since

|c| < |a| ·
(

δ

2

)n

· Tn

we get, by Lemma 6.2, that the polynomials P(z) and Q(z) have the same number of
zeros in the open disc C(αr , δ/2) of radius δ/2 with center αr . As by the definition of
δ the only zero of Q(z) in this disc is αr , there exists a unique zero βr of P(z) with
βr ∈ C(αr , δ/2). Then we have

|c| = |Q(βr )| = |a| ·
n∏

s=1

|βr − αs | ≥ |a| · |βr − αr | ·
n∏

s=2

ds,

whence, by (19),

|βr − αr | ≤ |c|
|a|Tn

·
(

2

δ

)n−1

<
δ

2
.

Finally, using (19) again one can easily check that (18) is also valid, and the lemma
follows. 
�

Proof of Theorem 6.1 Assume first that all the zeros of h(x) are real. Write α1, . . . , αm

and αm+1, . . . , αn for the zeros of f (x) and h(x), respectively. According to
Lemma 6.1, for every r with 1 ≤ r ≤ n there exists a zero βr of P(x) such that
(17) holds. Let β1, . . . , βn be the zeros of P(x), indexed according to this property.
Suppose P(x) = P1(x)P2(x) with P1(x), P2(x) ∈ Z[x] and deg(P1) = k. Write
P1(x) = a1(x −βr1) · · · (x −βrk ), P2(x) = a2(x −βrk+1) · · · (x −βrn ). Since k < m,
there exists an r0 with k + 1 ≤ r0 ≤ n such that P2(βr0) = 0. Then for the corre-
sponding zero αr0 of f (x) we have

|c| = |P(αr0)| = |P1(αr0)| · |P2(αr0)| = |P2(αr0)| · |a1| ·
k∏

s=1

|αr0 − βrs |.

Since |P2(αr0)| ≥ 1, |a1| ≥ 1 and

∣∣∣∣∣

k∏

s=1

(αr0 − βrs )

∣∣∣∣∣ ≥ δ

2
· δ

2
· 3δ

2
· 3δ

2
· 5δ

2
· · · ≥ (k − 1)!

(
δ

2

)k

,

we obtain |c| ≥ (k − 1)!( δ
2 )k . Thus, if (16) holds with Tk replaced by (k − 1)!, then

P(x) cannot have a factor of degree k.
Suppose now that h(x) has nonreal zeros, too. Assume that P(x) has a factor of

degree k. Following the proof in the real case, but using Lemma 6.3 in place of of
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Lemma 6.1, we obtain

|c| ≥
(

δ

2

)k

Tk

This contradiction with (16) proves the statement. 
�

7 Polynomials of the form g( f (x)) with g(x) of degree 2 and 3

Let f (x) be given by (1). Brauer et al. [7] proved that if K = Q or Q(
√−d), with

squarefree d ∈ Z>0, and g(x) ∈ OK [x] is irreducible of degree at most 3, then g( f (x))

is reducible over K for only finitely many equivalence classes of polynomials f . Here
OK denotes the ring of integers of K , and f1, f2 ∈ OK [x] are said to be equivalent if
f2(x) = f1(x + a) for some a ∈ OK .

Dorwart and Ore [12] showed that if g(x) = ax2 + bx + 1 ∈ Z[x] is irreducible,
then g( f (x)) is also irreducible when m ≥ 5. Moreover, they were able to classify all
cases in which g( f (x)) is reducible when m < 5. In particular, P(x) = a( f (x))2 + 1
is irreducible if a �= −b2 and P(x) is not equivalent to

−8(x − 1)2x2(x + 1)2 + 1 = (2x2 − 1)(−4x4 + 6x2 − 1).

The following result on general polynomials g(x) = ax2 + bx + c follows imme-
diately from Theorem 4.1.

Theorem 7.1 Let c and m be nonzero integers with m > 2τ(c)(2 + �log2 |c|
). Let
f (x) be given by (1), and g(x) be an irreducible polynomial of degree at most 2 with
integral coefficients such that g(0) = c. Then g( f (x)) is irreducible over Q.

Proof Assume that g( f (x)) is reducible over Q. The result follows immediately from
Theorem 4.1 if g is linear. Let g(x) = ax2 + bx + c with a, b integers and a �= 0. By
Corollary 4.1 we have

a f (x) + b = h1(x)h2(x) f (x) + c2h1(x) + c1h2(x)

with c1c2 = c. Hence h1 and h2 are integers with h1h2 = a and c2h1 + c1h2 = b. It
follows that g(x) = ax2 + bx + c = (h1x + c1)(h2x + c2) is reducible. 
�

The next result deals with the case that the degree of g(x) is 3. We say that
{a1, . . . , a2r } is a Prouhet–Tarry–Escott set if it splits into two subsets of equal cardi-
nality, A :={a1, . . . , ar } and B :={ar+1, . . . , a2r } say, such that (x −a1) · · · (x−ar )−
(x −ar+1) · · · (x − a2r ) is a constant. We call (A, B) a PTE pair. For information on
PTE pairs see [3,4,25]. PTE pairs in the context of this paper occur already in [10,32].

Theorem 7.2 Let the conditions of Theorem 7.1 be satisfied, but with g(x) = ax3 +
bx2+vx+c an irreducible polynomial of degree 3 with integral coefficients. If g( f (x))

is reducible over Q, then
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−ac and v2 − 4bc are positive squares with 4ac|(v2 − 4bc),

m is even, m ≤ 2 + log2
v2−4bc

ac ,

b = 0 or m ≤ 2τ(b)(�log2 b
 + 2),
(a1, . . . , am) is a Prouhet–Tarry–Escott set, and
cg( f (x)) factorizes into two polynomials of degree 3m/2 each, viz.

f (x)

(
1

2
v ± 1

2

√
v2 − 4bc − 4ac f (x)

)
+ c.

Proof By Corollary 4.1 we have

a( f (x))2 + b f (x) + v = h1(x)h2(x) f (x) + c2h1(x) + c1h2(x)

with h1(x), h2(x) ∈ Z[x]. Hence deg(h1) + deg(h2) = deg( f ) and c2h1(x) +
c1h2(x) = v + l f (x) for some l ∈ Z. It follows that either h1 is a constant or h2
is a constant or l = 0.

Suppose h1 is constant. Then h2(x) = l
c1

f (x) + v−c2h1
c1

∈ Z[x] and ax3 + bx2 +
vx + c = (h1x + c1)(xh2(x) + c2) is reducible. Thus g(x) is reducible over Z. The
case h2 is constant is similar.

Suppose l = 0. Then a f (x)+ b = h1(x)h2(x) and c2h1(x)+ c1h2(x) = v. Hence
deg(h1) = deg(h2) = m/2 which is possible only if m is even. The factorization of
a f (x) + b is possible only if b = 0 or m ≤ 2τ(b)(2 + �log2 b
), by Theorem 4.1. Let
x2−vx+bc = (x−α1)(x−α2). Since ch1(ar )h2(ar ) = bc and c2h1(ar )+c1h2(ar ) =
v for r = 1, . . . , m, we have (c2h1(ar ), c1h2(ar )) ∈ {(α1, α2), (α2, α1)}. Since a non-
constant polynomial of degree m/2 cannot attain the same value more than m/2 times,
the set {a1, . . . , am} splits into two subsets A and B of cardinality m/2 each such that
c2h1(ar ) = α1 for r ∈ A and c2h1(ar ) = α2 for r ∈ B. Hence

c2h1(x) − α1 = c3

∏

ar ∈A

(x − ar ), c2h1(x) − α2 = c3

∏

ar ∈B

(x − ar ),

c1h2(x) − α2 = −c3

∏

ar ∈A

(x − ar ), c1h2(x) − α1 = −c3

∏

ar ∈B

(x − ar )

for some integer c3 with −c2
3 = ac1c2 = ac. Thus −4ac is the square of an integer.

Furthermore, if b ∈ B, then c3
∏

ar ∈A(b − ar ) = α2 − α1. Hence, −4ac(
∏

ar ∈A(b −
ar ))

2 = v2 −4bc. Thus 4ac divides v2 −4bc, v2 −4bc is the square of an integer and,
since the product contains at least m − 4 factors with absolute value > 1, v2 − 4bc ≥
|ac|2m−2. This yields the latter inequality for m. From ch1(x)h2(x) = ac f (x) + bc
and c2h1(x) + c1h(x) = v we obtain

c2h1(x), c1h2(x) = −v ± √
v2 − 4bc − 4ac f (x)

2
.

Hence
√

v2 − 4bc − 4ac f (x) ∈ Z[x]. 
�
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Remark 7.1 It is remarkable that even for m = 24 there exist irreducible polyno-
mials g(x) ∈ Z[x] of degree 3 and monic polynomials f (x) of the form (1) such
that g( f (x)) is reducible. Thus the conditions on m in Theorem 7.2 are insufficient
to conclude that g( f (x)) is reducible. To show this, suppose A = {a1, . . . , ar } and
B = {ar+1, . . . , a2r } are PTE pairs with

r∏

s=1

(x − as) −
2r∏

s=r+1

(x − as) = v �= 2.

Put f (x) = ∏2r
s=1(x − as), g(x) = x3 + vx − 1, that is we choose a = 1, b = 0, c =

−1. Then g(x) is irreducible and g( f (x)) factorizes into

(
f (x)

r∏

s=1

(x − as) − 1

) (
f (x)

2r∏

s=r+1

(x − as) + 1

)
,

as can easily be checked. PTE pairs are known for r = m/2 ≤ 10 and for r = m/2 =
12. For m = 1, 2, 3, 4, 5, 6, 7, 8, 10 even infinitely many essentially different PTE
pairs are known. One of the two known cases for r = 12 is given by

A = {±22,±61,±86,±127,±140,±151},
B = {±35,±47,±94,±121,±146,±148},

due to Chen Shuwen et al. [9].

8 Polynomials of the form g( f (x)) with g(x) of CM-type

In this section we deal with the reducibility of polynomials of the form g( f (x)) over
Q, where g(x) is a monic irreducible polynomial in Z[x] and f (x) is a monic polyno-
mial in Z[x] with distinct zeros in Q or, more generally, in a given algebraic number
field. We assume throughout that the splitting field of g(x) over Q is a CM-field, i.e.,
a totally imaginary quadratic extension of a totally real algebraic number field. In this
case g(x) is called of CM-type. For example, cyclotomic polynomials and quadratic
polynomials with negative discriminant are of CM-type.

It was proved in [17] that for given g(x), there are only finitely many pairwise
inequivalent monic polynomials f (x) ∈ Z[x] with distinct zeros in Q for which
g( f (x)) is reducible. In [18–20] this result was extended to polynomials f (x) having
all their zeros in a given totally real algebraic number field K . It turned out that in this
more general situation there can exist infinitely many pairwise inequivalent quartic
exceptions f (x) for which g( f (x)) is reducible for a suitable g(x). These exceptions
have been completely described in [20].

In [15,17–20] some effective and quantitative versions were also established. For
example, it was shown in [15] that under the above assumptions concerning f and
g there is an effectively computable positive constant c1 which depends only on the
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degree, class number and discriminant of K such that if

deg( f ) > c1|g(0)|2/ deg(g) (20)

then g( f (x)) is irreducible over Q. We now prove the following.

Theorem 8.1 Let g(x) ∈ Z[x] be a monic irreducible polynomial of CM-type, and
K a totally real algebraic number field of degree d. Further, let m ≥ 3 be an integer
with m �= 4. Then there are at most

(
c2|g(0)|1/ deg(g)

)d(m
2)

(21)

equivalence classes of monic polynomials f (x) ∈ Z[x] of degree m with distinct zeros
in K for which g( f (x)) is reducible over Q. Here c2 denotes an effectively computable
positive constant depending only on d and the discriminant of K .

Together with (20), this gives a quantitative version of the main result (the Theo-
rem) of [20]. An important feature of our bound (21) is that apart from the constant
term g(0), it does not depend on the coefficients of g(x).

As was pointed out in [20], if K has a quadratic subfield then, for a suitable g(x) ∈
Z[x], there exist infinitely many pairwise inequivalent monic quartic polynomials
f (x) ∈ Z[x] with distinct zeros in K for which g( f (x)) is reducible over Q. Follow-
ing our proof, it is easy to see that Theorem 8.1 is true for m = 4 as well, provided
that K has no quadratic subfield. Finally, we note that Theorem 8.1 does not remain
valid if we drop the restriction that g is of CM-type or that the zeros of f belong to a
fixed number field.

For the proof of Theorem 8.1 we shall use some arguments from the proof of the
Theorem in [20].

Let M be an arbitrary algebraic number field, and let A = {α1, . . . , αm} be a finite
subset of OM , the ring of integers of M . For given N ≥ 1, let GM (A, N ) denote the
simple graph whose vertex set is A and whose edges are the unordered pairs [αr , αs]
having the property

|NM/Q(αr − αs)| > N .

Lemma 8.1 Let M be a CM-field, A = {α1, . . . , αm} a finite set of real integers in
M and β a nonreal integer in M. If the graph GM (A, NM/Q(2β)) has a connected
component of order k ≥ 2 then F(x) = (x − α1) · · · (x − αm) − β has no irreduc-
ible factor of degree less than k over M. In particular, if k > deg(F)/2 then F is
irreducible over M.

Proof See Lemma 7 in [18] and Lemma 4 in [20]. 
�
In general the bound given for the degrees of the irreducible factors of F is best

possible. As is pointed out in [17,18], Lemma 8.1 is not true for arbitrary number
fields M .
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Let now again M be arbitrary, and N a finite, nonempty subset of OM . For each
pair of distinct positive integers r, s we select an element of N , denoted by δr,s , such
that δr,s = δs,r . For any finite ordered subset A = {α1, . . . , αm} of OM with m ≥ 3,
we denote by HM (A,D) or simply by H(A) the simple graph with vertex set A whose
edges are the unordered pairs [αr , αs] for which

αr − αs /∈ δr,s O∗
M .

Here O∗
M is the unit group of OM , and D denotes the

(m
2

)
-tuple (δr,s)1≤r,s≤m .

The ordered subsets A = {α1, . . . , αm} and A′ = {α′
1, . . . , α

′
m} of OM are called

OM -equivalent, if

α′
r = εαr + γ, r = 1, . . . , m

for some ε ∈ O∗
M and γ ∈ OM . It is clear that the graphs H(A) and H(A′) are

then isomorphic. In the sequel by sets A,A′,B we shall mean ordered sets where the
ordering is fixed by the indices.

The following lemma is the crucial new element in the proof of Theorem 8.1. Let
	 denote the unit rank of OM .

Lemma 8.2 Let m ≥ 3 be an integer with m �= 4. Then for all but at most

(
(m + 1)1078(	+1)

)4(m−2)

(22)

OM -equivalence classes of ordered subsets A = {α1, . . . , αm} of OM , the graph
HM (A,D) has a connected component of order at least m − 1.

This is a quantitative version of Lemma 5 of [20]. It is an important feature of our
bound in (22) that it depends only on m and 	. For more general but much weaker
quantitative versions, see Theorem 2 of [21] and Theorem 2.1 of [23].

Proof of Lemma 8.2 The assertion has been proved in [21, Theorem 1], with (22)
replaced by

m∏

r=3

(
r + 1

4

) (
62C(3, O∗

M )
)m−2

. (23)

Here C(3, O∗
M ) denotes an upper bound for the number of solutions of the unit equation

a1u1 + a2u2 + a3u3 = 1 in u1, u2, u3 ∈ O∗
M

with
∑

r∈I ar ur �= 0 for each nonempty I ⊆ {1, 2, 3}, where a1, a2, a3 are nonzero
elements of M . The existence of such a bound C(3, O∗

M ) which is independent of
a1, a2, a3 was first proved in [14]. In view of Remark 5 of [22]

62(m−2)
m∏

r=3

(
r + 1

4

)
≤ (m + 1)4(m−2). (24)
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Further, it follows from Theorem 3 of [13] that

C(3, O∗
M ) ≤

(
235 · 32

)33(	+1)

. (25)

Now (22) is an immediate consequence of (23), (24) and (25). 
�
Proof of Theorem 8.1 Let g(x) ∈ Z[x] be a monic irreducible polynomial of
CM-type of degree n, and let f (x) ∈ Z[x] be a monic polynomial of degree m ≥ 3
with m �= 4 and with distinct zeros in K . Suppose that g( f (x)) is reducible over Q.
Let β be a fixed zero of g(x) in C. Then by Capelli’s theorem (cf. [31] or Lemma 3
in [20]), the polynomial f (x) − β is reducible over the number field M := K (β). By
assumption K is totally real, hence M is of CM-type. Let α1, . . . , αm be the zeros of
f (x) in K , and put A = {α1, . . . , αm}. Then it follows from Lemma 8.1 that the graph
GM (A, NM/Q(2β)) has no connected component of order greater than m/2. We note
that

(
NM/Q(2β)

)1/[M :K ] = (
NQ(β)/Q(2β)

)[M :Q(β)]/[M :K ] = 2d g(0)d/n, (26)

where d denotes the degree of K over Q.
Let OK and O∗

K denote the ring of integers and the unit group, respectively, of K .
Denote by N a maximal set of pairwise nonassociate elements of OK whose norms
in absolute value do not exceed 2d g(0)d/n . As is known, the cardinality |N | of N
is at most c3g(0)d/n where c3 and c4, c5 below are effectively computable positive
numbers which depend only on d and the discriminant of K ; for an explicit value of
c3 we refer to [41]. For each pair of distinct positive integers r, s with 1 ≤ r, s ≤ m,
we select an element of N , denoted by δr,s , for which δr,s = δs,r . In this way we
get a set, say C, of

(m
2

)
-tuples (δr,s)1≤r,s≤m whose cardinality is |N |(m

2). For a fixed(m
2

)
-tuple D = (δr,s)1≤r,s≤m and for a subset B = {β1, . . . , βm} of OK , consider the

graph H(B) = HK (B,D) defined above, but with K in place of M . We recall that
B denotes the vertex set of H(B), and its edge set consists of those unordered pairs
[βr , βs] for which βr − βs /∈ δr,s O∗

K .
If [αr , αs] is an edge of the complement of the graph GM (A, NM/Q(2β)) then, by

(26),

|NK/Q(αr − αs)| ≤ 2d g(0)d/n .

Hence αr − αs is an associate of one of the elements of N . Together with the fact that
GM (A, NM/Q(2β)) has no connected component of order > m/2, this implies that
for at least one suitable

(m
2

)
-tuple D = (δr,s)1≤r,s≤m of C, the connected components

of the graph HK (A,D) have orders at most m/2. But the number of
(m

2

)
-tuples D

in question is at most
(
c4g(0)1/n

)d(m
2). Together with Lemma 8.2 (applied with K in

place of M) and rank(O∗
K ) + 1 ≤ d, this gives that there are at most

(
c5g(0)1/n

)d(m
2)

m-tuples A′ in OK such that HK (A′,D) has no connected component of order > m/2
for some D and that A is OK -equivalent to one of these A′, say to A′ = {α′

1, . . . , α
′
m}.
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In other words,

αr = εα′
r + η, r = 1, . . . , m (27)

with some η ∈ OK and ε ∈ O∗
K . From among these OK -equivalence classes consider

now only those ones which contain a representative A′ = {α′
1, . . . , α

′
m} for which

f1(x) := (x − α′
1) . . . (x − α′

m) ∈ Z[x]. If such a class has another representative,
say A = {α1, . . . , αm} with f2(x) := (x − α1) . . . (x − αm) ∈ Z[x] then taking the
discriminant of f1 and f2 and using (27) we infer that εm(m−1) ∈ O∗

K ∩ Q whence
ε = ±1 follows. Further, summing up the relations (27) from r = 1 to m, we deduce
that η ∈ OK ∩Q = Z. Consequently, each OK -equivalence class under consideration
contains at most two Z-equivalence classes of m-tuples A = {α1, . . . , αm} from OK

for which f (x) := (x − α1) . . . (x − αm) has its coefficients in Z. Here two tuples
{α1, . . . , αm} and {α′

1, . . . , α
′
m} are considered to be Z-equivalent if there is an a ∈ Z

such that αr − α′
r = a for some r = 1, . . . , m. 
�

Remark 8.1 In the proof of the Theorem of [20] the author arrived also at the relations
(27). However, there he followed another argument which cannot be made quantitative.
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18. Győry, K.: Sur l’irreducibilité d’une classe des polynômes II. Publ. Math. Debrecen 19, 293–326 (1972)
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