Irreducibility of certain unitary representations

By Shoshichi Kobayashi*)

(Received Dec. 15, 1967)

§ 1. Introduction.

The purpose of this paper is to prove the following theorem.
Theorem. Let M be an n-dimensional complex manifold and E a holomorphic complex vector bundle over M. Let G be a group of (holomorphic) automorphisms of E such that
(1) G is fibre-transitive, i.e., the induced action of G on M is transitive;
(2) If H is the isotropy subgroup of G (acting on M) at a point of M, then the natural representation of H on the fibre of E is irreducible;
(3) E admits a hermitian inner product invariant by G.

Let F be the complex Hilbert space of square integrable holomorphic n-forms on M with values in E. Then the natural unitary representation of G on F is irreducible (provided that F is not trivial).

In my earlier note, I proved the theorem above in the special case where E is a trivial line bundle. The basic idea of the proof is already in that note [1]. We are not making any structural assumption on G such as semisimplicity. In fact, we need not assume that G is a Lie group.

Assumption (3) is superfluous if H is compact. Assumption (2) is unnecessary if E is a complex line bundle.

The theorem above implies that if E is a homogeneous complex line bundle over a symmetric bounded domain $M=G / H$, then the natural unitary representation of not only G but also of its Iwasawa subgroup on F is irreducible.

Let M be a compact homogeneous complex manifold and G the group of holomorphic transformations. Assume that a compact subgroup K of G is already transitive on M. (This is the case if $\pi_{1}(M)$ is finite by a well known result of Montgomery.) Since M is compact, F is the space of all holomorphic n-forms with values in E. The theorem implies that if the isotropy subgroup of K is irreducible on the fibre of E, then the natural representation of K on F is irreducible.

[^0]
§ 2. Construction of reproducing kernel.

Let M, E and G be as in Theorem Let g be a hermitian inner product in E invariant by G.

Let U be a coordinate neighborhood with local coordinate system z^{1}, \cdots, z^{n} in M. Taking U sufficiently small, we may assume that the vector bundle E over U is isomorphic to $U \times \boldsymbol{C}^{r}$. Let f and f^{\prime} be holomorphic n-forms on M with values in E. Then f and f^{\prime} may be written locally in the following form :

$$
f=f_{U} d z^{1} \wedge \cdots \wedge d z^{n} \quad \text { and } \quad f^{\prime}=f_{U}^{\prime} d z^{1} \wedge \cdots \wedge d z^{n}
$$

where f_{U} and f_{U}^{\prime} are holomorphic cross sections of E over U. The local inner product $\left\langle f, \bar{f}^{\prime}\right\rangle$ is the $2 n$-form on M defined by

$$
\left\langle f, \bar{f}^{\prime}\right\rangle=i^{n 2} g\left(f_{U}, \bar{f}_{U}^{\prime}\right) d z^{1} \wedge \cdots \wedge d z^{n} \wedge d \bar{z}^{1} \wedge \cdots \wedge d \bar{z}^{n}
$$

Then $\left\langle f, \bar{f}^{\prime}\right\rangle$ is defined independent of the choice of z^{1}, \cdots, z^{n}. The global inner product (f, \bar{f}^{\prime}) is defined by

$$
\left(f, \bar{f}^{\prime}\right)=\int_{M}\left\langle f, \overline{f^{\prime}}\right\rangle .
$$

Then F is, by definition, the Hilbert space of all holomorphic n-forms f on M with values in E such that $(f, \bar{f})<\infty$. We shall assume that F is non-trivial.

Let \bar{M} denote the complex manifold whose complex structure is conjugate to that of M. If J defines the complex structure of M, then $-J$ defines the complex structure of \bar{M}. If z^{1}, \cdots, z^{n} is a local coordinate system for M, then $\bar{z}^{1}, \cdots, \bar{z}^{n}$ is a local coordinate system for \bar{M}. Let \bar{E} be the holomorphic complex vector bundle over \bar{M} which is complex conjugate to E; the transition functions for \bar{E} are complex conjugate to those of E. Let $p: M \times \bar{M} \rightarrow M$ and $\bar{p}: M \times \bar{M} \rightarrow \bar{M}$ be the natural projections; both p and \bar{p} are holomorphic mappings. If we set

$$
E \bar{E}=\left(p^{-1} E\right) \otimes\left(\bar{p}^{-1} \bar{E}\right),
$$

then $E \bar{E}$ is a holomorphic complex vector bundle over $M \times \bar{M}$ with fibre $\boldsymbol{C}^{r} \otimes \boldsymbol{C}^{r}$. Let $d: M \rightarrow M \times \bar{M}$ be the diagonal map; d is not holomorphic. The induced vector bundle $d^{-1}(E \bar{E})$ over M is not holomorphic. We define a certain real subbundle of $d^{-1}(E \bar{E})$. Let $E \circ \bar{E}$ be the real vector bundle over M whose fibres are spanned by elements $v \otimes \bar{v}$, where $v \in E$.

We shall now define the kernel form $K(z, \bar{w})$ in the same manner as we define the kernel function of Bergman. Let $f_{0}, f_{1}, f_{2}, \ldots$ be a complete orthonormal basis for F. We set

$$
K(z, \bar{w})=i^{n^{2}} \sum_{j=0}^{\infty} f_{j}(z) \wedge \bar{f}_{j}(w), \quad(z, \bar{w}) \in M \times \bar{M}
$$

Then $K(z, \bar{w})$ is a holomorphic $2 n$-form on $M \times \bar{M}$ with values in the holomorphic complex vector bundle $E \bar{E}$. It is easy to see that $K(z, \bar{w})$ does not depend on the choice of basis $f_{0}, f_{1}, f_{2}, \cdots$. By identifying M with the diagonal $d(M)$ of $M \times \bar{M}$ we can consider $K(z, \bar{z})$ as a real $2 n$-form on M with values in the real vector bundle $E \circ \bar{E}$.

Every element of G induces a unitary transformation of F in a natural manner. Since $K(z, \bar{w})$ is defined independent of the orthonormal basis f_{0}, f_{1}, f_{2}, \ldots chosen, $K(z, \bar{w})$ is invariant by G.

The most important fact we need is the reproducing property of $K(z, \bar{w})$:

$$
(K(z, \bar{w}), f(w))_{w}=\int_{w \leftleftarrows M}\langle K(z, \bar{w}), f(w)\rangle=f(z) \quad \text { for } f \in F .
$$

We shall now explain the notations involved in the formula above. Let E_{z} and $\bar{E}_{\bar{w}}$ be the fibres of E and \bar{E} at $z \in M$ and $\bar{w} \in \bar{M}$, respectively. The fibre of $E \bar{E}$ at $(z, \bar{w}) \in M \times \bar{M}$ is then given by $E_{z} \otimes \bar{E}_{\bar{w}}$. The inner product $g: E_{w}$ $\times \bar{E}_{\vec{w}} \rightarrow \boldsymbol{C}$ induces a bilinear map

$$
\left(E_{z} \otimes \bar{E}_{\bar{w}}\right) \times E_{w} \rightarrow E_{z}
$$

in a natural manner. This bilinear map will be denoted by g_{w}. Let z^{1}, \cdots, z^{n} and w^{1}, \cdots, w^{n} be local coordinate systems in open sets U and V, respectively, of M. Let $\bar{w}^{1}, \cdots, \bar{w}^{n}$ be the conjugate local coordinate system in $\bar{V} \subset \bar{M}$. On $V, f \in F$ may be written as follows:

$$
f(w)=f_{V}(w) d w^{1} \wedge \cdots \wedge d w^{n}
$$

where f_{V} is a holomorphic cross section of E over V. On $U \times \bar{V} \subset M \times \bar{M}$, $K(z, \bar{w})$ may be written as follows:

$$
K(z, \bar{w})=K_{U \times \bar{v}}(z, \bar{w}) d z^{1} \wedge \cdots \wedge d z^{n} \wedge d \bar{w}^{1} \wedge \cdots d \bar{w}^{n}
$$

where $K_{U \times \bar{V}}$ is a holomorphic cross section of $E \bar{E}$ over $U \times \bar{V}$. Then, for a fixed $z \in M,\langle K(z, \bar{w}), f(w)\rangle$ is defined by

$$
\begin{aligned}
& \langle K(z, \bar{w}), f(w)\rangle \\
& \quad=g_{w}\left(f_{v}(w), K_{U \times \bar{v}}(z, \bar{w})\right) d w^{1} \wedge \cdots \wedge d w^{n} \wedge d \bar{w}^{1} \wedge \cdots \wedge d \bar{w}^{n} \wedge d z^{1} \wedge \cdots \wedge d z^{n}
\end{aligned}
$$

Integrating this with respect to w, we obtain the global inner product $(K(z, \bar{w}), f(w))_{w}$. The formula $(K(z, \bar{w}), f(w))_{w}=f(z)$ follows immediately from

$$
\begin{gathered}
K(z, \bar{w})=i^{n^{2}} \sum_{j} f_{j}(z) \wedge \bar{f}_{j}(w), \quad\left(f_{j}, \bar{f}_{k}\right)=\delta_{j k}, \\
f=\sum_{j} a_{j} f_{j} \quad \text { where } a_{j}=\left(f, \bar{f}_{j}\right) .
\end{gathered}
$$

§ 3. Proof of Theorem.

Let F^{\prime} be a closed subspace of F invariant by G and let $F^{\prime \prime}$ be its orthogonal complement in F. Assuming that both F^{\prime} and $F^{\prime \prime}$ are non-trivial, we shall obtain a contradiction. Let $f_{0}^{\prime}, f_{1}^{\prime}, f_{2}^{\prime}, \cdots$ (resp. $f_{0}^{\prime \prime}, f_{1}^{\prime \prime}, f_{2}^{\prime \prime}, \cdots$) be a complete orthonormal basis for F^{\prime} (resp. $F^{\prime \prime}$). Since $K(z, \bar{w})$ does not depend on the choice of orthonormal basis for F, we have

$$
K(z, \bar{w})=K^{\prime}(z, \bar{w})+K^{\prime \prime}(z, \bar{w})
$$

where

$$
K^{\prime}(z, \bar{w})=i^{n^{2}} \sum_{j} f_{j}^{\prime}(z) \wedge \bar{f}_{j}^{\prime}(w), \quad K^{\prime \prime}(z, \bar{w})=i^{n^{2}} \sum_{k} f_{k}^{\prime \prime}(z) \wedge \bar{f}_{k}^{\prime \prime}(w) .
$$

Both K^{\prime} and $K^{\prime \prime}$ are holomorphic $2 n$-forms on $M \times \bar{M}$ with values in the vector bundle $E \bar{E}$. Since F^{\prime} and $F^{\prime \prime}$ are invariant by G, K^{\prime} and $K^{\prime \prime}$ are invariant by G. In the preceding section, we defined the real vector bundle $E \circ \bar{E}$ over M. The fibre of $E \circ \bar{E}$ at $z \in M$ is equal to the subspace of $E_{z} \otimes \bar{E}_{z}$ spanned by elements $v \otimes \bar{v}, v \in E_{z}$. In other words, the fibre of $E \circ \bar{E}$ at z consists of " hermitian elements" of $E_{z} \otimes \bar{E}_{z}$. It is clear that $K(z, \bar{z}), K^{\prime}(z, \bar{z})$ and $K^{\prime \prime}(z, \bar{z})$ are all $2 n$-forms on M with values in $E \circ \bar{E}$.

Let H be the isotropy subgroup of G at $z \in M$. We have a natural representation of H on E_{z}, which is assumed to be irreducible. This representation gives rise to a representation of H on the fibre of $E \circ \bar{E}$ at z. Since H is irreducible on E_{z}, any two elements of the fibre of $E \circ \bar{E}$ at z which are invariant by H must coincide up to a constant factor. (We have used the fact that if H is an irreducible linear group acting on a vector space V, an H invariant hermitian inner product on V is unique up to a constant factor.) Since both $K^{\prime}(z, \bar{z})$ and $K(z, \bar{z})$ are "hermitian elements" of $E_{z} \otimes \bar{E}_{z}$ and are invariant by H, we obtain

$$
K^{\prime}(z, \bar{z})=c \cdot K(z, \bar{z})
$$

where c is a constant. Since K^{\prime} and K are invariant by G, this constant c does not depend on $z \times M$. Since both $K^{\prime}(z, \bar{w})$ and $K(z, \bar{w})$ are holomorphic on $M \times \bar{M}$, we have

$$
K^{\prime}(z, \bar{w})=c \cdot K(z, \bar{w}) \quad \text { for }(z, \bar{w}) \in M \times \bar{M}
$$

Since both F^{\prime} and $F^{\prime \prime}$ are assumed to be non-trivial, the constant c lies between 0 and 1, i. e., $0<c<1$.

If we use the formulas

$$
K^{\prime}(z, \bar{w})=i^{n^{2}} \sum_{j} f_{j}^{\prime}(z) \wedge \bar{f}_{j}^{\prime}(w)
$$

and

$$
\left(f_{j}^{\prime}, f_{k}^{\prime \prime}\right)=0,
$$

then

$$
\left(K^{\prime}(z, \bar{w}), f_{k^{\prime \prime}}^{\prime \prime}(w)\right)_{w}=0
$$

On the other hand, if we use the relation $K^{\prime}(z, \bar{w})=c \cdot K(z, \bar{w})$ and the repro. ducing property of $K(z, \bar{w})$, then we obtain

$$
\left(K^{\prime}(z, \bar{w}), f_{k}^{\prime \prime}(w)\right)_{w}=c\left(K(z, \bar{w}), f_{k}^{\prime \prime}(w)\right)=c \cdot f_{k^{\prime}}^{\prime \prime}(z) .
$$

Hence, $c=0$. This is a contradiction.
University of California, Berkeley

Bibliography

[1] S. Kobayashi, On automorphism groups of homogeneous complex manifolds, Proc.
Amer. Math. Soc., 12 (1961), 359-361.

[^0]: *) Partially supported by NSF Grant GP-5798.

