Irreducibility of certain unitary representations

By Shoshichi KOBAYASHI*)

(Received Dec. 15, 1967)

§1. Introduction.

The purpose of this paper is to prove the following theorem.

THEOREM. Let M be an n-dimensional complex manifold and E a holomorphic complex vector bundle over M. Let G be a group of (holomorphic) automorphisms of E such that

(1) G is fibre-transitive, i.e., the induced action of G on M is transitive;

(2) If H is the isotropy subgroup of G (acting on M) at a point of M, then the natural representation of H on the fibre of E is irreducible;

(3) E admits a hermitian inner product invariant by G.

Let F be the complex Hilbert space of square integrable holomorphic n-forms on M with values in E. Then the natural unitary representation of G on F is irreducible (provided that F is not trivial).

In my earlier note, I proved the theorem above in the special case where E is a trivial line bundle. The basic idea of the proof is already in that note [1]. We are not making any structural assumption on G such as semisimplicity. In fact, we need not assume that G is a Lie group.

Assumption (3) is superfluous if H is compact. Assumption (2) is unnecessary if E is a complex line bundle.

The theorem above implies that if E is a homogeneous complex line bundle over a symmetric bounded domain M = G/H, then the natural unitary representation of not only G but also of its Iwasawa subgroup on F is irreducible.

Let M be a compact homogeneous complex manifold and G the group of holomorphic transformations. Assume that a compact subgroup K of G is already transitive on M. (This is the case if $\pi_1(M)$ is finite by a well known result of Montgomery.) Since M is compact, F is the space of all holomorphic n-forms with values in E. The theorem implies that if the isotropy subgroup of K is irreducible on the fibre of E, then the natural representation of K on F is irreducible.

^{*)} Partially supported by NSF Grant GP-5798.

§2. Construction of reproducing kernel.

Let M, E and G be as in Theorem. Let g be a hermitian inner product in E invariant by G.

Let U be a coordinate neighborhood with local coordinate system z^1, \dots, z^n in M. Taking U sufficiently small, we may assume that the vector bundle E over U is isomorphic to $U \times C^r$. Let f and f' be holomorphic n-forms on M with values in E. Then f and f' may be written locally in the following form:

$$f = f_U dz^1 \wedge \cdots \wedge dz^n$$
 and $f' = f'_U dz^1 \wedge \cdots \wedge dz^n$,

where f_U and f'_U are holomorphic cross sections of E over U. The local inner product $\langle f, \bar{f}' \rangle$ is the 2*n*-form on M defined by

$$\langle f, \bar{f}' \rangle = i^{n^2} g(f_U, \bar{f}'_U) dz^1 \wedge \cdots \wedge dz^n \wedge d\bar{z}^1 \wedge \cdots \wedge d\bar{z}^n$$

Then $\langle f, \bar{f}' \rangle$ is defined independent of the choice of z^1, \dots, z^n . The global inner product (f, \bar{f}') is defined by

$$(f, \bar{f}') = \int_{M} \langle f, \bar{f}' \rangle.$$

Then F is, by definition, the Hilbert space of all holomorphic *n*-forms f on M with values in E such that $(f, \overline{f}) < \infty$. We shall assume that F is non-trivial.

Let \overline{M} denote the complex manifold whose complex structure is conjugate to that of M. If J defines the complex structure of M, then -J defines the complex structure of \overline{M} . If z^1, \dots, z^n is a local coordinate system for M, then $\overline{z}^1, \dots, \overline{z}^n$ is a local coordinate system for \overline{M} . Let \overline{E} be the holomorphic complex vector bundle over \overline{M} which is complex conjugate to E; the transition functions for \overline{E} are complex conjugate to those of E. Let $p: M \times \overline{M} \to M$ and $\overline{p}: M \times \overline{M} \to \overline{M}$ be the natural projections; both p and \overline{p} are holomorphic mappings. If we set

$$E\overline{E} = (p^{-1}E) \otimes (\overline{p}^{-1}\overline{E})$$
 ,

then $E\overline{E}$ is a holomorphic complex vector bundle over $M \times \overline{M}$ with fibre $C^r \otimes C^r$. Let $d: M \to M \times \overline{M}$ be the diagonal map; d is not holomorphic. The induced vector bundle $d^{-1}(E\overline{E})$ over M is not holomorphic. We define a certain real subbundle of $d^{-1}(E\overline{E})$. Let $E \circ \overline{E}$ be the real vector bundle over M whose fibres are spanned by elements $v \otimes \overline{v}$, where $v \in E$.

We shall now define the kernel form $K(z, \overline{w})$ in the same manner as we define the kernel function of Bergman. Let f_0, f_1, f_2, \cdots be a complete orthonormal basis for F. We set

$$K(z, \overline{w}) = i^{n^2} \sum_{j=0}^{\infty} f_j(z) \wedge \overline{f}_j(w), \qquad (z, \overline{w}) \in M \times \overline{M}.$$

Then $K(z, \overline{w})$ is a holomorphic 2*n*-form on $M \times \overline{M}$ with values in the holomorphic complex vector bundle $E\overline{E}$. It is easy to see that $K(z, \overline{w})$ does not depend on the choice of basis f_0, f_1, f_2, \cdots . By identifying M with the diagonal d(M) of $M \times \overline{M}$ we can consider $K(z, \overline{z})$ as a real 2*n*-form on M with values in the real vector bundle $E \circ \overline{E}$.

Every element of G induces a unitary transformation of F in a natural manner. Since $K(z, \overline{w})$ is defined independent of the orthonormal basis f_0, f_1, f_2, \cdots chosen, $K(z, \overline{w})$ is invariant by G.

The most important fact we need is the reproducing property of $K(z, \overline{w})$:

$$(K(z,\overline{w}),f(w))_w = \int_{w \in \mathcal{M}} \langle K(z,\overline{w}),f(w)\rangle = f(z) \quad \text{for } f \in F.$$

We shall now explain the notations involved in the formula above. Let E_z and $\overline{E}_{\overline{w}}$ be the fibres of E and \overline{E} at $z \in M$ and $\overline{w} \in \overline{M}$, respectively. The fibre of $E\overline{E}$ at $(z, \overline{w}) \in M \times \overline{M}$ is then given by $E_z \otimes \overline{E}_{\overline{w}}$. The inner product $g: E_w$ $\times \overline{E}_{\overline{w}} \to C$ induces a bilinear map

$$(E_z \otimes \overline{E}_{\overline{w}}) \times E_w \to E_z$$

in a natural manner. This bilinear map will be denoted by g_w . Let z^1, \dots, z^n and w^1, \dots, w^n be local coordinate systems in open sets U and V, respectively, of M. Let $\overline{w}^1, \dots, \overline{w}^n$ be the conjugate local coordinate system in $\overline{V} \subset \overline{M}$. On $V, f \in F$ may be written as follows:

$$f(w) = f_V(w) dw^1 \wedge \cdots \wedge dw^n$$
 ,

where f_v is a holomorphic cross section of E over V. On $U \times \overline{V} \subset M \times \overline{M}$, $K(z, \overline{w})$ may be written as follows:

$$K(z, \overline{w}) = K_{\overline{u} \times \overline{v}}(z, \overline{w}) dz^1 \wedge \cdots \wedge dz^n \wedge d\overline{w}^1 \wedge \cdots d\overline{w}^n$$
,

where $K_{U \times \overline{V}}$ is a holomorphic cross section of $E\overline{E}$ over $U \times \overline{V}$. Then, for a fixed $z \in M$, $\langle K(z, \overline{w}), f(w) \rangle$ is defined by

$$\langle K(z, \overline{w}), f(w) \rangle$$

= $g_w(f_v(w), K_{U \times \overline{v}}(z, \overline{w})) dw^1 \wedge \cdots \wedge dw^n \wedge d\overline{w}^1 \wedge \cdots \wedge d\overline{w}^n \wedge dz^1 \wedge \cdots \wedge dz^n$.

Integrating this with respect to w, we obtain the global inner product $(K(z, \overline{w}), f(w))_w$. The formula $(K(z, \overline{w}), f(w))_w = f(z)$ follows immediately from

$$K(z, \overline{w}) = i^{n^2} \sum_j f_j(z) \wedge \overline{f}_j(w) , \qquad (f_j, \overline{f}_k) = \delta_{jk} ,$$
$$f = \sum_j a_j f_j \qquad \text{where} \ a_j = (f, \overline{f}_j) .$$

640

§3. Proof of Theorem.

Let F' be a closed subspace of F invariant by G and let F'' be its orthogonal complement in F. Assuming that both F' and F'' are non-trivial, we shall obtain a contradiction. Let f'_0, f'_1, f'_2, \cdots (resp. $f''_0, f''_1, f''_2, \cdots$) be a complete orthonormal basis for F' (resp. F''). Since $K(z, \overline{w})$ does not depend on the choice of orthonormal basis for F, we have

where

$$K(z, \overline{w}) = K'(z, \overline{w}) + K''(z, \overline{w}),$$

$$K'(z, \overline{w}) = i^{n^2} \sum_j f'_j(z) \wedge \overline{f}'_j(w), \qquad K''(z, \overline{w}) = i^{n^2} \sum_k f''_k(z) \wedge \overline{f}''_k(w).$$

Both K' and K'' are holomorphic 2n-forms on $M \times \overline{M}$ with values in the vector bundle $E\overline{E}$. Since F' and F'' are invariant by G, K' and K'' are invariant by G. In the preceding section, we defined the real vector bundle $E \circ \overline{E}$ over M. The fibre of $E \circ \overline{E}$ at $z \in M$ is equal to the subspace of $E_z \otimes \overline{E}_z$ spanned by elements $v \otimes \overline{v}$, $v \in E_z$. In other words, the fibre of $E \circ \overline{E}$ at z consists of "hermitian elements" of $E_z \otimes \overline{E}_z$. It is clear that $K(z, \overline{z})$, $K'(z, \overline{z})$ and $K''(z, \overline{z})$ are all 2n-forms on M with values in $E \circ \overline{E}$.

Let H be the isotropy subgroup of G at $z \in M$. We have a natural representation of H on E_z , which is assumed to be irreducible. This representation gives rise to a representation of H on the fibre of $E \circ \overline{E}$ at z. Since H is irreducible on E_z , any two elements of the fibre of $E \circ \overline{E}$ at z which are invariant by H must coincide up to a constant factor. (We have used the fact that if H is an irreducible linear group acting on a vector space V, an H-invariant hermitian inner product on V is unique up to a constant factor.) Since both $K'(z, \overline{z})$ and $K(z, \overline{z})$ are "hermitian elements" of $E_z \otimes \overline{E}_z$ and are invariant by H, we obtain

$$K'(z, \overline{z}) = c \cdot K(z, \overline{z})$$
 ,

where c is a constant. Since K' and K are invariant by G, this constant c does not depend on $z \times M$. Since both $K'(z, \overline{w})$ and $K(z, \overline{w})$ are holomorphic on $M \times \overline{M}$, we have

$$K'(z, \overline{w}) = c \cdot K(z, \overline{w}) \quad \text{for } (z, \overline{w}) \in M \times \overline{M}.$$

Since both F' and F'' are assumed to be non-trivial, the constant c lies between 0 and 1, i.e., 0 < c < 1.

If we use the formulas

$$K'(z, \overline{w}) = i^{n^2} \sum_j f'_j(z) \wedge \overline{f}'_j(w)$$

and

S. Kobayashi

$$(f'_{j}, f''_{k}) = 0$$
,

then

$$(K'(z, \bar{w}), f''_{k}(w))_{w} = 0.$$

On the other hand, if we use the relation $K'(z, \overline{w}) = c \cdot K(z, \overline{w})$ and the reproducing property of $K(z, \overline{w})$, then we obtain

$$(K'(z, \overline{w}), f''_k(w))_w = c(K(z, \overline{w}), f''_k(w)) = c \cdot f''_k(z).$$

Hence, c = 0. This is a contradiction.

University of California, Berkeley

Bibliography

[1] S. Kobayashi, On automorphism groups of homogeneous complex manifolds, Proc. Amer. Math. Soc., 12 (1961), 359-361.

642