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which every location can exhibit either strong cooling or rapid 

warming. However, the details of the distribution are highly 

sensitive to the ocean initial condition chosen and particularly 

the state of the Atlantic meridional overturning circulation. On 

longer timescales, the warming signal becomes more clear and 

consistent amongst different initial condition ensembles. An 

ensemble using a range of different oceanic initial conditions 

produces a larger spread in temperature trends than ensembles 

using a single ocean initial condition for all lead times. This 

highlights the potential benefits from initialising climate pre-

dictions from ocean states informed by observations. These 

results suggest that climate projections need to be performed 

with many more ensemble members than at present, using a 

range of ocean initial conditions, if the uncertainty in near-

term regional climate is to be adequately quantified.

Keywords Ensembles · Projections · Initial conditions · 

Uncertainty

1 Introduction

Predictions of regional climatic changes during the next 

few decades are sought by decision makers. The use of cli-

mate models to guide scientific research on such predictions 

requires an acceptance that their non-linear nature generates 

irreducible uncertainty. To understand a model’s behaviour 

in response to rising greenhouse gas concentrations, there-

fore requires a probabilistic quantification of outcomes.

On regional spatial scales it has been argued that inter-

nal climate variability and model uncertainty dominate 

scenario uncertainty for near term temperatures (Hawkins 

and Sutton 2009). A key question is determining the size of 

the internal variability when compared to other sources of 

uncertainty and the magnitude of the expected change from 

causes other than internal climate fluctuations.

Abstract Model simulations of the next few decades are 

widely used in assessments of climate change impacts and 

as guidance for adaptation. Their non-linear nature reveals a 

level of irreducible uncertainty which it is important to under-

stand and quantify, especially for projections of near-term 

regional climate. Here we use large idealised initial condition 

ensembles of the FAMOUS global climate model with a 1 %/

year compound increase in CO2 levels to quantify the range 

of future temperatures in model-based projections. These 

simulations explore the role of both atmospheric and oceanic 

initial conditions and are the largest such ensembles to date. 

Short-term simulated trends in global temperature are diverse, 

and cooling periods are more likely to be followed by larger 

warming rates. The spatial pattern of near-term temperature 

change varies considerably, but the proportion of the surface 

showing a warming is more consistent. In addition, ensem-

ble spread in inter-annual temperature declines as the climate 

warms, especially in the North Atlantic. Over Europe, atmos-

pheric initial condition uncertainty can, for certain ocean ini-

tial conditions, lead to 20 year trends in winter and summer in 
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This question has previously been addressed by con-

sidering large ensembles of climate projections with a sin-

gle climate model and a single future emissions trajectory 

(Selten et al. 2004; Sterl et al. 2008; Deser et al. 2012a, b; 

Kay et al. 2015). In these ensembles, multiple projections 

are simulated from a single ocean initial condition with 

many different atmospheric states to examine the magni-

tude of uncertainty associated with the non-linear nature 

of the atmosphere. It has also been suggested that some of 

the apparent model diversity may simply be due to internal 

variability (Deser et al. 2014).

In Deser et al. (2012b), each simulation warms by over 

2 K in the first 50 years in the global average. However, 

the uncertainty in near-term regional climate trends can 

be substantial when compared to the size of the signal of 

change. For example, with 40 simulations it was possible to 

simulate both a 3 K warming and even a small cooling for 

winter (DJF) in Seattle, USA over the next 50 years, with 

the difference solely due to changes in the atmospheric 

initial conditions (Deser et al. 2012b). For winter precipi-

tation, the ensemble ranged from a –25 to +25 % change 

over 50 years. The conclusion was that this uncertainty is 

essentially irreducible. This is an extreme example, and the 

caveat to this conclusion is that the simulated variability 

and the sensitivity of the response to initial conditions, may 

not be similar to the real world. However, there is a diverse 

range of simulated variability amongst climate models 

(Hawkins and Sutton 2012; Knutson et al. 2013), and given 

the relatively short observational record and complications 

in separating the internal variability from a forced trend, it 

is difficult to obtain a reliable estimate of climate variabil-

ity from existing observations, especially on decadal time-

scales. In addition, different GCMs have varying predicta-

bility characteristics, particularly the timescales of memory 

(Collins et al. 2006; Branstator et al. 2012).

The large initial condition ensemble approach is in 

sharp contrast to the more usual climate projections which 

often use a single simulation (and at most ten ensemble 

members) for each climate model for multiple emission 

scenarios (Stocker et al. 2013). Computational resources 

and model complexity have restricted assessment of the 

implications of ensemble size in global climate models but 

analysis of a low-dimensional non-linear model suggests 

that ensembles of significantly more than 100 members 

are required to make confident statements at the 5 or 95 % 

level (Daron and Stainforth 2013). Although the number 

of ensemble members required will depend on the signal-

to-noise characteristics of the variable considered, the 

quantities considered by Daron and Stainforth (2013) had 

relatively long timescales and are broadly representative of 

large scale ocean variables.

Several open questions remain which have particu-

lar relevance to the design of future ensembles of climate 

projections. Are these findings of significant irreduc-

ible uncertainty replicated in other climate models? Does 

uncertainty in oceanic initial conditions produce similar 

magnitudes and characteristics of response uncertainty? 

What is the shape of the irreducible uncertainty (i.e. are the 

distributions non-Gaussian)? And is this dependent on oce-

anic initial conditions? How large an ensemble is required 

to quantify these types of uncertainty?

In this study we utilise a fast atmosphere-ocean coupled 

general circulation model (AOGCM) to perform larger 

ensembles than have previously been possible, although at 

a lower resolution and complexity. Section 2 describes the 

FAMOUS AOGCM and the ensemble design. The relative 

role of atmospheric and oceanic initial conditions in pro-

ducing uncertainty is explored and illustrated in Sect. 3. We 

summarise in Sect. 4.

2  Large initial condition ensembles 

with FAMOUS

To examine the role of internal variability in near-term 

climate projections we analyse a 1200-year pre-indus-

trial control simulation and four large ensembles with the 

FAMOUS AOGCM.

2.1  The FAMOUS AOGCM

FAMOUS is a lower resolution and retuned version of the 

third Met Office Hadley Centre AOGCM (HadCM3; Gor-

don et al. (2000)), and has an atmospheric component with 

a horizontal resolution of 5◦
× 7.5

◦, with 11 vertical lev-

els. The ocean component has a horizontal resolution of 

2.5
◦
× 3.75

◦, with 20 vertical levels. No flux adjustments 

are used. The coarse resolution and fast computational 

speed of FAMOUS allows simulations to be performed at 

over 100 model years per wall-clock day, making it ideal 

for lengthy simulations and large ensembles. The version of 

FAMOUS used is xfxwb, described in Smith et al. (2008) 

and updated in Smith (2012).

In the control simulation, the standard deviation of 

global annual mean surface air temperature is 0.18K (with 

a range of 0.14–0.21 K for different 164 year segments), 

which is larger than all of the state-of-the-art CMIP5 mod-

els (range 0.06–0.15 K). A crude estimate from observa-

tions is 0.12 K, obtained by removing a 4th order poly-

nomial fit to the HadCRUT4 global temperature dataset 

(Morice et al. 2012) for 1850–2013. However, the pattern 

and autocorrelation characteristics of the variability are 

also important for assessing the realism of the simulations. 

For example, the CMIP5 GCMs show a diversity in the 

simulated patterns and amplitude of variability on regional 

scales (Hawkins and Sutton 2012; Knutson et al. 2013).
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Interannual temperature variability in the FAMOUS 

control simulation shows a similar geographical pattern to, 

but with a much larger amplitude than, an observational 

estimate from ERA-40 (Fig. 1, for 1958–2001 after linear 

detrending) (Uppala et al. 2005). Although this has large 

implications for any comparison of these simulations with 

the real world, and is a caveat on the results, the speed of 

FAMOUS makes it a good test-bed to explore the role of 

variability and how to design ensembles to sample initial 

condition uncertainty.

2.2  Ensemble design

All the simulations assume an idealised 1 %/year com-

pound increase in CO2 from pre-industrial levels until year 

140, when a quadrupling of CO2 is reached.

Using terminology first suggested by Stainforth et al. 

(2007a), two separate ensembles were initially produced:

1. MACRO—30 different coupled initial conditions are 

chosen from well separated start dates in the long con-

trol run

2. MICRO—a single coupled initial condition from 

MACRO is chosen, and 100 ensemble members are 

produced, each with a O(10
−3)K perturbation to sea 

surface temperature (SST) in a single, randomly cho-

sen ocean grid point

The chosen start dates are indicated later in Fig. 10. 

The MICRO ensemble therefore samples the uncertainty 

in future model climate only due to the non-linear nature 

of its climate system (i.e. the irreducible uncertainty), 

whereas the MACRO ensemble samples the uncertainty 

due to both its non-linear nature and initial condition differ-

ences in large scale aspects of the atmosphere and ocean. A 

component of this uncertainty may be reducible due to the 

memory in the initial conditions (Griffies and Bryan 1997; 

Smith et al. 2007). MACRO is therefore designed to better 

sample the uncertainty in an uninitialised framework, and 

MICRO samples the uncertainty contingent on the particu-

lar initial conditions chosen.

After preliminary analysis, two further ensembles were 

produced:

3. and 4. MINI MICRO 1 and 2—each of these ensembles 

has 50 members and, like MICRO, are run from differ-

ent coupled initial conditions, chosen from MACRO

The two initial conditions for MINI MICRO, which are 

only 20 years apart in the control run (see Fig. 10 later), 

were chosen because the corresponding MACRO mem-

bers produced very different outcomes for the subsequent 

30 years for European climate. These additional ensembles 

enable the sensitivity to the particular ocean initial condition 

to be assessed in terms of the irreducible response uncer-

tainty resulting from uncertainty at the smallest scales.

In total, 33,400 simulated years have been analysed. 

The key issue that will be addressed with these ensembles 

is determining the size of the irreducible uncertainty in 

near-term climate projections. Other questions will be con-

sidered, such as: (1) what is the range of possible tempera-

ture trends? (2) how important is the oceanic initial state in 

near-term climate projections? (3) how long before the sig-

nal of climate change emerges from the internal variability? 

(4) how should future ensembles of near-term projections 

be designed?

3  The role of the initial conditions

We explore the variability within the transient ensembles 

using surface temperatures globally, and then illustrate the 

Fig. 1  Inter-annual variability 

(standard deviation, in K) of 

near-surface temperature in 

ERA-40 (linearly detrended, 

left) and the FAMOUS control 

simulation (right)

ERA−40

INTERANNUAL VARIABILITY

FAMOUS

K0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
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magnitude of the irreducible uncertainty and consequences 

for regional near-term temperatures and precipitation with 

a case study over Europe.

3.1  Transient climate reponse

It has recently been suggested (Liang et al. 2013) that the 

initial conditions may be a significant source of uncertainty 

in estimating the global temperature change at the time of 

CO2 doubling, or transient climate response (TCR). The 

primary reason for the uncertainty identified by Liang et al. 

(2013) was that the spin-up or drift in the GCM considered 

would produce different estimates of TCR for well-spaced 

initial conditions. However, it is also possible that the TCR 

could vary depending on the initial condition in a well 

spun-up GCM, such as FAMOUS.

We estimate TCR in each FAMOUS simulation using 

the global mean surface temperature in years 61–80, minus 

the mean of the entire pre-industrial control simulation. 

The four FAMOUS ensembles show that the spread (which 

we take to be one standard deviation throughout) in esti-

mates of TCR is between 0.06 and 0.08 K, with a minimum 

to maximum range of 2.25–2.64 K (Fig. 2). The standard 

deviation of 20-year means in global temperature in the 

FAMOUS control simulation is also 0.08 K, suggesting 

that the ensembles are effectively sampling the same inter-

nal variability but around the point of CO2 doubling and 

that the transient response itself does not add additional 

uncertainty.

In the CMIP5 ensemble, the estimated TCR ranges from 

1.1 to 2.5 K (Forster et al. 2013). FAMOUS is clearly a 

high sensitivity GCM, but the relatively small initial condi-

tion uncertainty suggests that the spread in CMIP5 GCM 

estimates is dominated by model diversity. In addition, 

these results suggest that uncertainty in TCR estimates 

using control simulation variability may provide a good 

first estimate if only small ensembles are available. Such an 

approach would, however, substantially reduce the likeli-

hood of identifying non-linear, model-dependent feedbacks 

which could affect the TCR in different models. Ensem-

ble sizes should in any case be sufficiently large to make a 

good estimate of the mean.

In all four FAMOUS ensembles, the warming is greater 

for later initial states, which are characterised by their start-

ing CO2 concentration in Fig. 3. This effect is commonly 

observed in CMIP3 and CMIP5 AOGCMs (Gregory and 

Forster 2008; Gregory et al. in press). The main reason is 

likely to be the decrease in efficiency of heat loss from the 

upper ocean to deeper layers as the latter become warmer, 

and is related to the cold-start effect (e.g. Keen and Murphy 

1997) and the long-term commitment to surface warming 

after forcing is stabilised (as discussed by Gregory et al. in 

press). It does not imply a dependence of ocean heat uptake 

processes on the state of the climate. However, non-linear 

behaviours may also enhance the warming under succes-

sive doublings, for instance due to decrease in the global 

climate feedback parameter (Gregory et al. in press) and 

various regional phenomena (Good et al. 2015). Because 

the warming per unit increase in CO2 in forcing tends to 

increase, its value inferred from historical observations 

might underestimate the future response (Gregory and For-

ster 2008).

3.2  Global temperature trends

When considering shorter timescales, there is consider-

able variability in global mean temperatures. Figure 4 (top 

row) shows distributions of all possible overlapping trends 

for 10, 15 and 20 year periods in all the ensembles com-

bined, with decadal trends ranging from –0.5 to over +1 K/
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Fig. 2  Distributions of transient climate response (TCR), defined as the average global temperature at years 61–80 minus the mean global tem-

perature in the pre-industrial control simulation, for the four ensembles
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decade. For example, ~8 % of decades show a cooling trend 

and ~1 % of 15-year trends show a cooling, even though 

the climate is warming in the long-term. However, the 

regional patterns and causes of each cooling period can be 

very different (Sutton et al. 2015). The longest period with 

a global cooling trend is 24 years in FAMOUS. All trends 

are calculated using standard linear regression against time.

The variability in these short-term trends inferred from 

the long control simulation (solid black curves) matches 

that of the large transient ensembles fairly well, indicating 

that lengthy control simulations are of considerable value 

in determining the range of possible future climate changes 

in this model (also see Deser et al. 2014). However, the 

magnitude of the variability decreases slightly over time in 

the transient simulations (see Sect. 3.4) suggesting there is 

a limit to the assumption of stationary variance.

Interestingly, it is also possible to consider what hap-

pens after a cooling period. The bottom row of Fig. 4 

shows the distributions of global mean temperature trends 

immediately following periods of the same length that had 

a cooling trend. The mean of these distributions are shifted 

towards more positive values by between 15 and 25 %, 
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Fig. 3  Warming for a doubling of CO2 concentration shown as a 

function of the starting CO2 value for each ensemble member (col-

ours) and ensemble mean (black). The black bar shows the 25–75 and 

5–95 % ranges for the standard measure of TCR. It is seen that warm-

ing apparently increases in all ensembles
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Fig. 4  (Top row) Histograms of 10, 15 and 20-year global tempera-

ture trends in all the ensembles combined. The black lines represent 

the normalised distribution from the control simulation with its mean 

shifted to match the mean trend of the transient ensembles. The per-

centages indicate the fraction of cooling periods for the ensembles 

and (in brackets) inferred from the control simulation. Note that the 

first 20 years of each member is not included to remove any biasing 

effects of initialisation. The bottom row shows similar histograms, but 

only selecting trends for periods following cooling episodes of the 

same length. The black lines are repeated from the top row with the 

normalisation changed to match the number of trends available. The 

shift in the mean of the histograms is indicated as a percentage
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indicating that cooling periods are more likely to be fol-

lowed by higher rates of warming (or ‘surges’), with rel-

evance to the recent observed slowdown in global tempera-

tures. In addition, this shift is not simply due to the removal 

of the cooling periods from the distributions, except for 

10-year trends where about half of the shift in the mean is 

due to this effect.

3.3  Local temperature trends

We next consider local temperature trends in the initial 

decades of the experiments, as an idealised analogue of the 

coming decades. Figure 5 illustrates the fraction of simula-

tions which exhibit a cooling trend at each grid point over 

the first N years, for different values of N. In the MACRO 

case, one third or more of the simulations show a cooling 

trend over the first 20 years in many regions, especially in 

the extra-tropics. In the MICRO case, the fraction of sim-

ulations is increased over the North Atlantic, Europe and 

some of the Southern Ocean and north western Pacific. For 

longer trend lengths, the fractions of simulations exhibiting 

a cooling trend decreases and the two ensembles converge, 

although even over 30 years substantial areas still have sig-

nificant fractions which show cooling.

The two MINI MICRO ensembles demonstrate that 

the probability of a cooling trend in any specific region is 

highly dependent on the particular ocean initial condition 

chosen. All three MICRO ensembles exhibit areas where 

more than 50 % of the simulations have a cooling trend 

over the first 20, and sometimes 30, years but the spatial 

patterns of ensemble behaviour are strikingly different. 

By 50 years in, the long term trend is positive almost eve-

rywhere and the few regions where a few simulations are 

Fig. 5  The fraction of simula-

tions that show a cooling trend 

in the first N years of the four 

ensembles, for N = 20, 30 and 

50. The average fraction of the 

planet’s surface area which 

exhibits a cooling trend is also 

given

Fraction: 25%

M
IC

R
O

Fraction: 12% Fraction: 1%

20 years

Fraction: 19%

M
A

C
R

O

30 years

Fraction: 8%

50 years

Fraction: 1%

Fraction: 20%

M
IN

I 
M

IC
R

O
 1

Fraction: 9% Fraction: 2%

Fraction: 28%

M
IN

I 
M

IC
R

O
 2

Fraction: 13%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of a cooling trend

Fraction: 1%



Irreducible uncertainty in near-term climate projections

1 3

negative are similar across the ensembles (also see Bransta-

tor and Teng 2010).

These differences between ensemble types highlight 

how a single ocean initial condition (as in each MICRO 

case) is not effectively sampling the uncertainty in future 

trends. For example, over Europe there is a high chance of 

a cooling trend in MICRO and MINI MICRO 2 due to a 

decline in the Atlantic Ocean heat transport (see Sect. 3.6), 

but in MINI MICRO 1, there is a near zero chance. Thus 

a single MICRO ensemble is not representative of the 

full uncertainty in the absence of knowledge of the initial 

ocean conditions. On the other hand it is representative of 

the irreducible uncertainty conditioned on a particular set 

of ocean/atmosphere initial conditions, in this model. This 

regional case study is explored further in Sect. 3.5 where 

we also highlight that the different MICRO ensembles have 

different predictability properties.

However, the ensembles are more consistent in the frac-

tion of the globe which exhibits a cooling. Looking across 

all the simulations, a median of 21 % (with a 5–95 % range 

of 12–43 %) of the globe shows a cooling over the first 

20 years, and 10 % (with a 5–95 % range of 4–19 %) over 

the first 30 years. No simulation exhibits a warming eve-

rywhere. But, the simulations differ in where the warming 

and cooling regions are. This type of quantification may 

be of use to help communicate the odds of ‘unexpected’ 

trends.

3.4  Ensemble spread and variability

We next consider how the ensemble spread changes over 

time, and the implications for predictability characteristics 

in the future.

The ensemble spread of the MICRO ensemble is ini-

tially smaller than the MACRO case, as expected, but they 

converge after a few years for global temperatures, and 

after around 20 years for European average temperatures 

(Fig. 6a, b) (also see Sect. 3.6 later).

There is therefore a potential initial reduction in ensem-

ble spread and increase in predictive skill of the future 

within the model through conditioning on a particular ini-

tial ocean state. Whether some of this potential can be real-

ised for real world predictions depends on the quality of the 

simulated climate and is an area of active ongoing research 

(Smith et al. 2007; Meehl et al. 2014).

Interestingly, the MINI MICRO 1 ensemble produces 

a very different growth of spread than MICRO and MINI 

MICRO 2 for Europe, even though they are all only sam-

pling the irreducible initial condition uncertainty. These 

differences highlight possible state dependence of regional 

predictability - predictability from certain states may be 

greater than from others (Griffies and Bryan 1997). Both 

MINI MICRO ensembles are similar to MICRO for the 

global average (not shown).

In addition, the ensemble spread decreases as the climate 

warms, at least for the first 100 years. For the global mean, 

this reduction is around 10 %, and for Europe it is around 

20 %, although there is significant variability in both the 

annual and the running mean of the spread. It is also seen 

that there is a flattening in the ensemble spread after around 

100 years. This change in ensemble spread suggests a cor-

responding decrease in the magnitude of simulated interan-

nual variability [also see Stouffer and Wetherald (2007) and 

Holmes et al. (2015)].

The ensemble spread decline is particularly evident in 

the North Atlantic, Nordic Seas and Scandinavia (Fig. 6c), 

suggesting that it is due to the sea-ice edge retreating in a 

warmer climate (also see Screen 2014). This would also 

explain why the reduction in ensemble spread does not 

continue indefinitely as the sea-ice retreats further into the 

Arctic.

3.5  Regional trends: a European case study

We now examine possible future temperature trends over 

Europe in these ensembles. The timeseries of winter (DJF) 
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temperatures are shown in Fig. 7 for the four ensembles. 

Note that MACRO undergoes a rather smooth warming in 

the ensemble mean, but the different MICRO ensembles 

show consistent deviations from a smooth trend in the first 

couple of decades. The equivalent temperatures for JJA are 

shown in Fig. S1.

We also consider examples of 20 and 50 year projections 

of winter (DJF) in Figs. 8 and 9. The equivalent figures for 

summer (JJA) are shown in Figs. S2 and S3. Other seasons, 

regions and trend lengths can be viewed at an interactive 

website,1 which includes results for both surface air tem-

perature and precipitation.

The mean spatial trend for the MICRO and MACRO 

ensembles differ substantially when considering 20 year 

trends (Fig. 8). The MACRO ensemble shows a warm-

ing trend over the whole region. However, in the MICRO 

ensemble, there is a general cooling over Europe and much 

of the North Atlantic as a consequence of the particular 

ocean initial condition chosen. When considering each 

grid point independently there is the possibility of a trend 

smaller than –0.8 to larger than +0.8 K per decade for most 

land areas.

The histograms of trends for the European average tem-

perature illustrate that the MACRO ensemble has a sig-

nificantly wider spread than MICRO (at 99 % confidence 

using an f-test), and a mean which is positive, whereas the 

MICRO ensemble tends to produce a cooling, as seen in the 

maps.

1 http://www.climate-lab-book.ac.uk/2013/famous-ensembles/.

However, the MINI MICRO ensembles clearly highlight 

how ocean initial conditions affect the subsequent distribu-

tion. Remarkably, the MINI MICRO 1 ensemble warms far 

more on average, and has no members which show a cool-

ing. It also exhibits a distribution which hardly overlaps 

with the other MICRO ensembles.

When considering 50 year trends (Fig. 9), the differ-

ences between the ensembles have reduced, and all show a 

warming on average, and in all ensemble members (except 

one) for the European mean. However, considering grid 

points independently, it is still possible to have a cool-

ing over Central and Eastern Europe. Again, the MACRO 

ensemble has a larger spread than the MICRO ensembles. 

The results for summer (JJA) give similar conclusions 

(Figs. S2, S3), but the variability is smaller, resulting in 

narrower distributions.

3.6  Regional trends: the role of the ocean state

The temperature timeseries for Europe in DJF (Fig. 7) 

show some interesting features. The particular ocean state 

chosen as the initial condition in each ensemble is clearly 

changing the distribution of the subsequent projections.

An important consequence of the initial ocean state, in 

this GCM, is the subsequent development of the Atlantic 

meridional overturning circulation (AMOC). Figure 10 

shows the annual mean maximum of the AMOC stream-

function for the long FAMOUS control simulation. The 

filled circles represent the initial conditions used—green 

for the MICRO ensemble, orange and grey for MINI 

MICRO 1 and 2 respectively, and blue for the other 

MACRO states. We note again that a single realisation from 

each of the MICRO ensembles is also included in MACRO.

At first glance, there is nothing unusual about the chosen 

MICRO initial condition as the AMOC is relatively neutral. 

However, Fig. 11 shows that the vast majority of ensem-

ble members follow a similar subsequent trajectory with an 

increase for a few years, followed by a rapid decline. There 

is a clear potentially predictable signal in the AMOC and 

the time structure matches the behaviour of temperatures 

over Europe.

Figure 12 shows the regression pattern between the 

AMOC and surface temperatures in the control simulation, 

highlighting the potential impact of the ocean on European 

temperatures in FAMOUS. In the control simulation, Euro-

pean temperatures change by around 0.17 K/Sv in response 

to the AMOC (also see Smith and Gregory 2009). This is in 

qualitative agreement with the variations seen in MICRO.

Figure 11 also shows the AMOC evolution for each 

MACRO state, reset to start from the same nominal year. 

Here the spread in projections is far wider initially, high-

lighting that a range of ocean states has been chosen. The 

ensemble spread of the MICRO experiments saturate to 
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a similar level to MACRO after around 20–30 years (not 

shown), slightly longer than previous studies (Collins et al. 

2006; Msadek et al. 2010).

The MINI MICRO 1 ensemble members undergo a rapid 

warming initially over Europe, consistent with the low state 

of the AMOC in the initial condition although the AMOC 

control timeseries does not reflect this (Figs. 10 and 11). 

It is not clear why MINI MICRO 1 has a high ensemble 

spread over Europe in the first few years (Fig. 6). In MINI 

MICRO 2, a similar situation to MICRO is seen, with an 

initial warming and subsequent cooling, also consistent 

with the AMOC initial state and evolution (Fig. 11).

The different behaviour of the ensembles over Europe are 

clearly related to the particular ocean initial condition in a 

complex fashion, highlighting the need to sample a wide range 

of ocean states to ensure a representative future ensemble.

3.7  Signal-to-noise in future trends

The issues of signal-to-noise in future temperature trends in 

this ensemble are summarised in Fig. 13. The mean signal 

(solid) and ensemble spread (dashed) are compared for two 

seasons (DJF & JJA) and two spatial averages (global & 

Europe).

The signal of the trend is larger than the ensemble 

spread for 20 year trends in global average temperature 

(top row)—i.e. where the dashed and solid lines cross, 

termed ‘emergence’. For Europe (middle row), this signal 

emergence time is later, at around 20–35 year trend length 

depending on the ensemble.

The ensemble spread declines as the period lengthens 

and the MACRO ensemble (blue) shows larger spreads than 

the MICRO ensemble (green) for all trend lengths in both 

Fig. 8  Ensemble mean winter 

(DJF) trends over the first 

20 years (top row) for the 

MICRO (left) and MACRO 

(right) ensembles, along with 

the maximum and minimum 

trend at any particular grid-point 

across the MICRO ensemble 

(second row). The distribution 

of trends for the domain average 

are shown in the bottom two 

rows for all four ensembles. The 

mean and standard deviation 

of the domain average for each 

ensemble is also given. The 

equivalent figure for JJA is in 

the Supplementary Information
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seasons and both spatial averages. But, for trend lengths 

larger than around 40 years the differences are negligible. 

For shorter trends, the ocean initial conditions play a key 

role in determining the spread in future trends.

For precipitation, Fig. 13 (bottom row) demonstrates 

that the emergence times are generally later, except for 

DJF in MICRO, which is at a similar time to temperature. 

For European JJA rainfall, the signal remains smaller than 

the variability, even when considering trends of 90 years 

length.

Interestingly, the spreads in MICRO and MACRO do not 

completely converge, even for multi-decadal trend lengths, 

especially in DJF European temperature and precipitation. 

This suggests some memory of the initial conditions for an 

extended period.

4  Summary and discussion

We have performed four large initial condition ensembles 

of climate change simulations with the FAMOUS AOGCM 

to examine issues of state-dependent predictability in the 

context of irreducible uncertainty. Our main findings are:

1. The presence of initial condition uncertainty and non-

linearity produces significant irreducible uncertainty in 

future regional climate changes. For trends of 20 years, 

the climate change signal rarely emerges from the 

noise of internal variability in FAMOUS. Uncertainty 

in future trends of temperature and precipitation reduce 

for longer trends as the initial condition uncertainty 

saturates.

Fig. 9  As Fig. 8 but for trends 

over the first 50 years. Note 

change of y-axis scales for the 

histograms. The equivalent fig-

ure for JJA is in the Supplemen-

tary Information
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2. An ensemble of different ocean states produces a wider 

spread in regional climate changes for a few decades, 

when compared with ensembles of different atmos-

pheric states only.

3. Variability in the control simulation in this model is 

representative of the spread of possible trends for the 

near-term. However, large ensembles are required to 

estimate the expected changes over time. 4. There is an initial ocean state dependence of near-term 

climate trends. In FAMOUS, the initial state of the 
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AMOC has a clear impact on subsequent temperature 

distributions over Europe.

5. Surface temperature ensemble spread decreases in a 

warmer climate, especially in the northern extra-trop-

ics, suggesting a decline in the amplitude of internal 

variability in future.

6. Cooling periods in global mean surface temperature 

tend to be followed by more rapid warming periods in 

FAMOUS, suggesting that the recent slowdown may 

be followed by a warming ‘surge’.

7. The warming for a further doubling of CO2 concentra-

tion increases as time passes under the 1 %/year CO2 

scenario in FAMOUS.

We stress again that the variability in FAMOUS appears 

larger than in the real world (Fig. 1), and so the precise 

numerical values for ensemble spreads and signal-to-noise 

cannot be directly related to reality. However, we consider 

the model to be qualitatively reliable to examine the effects 

of different types of initial condition perturbation. The 

results provide additional evidence that large ensembles of 

simulations with complex climate models are required to 

sample plausible near-term climate, and should be consid-

ered more widely (Kay et al. 2015). In addition, the aver-

age of a large ensemble provides a more robust estimate of 

mean projected changes than a small ensemble or single 

member. Such large ensemble studies have implications for 

the various types of ensembles produced to inform about 

future climate, and raise challenging questions regarding 

how such ensembles should be designed and interpreted.

Ensembles which explore a range of different macro 

initial conditions, addressed in this work through differ-

ent ocean states, are essential to get an idea of the conse-

quences of initial condition uncertainty and the range of 

plausible future behaviour within a model under changing 

forcing conditions. However, it is difficult to see how a 

completely representative sample of ocean states (or macro 

initial conditions more generally) could be generated. For 

example, selecting different AMOC states is important for 

Europe, but not elsewhere. In addition, different modes of 

variability may interact, increasing the dimensonality of 

producing initial conditions. In practical terms, a large set 

of transient simulations started in the nineteenth century 

would produce a range of outcomes which samples from 

the full distribution, but the resulting ensemble statistics 

cannot necessarily be interpreted as true probabilities. Such 

ensembles are likely to provide a lower bound [or ‘non-dis-

countable envelope’, Stainforth et al. (2007b)] of responses 

within a given model.

This is in contrast to the irreducible uncertainty associ-

ated with initial condition uncertainty at the smallest scales, 

in this case tiny changes to SST at a single grid point. 

Here an ensemble can be interpreted as providing future 

probability distributions conditioned on the model structure 

and the ‘large scale’ initial conditions, allowing for some 

small uncertainty in the finest details. This situation is more 

like the experimental initialised decadal forecasts which are 

now being produced Smith et al. (2013). In addition, the 

original Deser et al. (2012b) large ensemble was a micro 

ensemble, with each member starting from an identical 

ocean state in the year 2005 to analyse near-term projec-

tions. According to our experiments with the FAMOUS 

AOGCM, this approach would underestimate the spread in 

future projections.

To more fully understand the behaviour of the model 

requires a ‘micro’ ensemble for each ocean state explored 

so that differences in the distributions can be quantified. 

For example, the three MICRO distributions in Fig. 8 are 

obviously different, but to better examine how they are dif-

ferent requires larger initial condition ensembles than are 

presented here. The ‘gold standard’ to understand the phys-

ical behaviour of a model would therefore be large micro 

initial condition ensembles for a range of different macro 

initial condition variations.

The results presented also highlight the potential benefit 

to near-term climate forecasts from appropriately constrain-

ing the macro ocean initial conditions with observations. 

Furthermore, if the evolution of the AMOC is predictable 

then some of the resulting regional temperature variability 

over Europe may also be predictable.
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