Irreducible Unitary Representations of a Diffeomorphisms Group of an Infinite-dimensional Real Manifold

S.V. LÜDkovsky ${ }^{(*)}$
Summary. - Groups of diffeomorphisms Diff $f_{\beta, \gamma}^{t}(M)$ of infinite-dimensional real Banach manifolds M are defined. Their structure is studied. Irreducible unitary representations of a group of diffeomorphisms associated with quasi-invariant measures on a Banach manifold are constructed.

1. Introduction

For a locally compact (finite-dimensional) manifold M irreducible unitary representations of a group of diffeomorphisms were constructed in [13] with the help of a measure on M induced by the Lebesgue measure on \mathbb{R}^{n} and the Riemannian metric g on M. Each group of diffeomorphisms is an infinite-dimensional manifold itself. Their structure for locally compact M was investigated in $[2,7]$.

This article is devoted to the definition of a group of diffeomorphisms of a Banach manifold and the construction its irreducible unitary representations. For this are used quasi-invariant Gaussian measures on M.

In Section 2 notations and definitions are given. Section 3 contains results about the structure of a group of diffeomorphisms. Irreducible unitary representations of a group of diffeomorphisms associated with a quasi-invariant measure on a Banach manifold are

[^0]described in Section 4. There is the great difference in investigations between cases of finite-dimensional and infinite-dimensional M. The main results of the present paper are deduced for the first time and given below in Theorems 3.3, 4.1, 4.17, 4.18.

2. Notations and definitions

To avoid misunderstandings, we first present our notations and terminology.

Definition 2.1. Let U and V be open subsets in l_{2}. We consider a space of all infinitely many times Frechét (strongly) differentiable functions $f, g: U \rightarrow V$ fulfilling (i, ii) and with a finite metric $\rho_{\beta, \gamma}^{t}(f, h)<\infty$, where h is some fixed smooth mapping $h: U \rightarrow V$ (that is of class C^{∞});

$$
\begin{gathered}
\text { (i) } \rho_{\beta, \gamma}^{t}(f, g):=\sup _{x \in U,}\left(\sum_{y \neq x, y \in U}\left[d_{n=0}^{t}, \beta, \gamma(f, g)\right]^{2}\right)^{1 / 2}<\infty ; \\
d_{0, \beta, \gamma}^{t}(f, g):=\left\|<x>^{\beta}(f(x)-g(x))\right\|_{l_{2, \gamma}}, \\
\left(d_{n, \beta, \gamma}^{t}(f, g)\right)^{2}:=\sum_{\substack{\alpha^{n} \neq 0,|\alpha| \leq t \\
\alpha=\left(\alpha^{1}, \ldots, \alpha^{n}\right)}}\left\|\bar{n}^{\alpha \gamma}<x>^{\beta+|\alpha|} D_{x}^{\alpha}(f(x)-g(x))\right\|_{l_{2, \gamma}}^{2}+ \\
\quad+\sum_{\substack{\alpha=\left(\alpha^{1}, \ldots, \alpha^{n}\right) \\
|\alpha|=[t]^{n}}} \| n \bar{n}^{\alpha \gamma}<\tilde{x}>^{\beta+|\alpha|+b}\left[D_{x}^{\alpha}(f(x)-g(x))\right. \\
\left.\quad-D_{y}^{\alpha}(f(y)-g(y))\right] \|_{l_{2, \gamma}}^{2} /\left|x^{n}-y^{n}\right|^{2 b},
\end{gathered}
$$

for $n \in \mathbb{N}:=\{1,2,3, \ldots\}, d_{n, \beta, \gamma}^{t}(f, g)=d_{n, \beta, \gamma}^{t}(f, g)(x, y)$, such that
(ii) $\lim _{R \rightarrow \infty} \rho_{\beta, \gamma}^{t}\left(f\left|U_{R}^{c}, h\right| U_{R}^{c}\right)=0$.

Here $x=\left(x^{j}: j \in \mathbb{N}, x^{j} \in \mathbb{R}\right) \in l_{2, \gamma}$ that is

$$
\|x\|_{l_{2, \gamma}}=\left\{\sum_{j=1}^{\infty}\left(x^{j} j^{\gamma}\right)^{2}\right\}^{1 / 2}<\infty
$$

$\infty>\gamma \geq 0, l_{2}=l_{2,0}$ is the standard separable Hilbert space over \mathbb{R} with the orthonormal base $\left\{e_{n}: n \in \mathbb{N}\right\}, U_{R}^{c}:=\left(x \in U:\|x\|_{l_{2}}>R\right)$, $f(x)=\left(f^{j}(x): j \in \mathbb{N}, f^{j}(x) \in \mathbb{R}\right), t \geq 0,[t]$ is the integral part of t (the largest integer such that) $[t] \leq t, b=\{t\}:=t-[t], 0 \leq b<1$ (for $b=0$ the last term in the definition of $d_{n, \beta, \gamma}^{t}$ is omitted), $D_{x}^{e_{j}}:=$ $\partial / \partial x^{j}=: \partial_{j}, D_{x}^{\alpha+\gamma} f(x):=D_{x}^{\gamma}\left(D_{x}^{\alpha} f(x)\right), e_{j}=(0, \ldots, 0,1,0, \ldots)$ with 1 in the j-th place, $\alpha=\left(\alpha^{1}, \ldots, \alpha^{n}\right), \alpha^{j} \in \mathbb{N} \cup 0=: \mathbb{N}_{o},|\alpha|=\alpha^{1}+$ $\ldots+\alpha^{n}, \beta \in \mathbb{R},\langle\tilde{x}\rangle:=\min (\langle x\rangle,\langle y\rangle),\langle x\rangle:=\left(1+\|x\|_{l_{2}}^{2}\right)^{1 / 2}$, $f(x)-g(x) \in l_{2}, f \mid A$ denotes a restriction of f on a subset $A \subset U$, $\bar{n}^{\alpha}:=1^{\alpha^{1}} 2^{\alpha^{2}} \ldots n^{\alpha^{n}}$ for $n \in \mathbb{N}$.

We denote by $E_{\beta, \gamma}^{t, h}(U, V)$ the completion of such metric space, $E_{\beta}^{\infty}:=\bigcap_{j=1}^{\infty} E_{\beta}^{j}(U, V)$ with the topology given by the family $\left(\rho_{\beta, \gamma}^{j}\right.$: $j \in \mathbb{N}$) in the latter case. For $V=l_{2}$ and $h(u)=0$ it is the Banach space with $\|f-g\|_{E_{\beta, \gamma}^{t, h}\left(U, l_{2}\right)}:=\rho_{\beta, \gamma}^{t}(f, g)=\rho_{\beta, \gamma}^{t}(f-g, 0)$ that is, the infinite-dimensional separable analog of the weighted Hölder space $C_{\beta}^{t}\left(U^{\prime}, \mathbb{R}^{m}\right)$ (compare with [5]) for open $U^{\prime} \subset \mathbb{R}^{k}, k$ and $m \in \mathbb{N}$. When $\gamma=0$ or $h(U)=0$ we omit γ or h respectively. It is evident that each cylindrical function $g\left(P_{k} x\right)$ is in $E_{\beta}^{t}\left(U, l_{2}\right)$ if $g \in C_{\beta}^{t}\left(U^{\prime}, \mathbb{R}^{m}\right), P_{k}: l_{2} \rightarrow \mathbb{R}^{k}$ is the orthogonal projection, $U=\left(P_{k}\right)^{-1}\left(U^{\prime}\right), g\left(P_{k} x\right):=\left(g^{1}\left(P_{k} x\right), \ldots, g^{m}\left(P_{k} x\right), 0,0, \ldots\right)$. The spaces $E_{\beta}^{t}(U, V)$ differ from $E_{0}^{t}(U, V)=: E^{t}(U, V)$ for unbounded U if $\beta>0$.

Definition 2.2. Let M be a manifold modelled on l_{2} and fulfilling conditions (i-vi) below:
(i) an atlas $A t(M)=\left[\left(U_{j}, \phi_{j}\right): j=1, \ldots, k\right]$ is finite, $k \in \mathbb{N}$ (or countable, $k=\infty$), $\phi_{j}: U_{j} \rightarrow l_{2}$ are homeomorphisms of U_{j} onto $\phi_{j}\left(U_{j}\right) \ni 0, U_{j}$ and $\phi_{j}\left(U_{j}\right)$ are open in M and l_{2} respectively, $\left(\phi_{j} \circ \phi_{i}^{-1}-i d\right) \in E_{\omega, \delta}^{\infty}\left(\phi_{i}\left(U_{i} \cap U_{j}\right), l_{2}\right)$ for each $U_{i} \cap U_{j} \neq \emptyset$, where $\omega>0, \gamma \geq 0$, id is the identity mapping $i d(x)=x$ for each x;
(ii) $T M$ is a Riemannian vector bundle with a projection $\pi: T M \rightarrow$ M and a metric g_{x} in $T_{x} M$ induced by $\|*\|_{l_{2}}$ with a RMZstructure. This means that a connector K and g are such that $g_{c}(X, Y)$ is constant for each C^{∞}-curve $c: I \rightarrow M, I=$ $[0,1] \subset \mathbb{R}$ and parallel translation along c of X and $Y \in \Xi(M)$,
$\Xi(M):=\Xi_{T M}(M)$ is the algebra of infinitely differentiable vector fields on M (see 3.7 in [10]);
(iii) (M, g) is geodesically complete and supplied with the LeviCivita connection and the corresponding covariant differentiation ∇ (see 1.1, 2.1 and 5.1 in [10]);
(iv) the charts $\left(U_{j}, \phi_{j}\right)$ are natural with the natural (Gaussian) coordinates with locally convex $\phi_{j}\left(U_{j}\right)$ and the exponential mapping $\exp _{p}: V_{p} \rightarrow M$ corresponding to ∇, where V_{p} is open in $T_{p} M$ for each $p \in M$, each restriction $\exp _{p} \mid V_{p}$ is the local homeomorphism (see Section III. 8 in [15], Section 6, 7 in [10]) such that $r_{i n j}:=\inf _{x \in M} r_{i n j}(x)>0$, where $r_{i n j}(x)$ is a radius of injectivity for $\exp _{x}, r_{i n j}$ is for entire M;
(v) M is Hilbertian at infinity, that is, there exists $\tilde{M}_{R} \subset M$ with $M \backslash \tilde{M}_{R}=: M_{R}^{c}$ equal to finite (or countable) disjoint union of connected open components $\Omega_{a}, a=1, \ldots, p$, such that $\phi_{a}^{-1}\left(\Omega_{a}\right)=l_{2} \backslash B_{a}$, where B_{a} are closed balls in l_{2}, each Ω_{a} is with a metric \tilde{e} induced by ϕ_{a}^{-1} and the standard metric in l_{2}. Let a metric g for M be elliptic, that is, there exists $\lambda>0$ such that $\lambda \tilde{e}_{x}(\xi, \xi) \leq g_{x}(\xi, \xi)$ for each $\xi \in T_{x} M$ and $x \in M$, where $\tilde{M}_{R}:=\left[x \in M: d_{M}\left(x, x_{0}\right) \leq R\right], x_{0}$ is some fixed point in M, d_{M} is the distance function on M induced by g, $\infty>R>0$ (see for comparison the finite-dimensional case of M in [5]);
(vi) M contains a sequence of M_{k} and N_{k}. They are supposed to be closed $E_{\omega, \gamma}^{\infty}$-submanifolds with finite dimensions $\operatorname{dim}_{\mathbb{R}} M_{k}=k$ for M_{k} and codimensions $\operatorname{codim}_{\mathbb{R}} N_{k}=k$ for $N_{k}, k=k(n) \in \mathbb{N}$, $k(n)<k(n+1)$ for each $n, M_{k} \subset M_{l}$ and $N_{k} \supset N_{l}$ for each $k<l, M=M_{k} \cup N_{k}, M_{k} \cap N_{k}=\partial M_{k} \cap \partial N_{k}$ for each k such that $\bigcup_{k} M_{k}$ is dense in $M, A t(M)$ and M are foliated in accordance with this decompositions. These means that (α) $\phi_{i, j}:=\phi_{i} \circ \phi_{j}^{-1} \mid \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow l_{2}$ are of the form $\phi_{i, j}\left(\left(x^{l}: l \in\right.\right.$ $\mathbb{N}))=\left(\alpha_{i, j, k}\left(x_{1}, \ldots, x_{k}\right), \gamma_{i, j, k}\left(\left(x^{l}: l>k\right)\right)\right)$ for each $n \in \mathbb{N}, k=$ $k(n)$, when M is without boundary, $\partial M=\emptyset$. If $\partial M \neq \emptyset$ there is the following additional condition: (β) for each boundary component M_{0} of M and $U_{i} \cap M_{0} \neq \emptyset$ we have $\phi_{i}: U_{i} \cap M_{0} \rightarrow$
H_{l}, where $H_{l}=\left\{\left(x_{j}: j \in \mathbb{N}\right) \mid x^{l} \geq 0\right\}$. If $U_{i} \cap M_{0} \neq \emptyset$ and $U_{j} \cap$ $M_{0} \neq \emptyset$ we have both images in H_{1} (or in H_{l} with $l>1$), then the foliation is called transverse (tangent respectively) to M_{0}. Then the equivalence relation of $E_{\omega, \gamma^{-}}^{\infty}$-atlases that produces foliated M (see also [12] for finite-dimensional C^{r}-manifolds) is as usually considered.

Definition 2.3. Let M and \tilde{M} be two manifolds as in 2.2 with a smooth mapping (for example, an embedding) $\theta: \tilde{M} \hookrightarrow M, \omega$ and $\tilde{\omega} \geq \max (0, \beta), \beta \in \mathbb{R}, t \in \overline{\mathbb{R}}_{+}:=[0, \infty), \infty>\gamma \geq 0, \delta$ and $\tilde{\delta} \geq \gamma$. We denote by $\tilde{E}_{\beta, \gamma}^{t, \theta}(\tilde{M}, M)$ a space of functions $f: \tilde{M} \rightarrow M$ with $\underset{\sim}{f_{i, j}}:=\phi_{i} \circ f \circ \tilde{\phi}_{j}^{-1} \mid\left(\tilde{\phi}_{j}\left(\tilde{U}_{j}\right) \cap \tilde{\phi}_{j}\left(f^{-1}\left(U_{i}\right)\right)\right),\left(f_{i, j}-\theta_{i, j}\right) \in E_{\beta, \gamma}^{t, \theta}\left(\tilde{\phi}_{j}\left(\tilde{U}_{j}\right) \cap\right.$ $\left.\tilde{\phi}_{j}\left(f^{-1}\left(U_{i}\right)\right)\right), \phi_{i}\left(U_{i}\right)$) for each i and j. When $\operatorname{At}(M)$ is finite it is metrizable by a metric $(i) \tilde{\rho}_{\beta, \gamma}^{t}(f, \theta):=\sum_{i, j} \rho_{\beta, \gamma}^{t}\left(f_{i, j}, \theta_{i, j}\right)$ with (ii) $\lim _{R \rightarrow \infty} \tilde{\rho}_{\beta, \gamma}^{t}\left(f \mid M_{R}^{c}, \theta\right)=0$. For infinite countable $A t(M)$ we denote by $\tilde{E}_{\beta, \gamma}^{t, \theta}(\tilde{M}, M)$ the strict inductive limit $\operatorname{str}-i n d-\lim \left[\tilde{E}_{\beta, \gamma}^{t, \theta}\left(\tilde{U}^{E}\right.\right.$, $\left.M), \Pi_{E}^{F}, \Sigma\right]$, where $E \in \Sigma, \Sigma$ is the family of all finite subsets of \mathbb{N} directed by the inclusion $E<F$ if $E \subset F, \tilde{U}^{E}:=\bigcup_{j \in E} \tilde{U}_{j}$, $\left(\tilde{U}_{j}, \tilde{\phi}_{j}\right)$ are charts of $\operatorname{At}(M), \Pi_{E}^{F}: \tilde{E}_{\beta, \gamma}^{t, \theta}\left(U^{E}, M\right) \hookrightarrow \tilde{E}_{\beta, \gamma}^{t, \theta}\left(U^{F}, M\right)$ and $\Pi_{E}: \tilde{E}_{\beta, \gamma}^{t, \theta}(\tilde{M}, M)$ are uniformly continuous embeddings (isometrical for $0 \leq t<\infty)$. Evidently, $\tilde{E}_{\beta, \gamma}^{t, \theta}(\tilde{M}, M)$ is the space of functions f of the class $\tilde{E}_{\beta, \gamma}^{t, \theta}$ with supports $\operatorname{supp}(f):=\operatorname{cl}\{x \in \tilde{M}$: $f(x) \neq 0\} \subset U^{E(f)}, E(f) \in \Sigma$ and $0 \in W \subset \tilde{E}_{\beta, \gamma}^{t, \theta}(\tilde{M}, M)$ is open if and only if $\Pi_{E}^{-1}(W) \cap \tilde{E}_{\beta, \gamma}^{t, \theta}\left(U^{E}, M\right)$ is open for each $E \in \Sigma$.
Let $\operatorname{Hom}(M)$ be a group of homeomorphisms of M and $\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$: $=\left[f \in \operatorname{Hom}(M): f\right.$ and $\left.f^{-1} \in \tilde{E}_{\beta, \gamma}^{t}(M, M)\right]$ be a group of homeomorhisms (diffeomorhisms for $t \geq 1$) of class $\tilde{E}_{\beta, \gamma}^{t}$. When $\operatorname{At}(M)$ is finite it is metrizable with the right-invariant metric

$$
(i i i) \quad d(f, g):=\tilde{\rho}_{\beta, \gamma}^{t}\left(g^{-1} f, i d\right)
$$

where θ is the identity map for $\tilde{M}=M, \theta=i d$ (in this case the index θ is omitted), $\beta \geq 0$ (see also [14] for finite-dimensional M, correctness of this definition is proved in Theorem 3.1). Henceforth, we omit tilde in \tilde{E}.

Definition 2.4. A Riemannian metric g for M Hilbertian at infinity is called regular Hilbertian asymptotically, if there exist $\delta>0, t^{\prime}>$ $1, \beta^{\prime}>0, \infty>\gamma^{\prime} \geq 0$ such that $(g-\tilde{e})_{x}(\xi, \xi) \in E_{\beta^{\prime}, \gamma^{\prime}}^{t^{\prime}}(M, \mathbb{R})$ by x for each $\xi \in T M, \xi=\left(\xi_{x}: x \in M\right),\left\|\xi_{x}\right\|_{l_{2}} \leq 1$ for each $x \in M, \sup _{\xi \in T M,}\left\|\xi_{x}\right\| \leq 1\left\|(g-\tilde{e})_{x}(\xi, \xi)\right\|_{E_{\beta^{\prime}, \gamma^{\prime}}^{t^{\prime}}(M, \mathbb{R})} \leq \delta$. For spaces $E_{\beta, \gamma}^{t}(M, N)$ with $M=N$ or N being a Banach space over \mathbb{R} we assume that $\omega \geq \max (0, \beta)$ and $\beta^{\prime} \geq \max (0, \beta), t^{\prime}>t+1, \gamma^{\prime} \geq \gamma$ in 2.2, 2.4.

Definition 2.5.1. Let X be separable BS over \mathbb{R}. Suppose that $F_{n} \subset F_{n+1} \subset \cdots \subset X, \operatorname{dim}_{\mathbb{R}} F_{n}=n$, is a sequence of finitedimensional subspaces. Let $\left\{z_{n}: n \in \mathbb{N}\right\}$ be a sequence of linearly independent vectors in X with $\left\|z_{n}\right\|_{X}=1, s p_{\mathbb{R}}\left\{z_{1}, \ldots, z_{n}\right\}=F_{n}$ for each n. For open U and V in X we consider a space of all infinitely many times Frechèt differentiable functions $f, g: U \rightarrow V$ fulfilling (i, ii) in 2.1 and with $\rho_{\beta, \gamma}^{t}(f, h)<\infty$, where $h: U \rightarrow V$ is some fixed smooth (of class C^{∞}) mapping $h: U \rightarrow V, D_{x}^{\alpha}$ for $\alpha=\left(\alpha^{1}, \ldots, \alpha^{n}\right)$ is the operator of differentiation by $\left(x^{1}, \ldots, x^{n}\right) \in F_{n}$, but with $U_{R}^{c}:=\left\{x \in U:\|x\|_{X}>R\right\}$ and $\langle x\rangle=\left(1+\|x\|_{X}^{2}\right)^{1 / 2}$. We denote by $E_{\beta, \gamma}^{t, h}$ the completion of such metric space and consider $E_{\beta}^{\infty}(U, V)$ as in 2.3.
Definition 2.5.2. Let M be a paracompact separable metrizable manifold modelled on $X[17]$ and fulfilling (i, ii) below:
(i) an atlas $\operatorname{At}(M)=\left[\left(U_{j}, \phi_{j}\right): 1 \leq j<k+1\right]$ is finite, $k \in \mathbb{N}$ (or countable $k=\omega_{0}$), $\phi_{j}: U_{j} \rightarrow X$ are homeomorphisms of U_{j} onto $\phi_{j}\left(U_{j}\right) \ni 0, U_{j}$ and $\phi_{j}\left(U_{j}\right)$ are open in M and X respectively, $\left(\phi_{j} \circ \phi_{i}^{-1}-i d\right) \in E_{\omega, \delta}^{\infty}\left(\phi_{j}\left(U_{i} \cap U_{j}\right), X\right)$ for each $U_{i} \cap U_{j} \neq \emptyset$, where $\omega>0, \gamma \geq 0, i d(x)=x$ is the identity mapping, ω_{0} is the initial number of cardinality $\aleph_{0}[9]$;
(ii) M contains a sequence of M_{k} and L_{k} submanifolds. They are of class $E_{\omega, \gamma}^{\infty}$ with $\operatorname{dim}_{\mathbb{R}} M_{k}=k$ for M_{k} and $\operatorname{codim}_{\mathbb{R}} L_{k}=k$ for $L_{k}, k=k(n) \in \mathbb{N}, k(n)<k(n+1)$ for each $n, M_{k} \subset M_{l}$ and $L_{k} \supset L_{l}$ for each $k<l, M=M_{k} \cup L_{k}, M_{k} \cap L_{k}=\partial M_{k} \cap \partial L_{k}$ for each k such that $\bigcup_{k} M_{k}$ is dense in M. Moreover, M and $A t(M)$ are foliated. That is, they fulfil (α, β) :
(α) $\phi_{i, j}: \phi_{i} \circ \phi_{j}^{-1} \mid \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow X$ are of the form $\phi_{i, j}\left(\left(x^{l}:\right.\right.$ $l \in \mathbb{N}))=\left(\alpha_{i, j, k}\left(x^{1}, \ldots, x^{k}\right), \gamma_{i, j, k}\left(\left(x^{l}: l>k\right)\right)\right)$ for each $n \in \mathbb{N}, k=k(n)$, when M is without a boundary, $\partial M=\emptyset$. If $\partial M \neq \emptyset$ then:
(β) for each boundary component M_{0} of M and $U_{i} \cap M_{0} \neq \emptyset$ we have $\phi_{i}: U_{i} \cap M_{0} \rightarrow H_{l}$, where $H_{l}=\left\{x \in X: x^{l} \geq 0\right\}$, $x^{l}=P_{z_{l}}(x)$ is the projector of X onto $\mathbb{R} z_{l}$ along $X \ominus \mathbb{R} z_{l}$ (see [22]).

Definition 2.5.3. Analogously to Definition 2.3 we consider spaces $E_{\beta, \gamma}^{t, \theta}(\tilde{M}, M)$ and $D i f f_{\beta, \gamma}^{t}(M)$ for M and \tilde{M} as in 2.5.2.
Then Diff $f_{\infty, \gamma}^{\infty}(M)$ is defined as $\bigcap_{l \in \mathbb{N}}$ Diff $f_{l, \gamma}^{\infty}(M)$ and $D i f f_{\beta, \gamma}^{\infty}(M)=$ $\bigcap_{t \in \mathbb{N}} D i f f_{\beta, \gamma}^{t}(M)$ with the corresponding standard topologies of projective limits [9,22].

Definition 2.6. Let G be a topological group. A Radon measure μ on $A f(G, \mu)$ (or ν on $A f(M, \nu)$) is called left-quasi-invariant relative to a dense subgroup G^{\prime} of G, if $\mu_{\phi}(*)$ (or $\nu_{\phi}(*)$) is equivalent to $\mu(*)$ (or $\nu(*)$ respectively) for each $\phi \in G^{\prime}$. Henceforth, we assume that a quasi-invariance factor $q_{\mu}(\phi, g)=\mu_{\phi}(d g) / \mu(d g)\left(\right.$ or $\left.q_{\nu}(\phi, x)\right)$ is continuous by $(\phi, g) \in G^{\prime} \times G$ (or $\in\left(G^{\prime} \times M\right)$), $\mu: A f(G, \mu) \rightarrow[0, \infty)$, $\mu(V)>0($ or $\nu: A f(M, \nu) \rightarrow[0, \infty), \nu(V)>0)$ for some (open) neighbourhood $V \subset G$ (or $\subset M$) of the unit element $e \in G$ (or a point $x \in M), \mu(G)<\infty($ or $\nu(M) \leq \infty$ and is σ-finite respectively), where $\mu_{\phi}(E):=\mu\left(\phi^{-1} E\right)$ for each $E \in A f(G, \mu), \operatorname{Af}(G, \mu)$ is the completion of $B f(G)$ by $\mu, B f(G)$ is the Borel σ-field on G [6].

Let (M, F) be a space M of measures on $(G, B f(G))($ or $(M, B f(M))$) with values in \mathbb{R} and G " be a dense subgroup in G such that a topology T on M is compatible with $G^{\prime \prime}$, that is, $\mu \rightarrow \mu_{h}$ (or $\nu \rightarrow \nu_{h}$) is the homeomorphism of (M, F) onto itself for each $h \in G^{\prime \prime}$. Let T be the topology of convergence for each $E \in B f(G)$ (or $\in B f(M)$) and W be a neighbourhood of the identity $e \in G$ such that J is dense in W, where $J:=\left[h: h \in G " \cap W=: W^{\prime \prime}\right.$, there exists $b \in$ $(-1,1)$ and $g(b)=h$ with $\left.[g(c): c \in(-1,1)] \subset W^{\prime \prime}\right], g\left(c_{1}+c_{2}\right)=$ $g\left(c_{1}\right) g\left(c_{2}\right), g(0)=e$ are one parameter subgroups, $c_{1}, c_{2} \in \mathbb{R}$. We assume also that for each $f \in W^{\prime \prime}$ there are $g\left(b_{1}\right), \ldots, g\left(b_{k}\right) \in J$ such that $f=g\left(b_{1}\right) \ldots g\left(b_{k}\right)$. A measure $\mu \in \mathrm{M}$ (or $\nu \in \mathrm{M}$) is
called differentiable along $g(b)$ in a point $g(c)$ if $\mu\left(g(b)^{-1} E\right)-\mu(E)=$ $(b-c)\left(\mu^{\prime}(g(c) ; E)+\alpha(g(b) ; E)\right)$ and there exists $\lim _{b \rightarrow c} \alpha(g(b) ; E)=0$ and $\mu^{\prime}(g(c) ; E) \in \mathbb{R}$ is continuous by $g(c)$ for each $E \in B f(G)$, where b and $c \in \mathbb{R}, \mu^{\prime}(g(c) ; E)$ is called the derivative (by Lagrange) along $g(b)$ in $g(c)$ (analogously for ν on M). Let by induction $\lambda(*)=$ $\mu^{(j-1)}\left(g\left(c_{1}\right), \ldots, g\left(c_{j-1}\right) ; *\right)$ and there exists $\lambda^{\prime}\left(g\left(c_{j}\right) ; E\right)$, then it is denoted $\mu^{(j)}\left(g\left(c_{1}\right), \ldots, g\left(c_{j}\right) ; E\right)$ and is called the j-th derivative (by Lagrange) of μ along $\left(g\left(b_{1}\right), \ldots, g\left(b_{j}\right)\right)$ in $\left(g\left(c_{1}\right), \ldots, g\left(c_{j}\right)\right)$, where $j \in \mathbb{N}$.

Lemma 2.7. Let M be a $E_{\omega, \delta^{-}}^{\infty}$ domain in X. Then there exists a Hilbert space Y such that $Y \subset X, Y$ is dense in $X,\|x\|_{Y} \geq\|x\|_{X}$ for each $x \in Y$ and Dif $f_{\beta^{\prime}, \gamma^{\prime}}^{t^{\prime}}(N)$ is a dense subgroup in Dif $f_{\beta, \gamma}^{t}(M)$, where $N=M \cap Y, \infty \geq t \geq 0, t^{\prime} \geq t, \infty \geq t^{\prime} \geq 1, \beta^{\prime} \geq \beta \geq 0$, $\gamma^{\prime}>\gamma+2, \omega \geq \beta^{\prime}, \delta \geq \gamma^{\prime}$.

Proof. In view of Theorem I.4.4 [16] for BS X there exists a Hilbert space $Y, Y \subset X,\|x\|_{Y} \geq\|x\|_{X}$ for each $x \in X$. We take $\left\{F_{n}\right.$: $n \in \mathbb{N}\}$ in X and an orthonormal base $\left\{e_{n}: n \in \mathbb{N}\right\}$ in Y with $e_{1}=z_{1}, e_{i}=\sum_{j=1}^{i} b_{i, j} z_{j}$ are chosen by induction, $b_{i, i} \neq 0$. Since $\left\|\sum_{i=1}^{n} x^{i} z^{i}\right\|_{Y} \leq \sum_{i=1}^{n}\left|x^{i}\right| \times\left\|z_{i}\right\|_{Y},\left\|\sum_{i=m}^{n} x^{i} z_{i}\right\|_{X} \leq \sum_{i=m}^{n}\left|x^{i}\right| \leq$ $\left(\sum_{i=m}^{n}\left|x^{i}\right|^{2}\right)^{1 / 2}(n-m)^{1 / 2}, \sum_{n=1}^{\infty}\left(\sum_{m=n}^{2 n} m^{d}\right)<\infty$ for each $d<-2$, then there is a Hilbert space Y_{0} with an injection $T: Y_{0} \rightarrow X$ being a nuclear operator $[20,22], T x=\sum_{i=1}^{\infty}\left(x, y_{i}\right)_{Y_{0}} z_{i}$, where $x \in Y_{0}$, $(*, *)_{Y_{0}}$ is an inner product in $Y_{0},\left\{y_{i}\right\}$ is a base in Y_{0} such that $\sum_{i=1}^{\infty}\left|y_{i}\right|_{Y_{0}}<\infty$. Moreover, we can choose $e_{i}=b_{i, i} z_{i}$. Let $Y_{0} \subset Y \subset$ $X,\|x\|_{Y_{0}} \geq\|x\|_{Y} \geq\|x\|_{X}$ for each $x \in Y_{0}$. Then from Definition 2.1 of $\rho_{\beta, \gamma}^{t}$ and $l_{2, \gamma}$, also from the consideration of multipliers $\bar{n}^{\alpha \gamma}$, $n \bar{n}^{\alpha \gamma}$, it follows that each $g \in \operatorname{Dif} f_{\beta^{\prime}, \gamma^{\prime}}^{t^{\prime}}(N)$ belongs to $\operatorname{Hom}(M)$, since $F_{n} \subset Y \subset X, t^{\prime} \geq 1,\left\langle x>_{Y} \geq<x>_{X}\right.$ for each $x \in Y$. Therefore, g has the unique continuous extension \tilde{g} on M such that $\tilde{g} \in D i f f_{\beta, \gamma}^{t}(M)$, since N is dense in M and we can choose for each $0<\epsilon$ the space Y_{0} with $\left|y_{i}\right| \leq i^{-2-\epsilon}$ for each $i \in \mathbb{N}$.

Definition 2.8. Let M be a $E_{\omega, \delta}^{\infty}$-manifold as in 2.5 that has a locally finite partition of unity of the same class of smoothness. Henceforward, we suppose that there exists $E_{\omega, \delta^{\prime}}^{\infty}$-submanifold N in M; N is modelled on a Hilbert space Y, where Y is as in 2.7 with $\operatorname{Dif} f_{\omega, \delta^{\prime}}^{\infty}(Y) \subset \operatorname{Dif} f_{\omega, \delta}^{\infty}(X)$ for the corresponding $\delta^{\prime} \geq \delta$, where M
and N are separable. Also let N satisfy conditions in 2.2 and 2.4 such that $M_{k} \subset N, N_{k} \subset N, N_{k}$ is dense in L_{k} for each $k \in \mathbb{N}$.

Corollary 2.9. Let M be a Banach $E_{\omega, \delta}^{\infty}$-manifold and N be a Hilbert $E_{\omega, \gamma^{\prime}}^{\infty}$-manifold such that they satisfy 2.8. Then Diff $f_{\beta, \gamma^{\prime}}^{t^{\prime}}(N)$ is a dense subgroup of Diff $f_{\beta, \gamma}^{t}(M)$, if $\delta^{\prime} \geq \delta \geq \gamma^{\prime}>\gamma+2, t^{\prime} \geq 1$, $\infty \geq t^{\prime} \geq t \geq 0$ and $\omega \geq \beta$.

Proof. For charts $\left(V_{j}, \psi_{j}\right)$ of N with $V_{j} \cap V_{i} \neq \emptyset$ a mapping $\psi_{j} \circ \psi_{i}^{-1}$ is in the class of smoothness $E_{\omega, \delta^{\prime}}^{\infty}$. In view of Definitions 2.5, 2.8 and Lemma 2.7 Diff $f_{\beta, \gamma^{\prime}}^{t^{\prime}}(N)$ is a dense subgroup of $\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$.

3. Structure of groups of diffeomorphisms

Theorem 3.1. Let $G=\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ be defined as in 2.5, 2.8. Then it is a separable topological group. If $\operatorname{At}(M)$ is finite, G is metrizable by a left-invariant metric d.

Proof. Let at first $A t(M)$ be finite. If f and $g \in G$ then $f \circ g^{-1} \in G$ due to Theorem 2.5 [1] and Ch. 5 in [21] about differentiation and difference quotients of composite functions and inverse functions, since $\phi_{i} \circ \phi_{j}^{-1} \in E_{\omega, \delta}^{\infty}$ for each i and j. At first we have $d(f, i d)>0$ for $f \neq i d$ in G, since there are i and j such that $f_{i, j} \neq i d_{i, j}$. Then $d(h f, h g)=d\left(g^{-1} h^{-1} h f, i d\right)=d\left(g^{-1} f, i d\right)=d(f, g)$, hence d is left-invariant, where $f, g, h \in G$. Therefore, $d\left(f^{-1}, i d\right)=d(i d, f)$, in view of 2.1 and $2.3(\mathrm{i}, \mathrm{ii})$ we have that $d(i d, f)=d(f, i d)$, hence $d(f, g)=d(g, f)$.

It remains to verify, that the composition map $(f, g) \rightarrow f \circ g$ from $G \times G \rightarrow G$ and the inversion map $f \rightarrow f^{-1}$ are continuous relative to d. Let $W=\left[f \in G: d_{\beta, \gamma}^{t}(f, i d)<1 / 2\right]$ and $f, g \in W$. We have $f_{i, j} \circ g_{j, l}-i d_{i, l}=\left(f_{i, j} \circ g_{j, l}-f_{i, l}\right)+\left(f_{i, l}-i d_{i, l}\right)$ for corresponding domain as an intersection of domains of $f_{i, j} \circ g_{j, l}$ and $f_{i, l}$. Hence, using induction by $p=1,2, \ldots,[t]+1$ and the Cauchy inequality we have that there are constants $\infty>C_{1}>0, \infty>C_{2}>0$ such that $d(f \circ g, i d) \leq C_{1}(d(f, i d)+d(g, i d))$ and $d\left(f^{-1}, i d\right) \leq C_{2} d(f, i d)$, since $\lim _{n \rightarrow \infty}\left[d_{n, \beta, \gamma}^{t}\left(f_{i, j}, i d_{i, j}\right)+d_{n, \beta, \gamma}^{t}\left(g_{j, l}, i d_{j, l}\right)\right]=0,[t]+1$ and $\operatorname{At}(M)$ are finite, $r_{i n j}>0$ and g satisfies $2.4[8]$.

Indeed, in normal local coordinates x (omitting indices (i, j) for $\left.f_{i, j}\right), M \ni x=\left(x^{j}: j \in \mathbb{N}\right), f=\left(f^{j}: C \rightarrow \mathbb{R} \mid j \in \mathbb{N}\right), C$ open in X, using the Cauchy inequality we get: $\sum_{i \in \mathbb{N}}\left(\mid(f \circ g)^{i}-x^{i} i i^{\gamma}\right)^{2} \leq$ $2\left(\sum_{i}\left[\left|(f \circ g)^{i}-g^{i}\right| i^{\gamma}\right]^{2}\right)^{1 / 2} \times\left(\sum_{i}\left[\mid g^{i}-x^{i} i i^{\gamma}\right)^{2}\right)^{1 / 2}+\sum_{i}\left[\left|(f \circ g)^{i}-g^{i}\right| i^{\gamma}\right]^{2}$ $+\sum_{i}\left[\left|g^{i}-x^{i}\right| i^{\gamma}\right]^{2}$ and $\sum_{i, j}\left[\left(\partial_{j}(f \circ g)^{i}-\delta_{j}^{i}\right) i^{\gamma} j^{\gamma}\right]^{2} \leq a+b+a b+$ $2\left(a^{1 / 2} b+a b^{1 / 2}\right)+2 a^{1 / 2} b^{1 / 2}$, where $a=\sum_{i, j \in \mathbb{N}}\left[\left(\partial_{j}\left\{(f \circ g)^{i}-g^{i}\right\}\right) j^{\gamma} i^{\gamma}\right]^{2}$, $b=\sum_{l, j \in \mathbb{N}}\left[\left(\partial_{j} g^{l}-\delta_{j}^{l}\right) j^{\gamma} l^{\gamma}\right]^{2}, \delta_{l}^{i}=1$ for $i=l$ and $\delta_{l}^{i}=0$ for each $l \neq i, f \circ g=f \circ g(x), f, g \in G$.

Then we can proceed by induction for finite products of $D_{g}^{\alpha}(f \circ$ $g)^{i}$ and $D_{x} g^{l}$, because $D_{x}^{\alpha} i d(x)=0$ for $|\alpha|>1$. For $f=g^{-1}$ we can express recurrently $\left(D_{x}^{\alpha} f^{-1}\right)$ by ($D_{x}^{\xi} f$) with $\xi^{i} \leq \alpha^{i}$ for each i, since $|\alpha| \leq t$. Analogously, for difference quotients, since ($1+$ $\zeta)^{b}=1+\sum_{m=1}^{\infty}\binom{b}{m} \zeta^{m}$ for $0<b<1$ and $0<|\zeta|<1, \zeta \in \mathbb{R}$ and $\left(1+\zeta^{b}\right)^{b}=1+b \zeta^{b}+z(\zeta)$ with $z: \mathbb{R} \rightarrow \mathbb{R}, \lim _{\zeta \rightarrow 0}\left(z(\zeta) / \zeta^{b}\right)=0$ [21]. For countable infinite $\operatorname{At}(M)$ for each $f, g \in G$ there are $E(f)$, $E\left(f^{-1}\right), E(g)$ and $E\left(g^{-1}\right) \in \Sigma$ such that $\operatorname{supp}(f) \subset U^{E(f)}$, etc., consequently, $f(\operatorname{supp}(f)) \cup g^{-1}\left(\operatorname{supp}\left(g^{-1}\right)\right) \subset U^{F}$ for some $F \in \Sigma$, whence $g^{-1} \circ f \in G$ and there is $E \in \Sigma$ with $\operatorname{supp}\left(g^{-1} \circ f\right) \subset U^{E}$. If ($f_{\gamma}: \gamma \in \alpha$) and ($g_{\gamma}: \gamma \in \alpha$) are two nets converging in G to f and g respectively, so for each neighbourhood $W \subset G$ there exist $E \in \Sigma$ and $\beta \in \alpha$ such that $g_{\gamma}^{-1} \circ f_{\gamma} \in W$ and $\operatorname{supp}\left(g_{\gamma}^{-1} \circ f_{\gamma}\right) \subset U^{E}$ for each $\gamma \in \beta$, where α is a limit ordinal.

In view of the Stone-Weierstrass Theorem and 2.1(i,ii) in each $E_{\beta, \gamma}^{\infty}(U, V)$ for open U and V in X are dense cylindrical polynomial functions with rational coefficients, consequently, G is separable, since $E_{\beta, \gamma}^{\infty}(U, V)$ is dense in $E_{\beta, \gamma}^{t}(U, V)$. Due to conditions $2.2(\mathrm{i}-\mathrm{vi})$ and 2.5.2 for each open submanifold $V \subset M$ with $V \supset M_{k}$ and $\epsilon>0$ every $f \in \operatorname{Dif} f_{\beta}^{t}\left(M_{k}\right)$ has an extension \tilde{f} onto M such that $\tilde{f} \in \operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ with $\tilde{\rho}_{\beta, \gamma}^{t}\left(\tilde{f} \mid\left(M \backslash M_{k}\right) \cap U^{E(\tilde{f})}, i d\right)<\epsilon$.
Lemma 3.2. Let M be a manifold defined in 2.2, 2.4 with submanifolds M_{k} and $N_{k}, k=k(n), n \in \mathbb{N}$. Then there exist connections ${ }_{k} \nabla$ induced on M_{k} by ∇ are the Levi-Civita connections, where ∇ is the Levi-Civita connection on M.

Proof. For each chart $\left(U_{j}, \phi_{j}\right)$ we have $\phi_{j}\left(U_{j}\right) \subset l_{2}$ and in l_{2} for each sequence of subspaces $\mathbb{R}^{n} \subset R^{n+1} \subset \cdots \subset l_{2}$ there are induced
embeddings $\phi_{j}^{-1}\left(\mathbb{R}^{n}\right) \cap U_{j} \hookrightarrow \phi_{j}^{-1}\left(\mathbb{R}^{n+1}\right) \cap U_{j} \hookrightarrow U_{j}$. The LeviCivita connection and the corresponding covariant differentiation ∇ for the Hilbertian manifold M induces the Levi-Civita connection ∇^{\prime} for each submanifold M^{\prime} embedded into M, if M^{\prime} is a totally geodesic submanifold. That is, for each $x \in M^{\prime}$ and $X \in T_{x} M^{\prime}$ there exists $\epsilon>0$ such that a geodesic $\tau=x_{t} \subset M$ defined by the initial condition (x, X) lies in M^{\prime} for each t with $|t|<\epsilon$ (Section 5 in [10], Section VII. 8 in [15]). Then using Theorem 5 in Section 4.2 [17] and geodesic completeness of M we can choose such $M^{\prime}=M_{k}$ with dimensions $\operatorname{dim}\left(M_{k}\right)=k \in \mathbb{N}$ and $M_{k}(n) \hookrightarrow M_{k(n+1)} \hookrightarrow \cdots \hookrightarrow M$ with $\bigcup_{k} M_{k}$ dense in M. Each manifold $\stackrel{\circ}{M}_{k}$ was chosen Euclidean at infinity, since M is Hilbertian at infinity. In view of Section VII. 3 in [15] and 5.2, 5.4 in [10] ${ }_{k(n+1)} \nabla$ on $M_{k(n+1)}$ induces ${ }_{k(n)} \nabla$ on $M_{k(n)}$. The latter coincides with that of induced by ∇ on M. Here each M_{k} is geodesically complete, but normal coordinates are defined in M_{k} in general locally as in M also, since may be $r_{i n j}(x)<\infty$ for $x \in M$, so that $\operatorname{At}(M)$ induces $\operatorname{At}\left(M_{k}\right)$ for each $k=k(n), n \in \mathbb{N}$.

Theorem 3.3. Let M be a manifold fulfilling 2.2, 2.4 and Diff $f_{\beta, \gamma}^{t}$ (M) be as in 2.3 with $t \geq 1, \beta \geq 0, \gamma \geq 0$. Then
(i) for each $E_{\beta, \gamma}^{t}(M, T M)$-vector field V its flow η_{t} is a one-parameter subgroup of Diff $f_{\beta, \gamma}^{t}(M)$, the curve $t \rightarrow \eta_{t}$ is of class C^{1}, the mapping $\tilde{E} x p: T_{e} D i f f_{\beta, \gamma}^{t}(M) \rightarrow D i f f_{\beta, \gamma}^{t}(M), V \rightarrow \eta_{1}$ is continuous and defined on a neighbourhood of the zero section in $T_{e} D i f f_{\beta, \gamma}^{t}(M)$;
(ii) $T_{f} \operatorname{Dif} f_{\beta, \gamma}^{t}(M)=\left\{V \in E_{\beta, \gamma}^{t}(M, T M) \mid \pi \circ V=f\right\} ;$
(iii) $(V, W)=\int_{M} g_{f(x)}\left(V_{x}, W_{x}\right) \mu(d x)$ is a weak Riemannian structure on a Banach manifold Diff $f_{\beta, \gamma}^{t}(M)$, where μ is a measure induced on M by ϕ_{j} and a Gaussian measure with zero mean value on l_{2} produced by an injective self-adjoint operator $Q: l_{2} \rightarrow l_{2}$ of trace class, $0<\mu(M)<\infty$;
(iv) the Levi-Civita connection ∇ on M induces the Levi-Civita connection $\hat{\nabla}$ on Diff $f_{\beta, \gamma}^{t}(M)$;
(v) $\tilde{E}: T D i f f_{\beta, \gamma}^{t}(M) \rightarrow D i f f_{\beta, \gamma}^{t}(M)$ is defined by $\tilde{E}_{\eta}(V)=\exp _{\eta(x)}$ - V_{η} on a neighbourhood \bar{V} of the zero section in $T_{\eta} \operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ and is a $E_{\omega, \delta}^{\infty}$ mapping by V onto a neighbourhood $W_{\eta}=W_{i d} \circ \eta$ of $\eta \in \operatorname{Dif} f_{\beta, \gamma}^{t}(M) ; \tilde{E}$ is the uniform isomorphism of uniform spaces \bar{V} and W. Moreover, $(i, i i, v)$ is also true for Diff $f_{\beta, \gamma}^{t}(M)$, when M satisfies 2.8.

Proof. Let at first $A t(M)$ be finite. In view of [12] we have that $T_{f} E_{\beta, \gamma}^{t}\left(M, N^{\prime}\right)=\left[g \in E_{\beta, \gamma}^{t}\left(M, T N^{\prime}\right): \pi_{N}^{\prime} \circ g=f\right]$, where N^{\prime} fulfils 2.5, 2.8, $\pi_{N}^{\prime}: T N^{\prime} \rightarrow N^{\prime}$ is the canonical projection. Therefore, $T E_{\beta, \gamma}^{t}\left(M, N^{\prime}\right)=E_{\beta, \gamma}^{t}\left(M, T N^{\prime}\right)=\bigcup_{f} T_{f} E_{\beta, \gamma}^{t}\left(M, N^{\prime}\right)$ and the following mapping $w_{\text {exp }}: T_{f} E_{\beta, \gamma}^{t}\left(M, N^{\prime}\right) \rightarrow E_{\beta, \gamma}^{t}\left(M, N^{\prime}\right), w_{\text {exp }}(g)=\exp \circ g$ gives charts for $E_{\beta, \gamma}^{t}\left(M, N^{\prime}\right)$, since $T N^{\prime}$ has an atlas of class $E_{\nu, \chi}^{\infty}$ with $\nu \geq \beta \geq 0, \chi \geq \gamma$. In view of Theorem 5 about differential equations on Banach manifolds in Section 4.2 [17] a vector field V of class $E_{\beta, \gamma}^{t}$ on M defines a flow η_{t} of class $E_{\beta, \gamma}^{t}$, that is $d \eta_{t} / d t=V \circ \eta_{t}$ and $\eta_{0}=e$. Then lightly modifying proofs of Theorem 3.1 and Lemmas 3.2, 3.3 in [7] we get that η_{t} is a one-parameter subgroup of Diff $f_{\beta, \gamma}^{t}(M)$, the curve $t \rightarrow \eta_{t}$ is of class C^{1}, the map $\tilde{E} x p: T_{e} D i f f_{\beta, \gamma}^{t}(M) \rightarrow D i f f_{\beta, \gamma}^{t}(M)$ defined by $V \rightarrow \eta_{1}$ is continuous.
The curves of the form $t \rightarrow \tilde{E}(t V)$ are geodesics for $V \in T_{\eta} D i f f_{\beta, \gamma}^{t}$ $(M), d \tilde{E}(t V) / d t$ is the map $m \rightarrow d\left(\exp (t V(m)) / d t=\gamma_{m}^{\prime}(t)\right.$, where $\gamma_{m}(t)$ is the geodesic on $M, \gamma_{m}(0)=\eta(m), \gamma_{m}^{\prime}(0)=V(m)$. Indeed, this follows from the existence of solutions of corresponding differential equations in the Banach space $E_{\beta, \gamma}^{t}(M, T M)$ and then as in the proof of Theorem 9.1 [7].

From the definition of μ it follows that for each $x \in M$ there exists open neighbourhood $Y \ni x$ such that $\mu(Y)>0$ [6]. In view of 2.2-4 there is the following inequality $\sup _{x} g_{f(x)}\left(V_{x}, V_{x}\right)<\infty$ and also for W. Consequently, $(V, V)>0$ for each $V \neq 0$, since V and W are continuous vector fields and for some $x \in M$ and $Y \ni x$ with $\mu(Y)>0$ we have $V_{y} \neq 0_{y}$ for each $y \in Y$. On the other hand $\sup _{x \in M}\left|g_{f(x)}\left(V_{x}, W_{x}\right)\right|<\infty$, hence $|(V, W)|<\infty$. From $g_{f(x)}\left(V_{x}, W_{x}\right)=g_{f(x)}\left(W_{x}, V_{x}\right)$ and bilinearity of g by $\left(V_{x}, W_{x}\right)$ it follows that $(V, W)=(W, V)$ and $(a V, W)=(V, a W)$ for each $a \in \mathbb{R}$. Since $t \geq 1$, the scalar product (iii) gives a weaker topol-
ogy than the initial $E_{\beta, \gamma}^{t}$. For two Banach spaces A and B we have the following uniform linear isomorhism $E_{\beta, \gamma}^{t}(M, A \oplus B)=$ $E_{\beta, \gamma}^{t}(M, A) \oplus E_{\beta, \gamma}^{t}(M, B)$, where \oplus denotes the direct sum. Therefore, $E_{\beta, \gamma}^{t}(M, T M)$ is complemented in $E_{\beta, \gamma}^{t}(M, T(T M))$, since $T M$ and $T(T M)=: T T M$ are the Banach foliated manifolds of class $E_{\nu, \chi}^{\infty}$ with $\nu \geq \beta, \chi \geq \gamma \geq 0$. Then the right multiplication $\alpha_{h}(f)=f \circ h$, $f \rightarrow f \circ h$ is of class C^{∞} on $\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ for each $h \in \operatorname{Dif} f_{\beta, \gamma}^{t}(M)$. Moreover, Diff $f_{\beta, \gamma}^{t}(M)$ acts on itself freely from the right, hence we have the following principal vector bundle $\tilde{\pi}: T D i f f_{\beta, \gamma}^{t}(M) \rightarrow$ $D i f f_{\beta, \gamma}^{t}(M)$ with the canonical projection $\tilde{\pi}$.

Analogously to $[2,7,15]$ we get the connection $\hat{\nabla}=\nabla \circ h$ on $\operatorname{Diff} f_{\beta, \gamma}^{t}(M)$. Then $\left(\hat{\nabla}_{\hat{X}} \hat{Y}, \hat{Z}\right)+\left(\hat{Y}, \hat{\nabla}_{\hat{X}} \hat{Z}\right)=\int_{M}\left[<\nabla_{X_{e}} Y_{e}, Z_{e}>_{h(x)}\right.$ $\left.+<Y_{e}, \nabla_{X_{e}} Z_{e}>_{h(x)}\right] \mu(d x)=\int_{M}\left[X_{e} g\left(Y_{e}, Z_{e}\right)\right]_{h(x)} \mu(d x)=\hat{X}(\hat{Y}, \hat{Z})$, since $X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)$ (Satz 3.8 in [10]) and for each right-invariant vector field V on $\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ there exists a vector field X on M with $V_{h}=X \circ h$ for each $h \in \operatorname{Dif} f_{\beta, \gamma}^{t}(M)$, where $\hat{X}:=X \circ h$ (see also $[18,19]$). If ∇ is torsion-free then $\hat{\nabla}$ is also torsion-free. From this it follows that the existence of \tilde{E} and $\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ is the Banach manifold of class $E_{\omega, \delta}^{\infty}$, since \exp and M are of class $E_{\omega, \delta}^{\infty}, \alpha_{h}(f)=f \circ h, f \rightarrow f \circ h$ is a C^{∞} map with the derivative $\alpha_{h}: E_{\beta, \gamma}^{t}\left(M^{\prime}, T N\right) \rightarrow E_{\beta, \gamma}^{t}(M, T N)$ whilst $h \in$ $E_{\beta, \gamma}^{t}\left(M, M^{\prime}\right), \tilde{E}_{h}(\hat{V}):=\exp _{h(x)}(V(h(x))), \hat{V}_{h}=V \circ h, V \in \Xi(M)$, $\hat{V} \in \Xi\left(\operatorname{Diff}_{\beta, \gamma}^{t}(M)\right)$.

The case of infinite $A t(M)$ may be treated using the strict inductive limit topology.

Note 3.4. For a manifold $N=\oplus\left\{M_{j}: j \in \mathrm{~J}\right\}, M_{j}=M$ for each j, $\mathrm{J} \subset \mathbb{N}$, we have that $\operatorname{Dif} f_{\beta, \gamma}^{t}(N)$ is isomorphic to $S \otimes \operatorname{Dif} f_{\beta, \gamma}^{t}(M)$, where S is a discrete symmetric group.

Henceforward, we assume that M and M_{k} are connected for each $k>n$ and some fixed $n \in \mathbb{N}$. For a finite-dimensional manifold M a space $E_{\beta, \gamma}^{t}(M, \mathbb{R})$ (or $\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$) is isomorphic with the usual weighted Hölder space $C_{\beta}^{t}(M, \mathbb{R})$ (or Diff $f_{\beta}^{t}(M)$ correspondingly).

4. Irreducible unitary representations of a group of diffeomorphisms of a Banach manifold

Theorem 4.1. Let M be a Banach manifold fulfilling 2.5, $G=$ Diff $f_{\beta, \gamma}^{t}(M)$ be a group of diffeomorphisms as in 2.8 with $t \geq 1$, $\beta \geq \omega+\xi$ and $\gamma>2(1+\delta)+\xi$, where $\xi>2$ for a Banach manifold, $\xi=0$ for a Hilbert manifold. Then (for each $1 \leq l \leq \infty$) there exists a quasi-invariant (and l times differentiable) measure ν on M relative to G.

Proof. The exponential mapping exp is defined on a neighbourhood of the zero section of the tangent bundle $T M$ and \exp is of class $E_{\omega, \delta}^{\infty}$ due to 2.5 (see also [17]). For each $x \in N$ we have $T_{x} N \tilde{=} l_{2}$. Suppose F is a nuclear (of trace class) operator on l_{2} such that $F e_{i}=F_{i} e_{i}$, where $i^{b} \leq F_{i} \leq i^{c}$ for each $i,\left\{e_{i}: i\right\}$ is the standard base in l_{2}, $1-\gamma+2 \delta<b \leq c<-1$. Then there exists a σ-additive Gaussian measure λ on l_{2} with zero mean and a correlation operator equal F. Then a Gaussian measure on $T_{x} N$ induces a Gaussian measure on $T_{x} M$ for $x \in N[16]$. Therefore, $\exp _{x}$ induces a σ-additive measure ν on $W \ni x$, where $W=\exp _{x}(V), 0 \in V$ is open in $T_{x} M, 0<\mu(V)<$ $\infty, \nu(C)=\mu\left(\exp _{x}^{-1}(C)\right)$ for each $C \in B f(W)$. The manifold M is paracompact and Lindelöf [9], $G W=M$, hence there is a countable family $\left\{g_{j}: j \in \mathbb{N}\right\} \subset G, g_{1}=e, W_{1}=W$ and open $W_{j} \subset W$ such that $\left\{g_{j} W_{j}: j\right\}$ is a locally finite covering of M with $W_{1}=W, g_{1}=$ id. For $C \in B f(M)$ let $\nu(C):=\sum_{j \in \mathbb{N}} \nu\left(\left(g_{j}^{-1} C\right) \cap W_{j}\right) 2^{-j}$ (without multipliers 2^{-j} the measure ν will be σ-finite, but not necessarily finite).

The following mapping $Y_{g}:=\left(\exp \circ g \circ e x p_{x}^{-1}\right)$ on $T M$ for each $g \in G$ satisfies conditions of Theorems 1,2 in Section 26 [23]. Indeed, $\left(\partial g^{i} / \partial x^{j}\right)_{i, j \in \mathbb{N}}$ in local natural coordinates $\left(x^{j}\right)$ is in the class $E_{\beta^{\prime}+1, \gamma^{\prime}}^{t^{\prime}-1}$ (see 2.4, 2.8). In view of these theorems and $[3,6,11]$ the measure ν is quasi-invariant and l times differentiable, since the continuous extension of the operator $\left(\left(Y_{g}\right)^{\prime}-I\right) F^{-1 / 2} Q$ from $T_{x} N$ onto $T_{x} M$ is of trace class on the Banach space $T_{x} M$ and $d g^{t} / d t=V \circ g^{t}$ (see the proof of Theorem 3.3 above and $[20,22]$), where $g^{t}=\eta_{t}$, $Q x=\sum_{j} x^{j} j^{\delta} e_{j}, x=\sum_{j} x_{j} e_{j} \in l_{2}, x^{i} \in \mathbb{R}$.
Definition 4.2.1. Let M satisfy conditions in 2.5 . For a given atlas $A t(M)$ we consider its refinement $A t^{\prime}(M)=\left\{\left(U_{j}^{\prime}, \psi_{j}\right): j \in \mathbb{N}\right\}$ of
the same class $E_{\omega, \delta}^{\infty}$ such that $\left\{U_{j}^{\prime}\right\}$ is a locally finite covering of M, for each U_{j}^{\prime} there is $i(j)$ with $U_{i(j)} \supset U_{j}^{\prime}, \exp _{x}^{-1}$ is injective on U_{j}^{\prime} for some $x \in U_{j}^{\prime}, \exp _{x}^{-1}\left(U_{j}^{\prime}\right)$ is bounded in $T_{x} M$. Henceforward, M will be supplied by such $A t^{\prime}(M)$ and Dif $f_{\beta, \gamma}^{t}(M)$ will be given relative to such atlas.

Definition 4.2.2. Let μ be a non-negative measure on M quasiinvariant relative to $G=\operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ (see Theorem 4.1) such that $\mu(M)=\infty, \mu$ is σ-finite and $\mu\left(U_{j}^{\prime}\right)<\infty$ for each j. Then μ is considered on $A f(M, \mu)$. We consider $X=\prod_{i \in \mathbb{N}} M_{i}$, where $M_{i}=M$ for each i. Take $E_{i} \in A f\left(M_{i}, \mu\right)$, put $E=\prod_{i \in \mathbb{N}} E_{i}$, which is called a unital product subset of X if it satisfies the following conditions:
(UPS1) $\sum_{i \in \mathbb{N}}\left|\mu\left(E_{i}\right)-1\right|<\infty$ and $\mu\left(E_{i}\right)>0$ for each $i ;$
(UPS2) E_{i} are mutually disjoint .
Note 4.3. In view of 4.2 the above definitions $4.2 .1,2$ and Lemmas 1.1, 1.2 [13] are valuable for the case considered here (G, M, μ) for infinite-dimensional M. Henceforward, we denote by G the connected component of id $\in \operatorname{Dif} f_{\beta, \gamma}^{t}(M)$ from 4.2.2. Further, the construction of irreducible unitary representations follows schemes of [13] for finite-dimensional M and [18] for non-Archimedean Banach manifolds, so proofs are given briefly with emphasis on features of the case of the real Banach manifold M.
4.4. Let E be cofinal with $E^{\prime}\left(E R E^{\prime}\right)$ if and only if

$$
(C F) \sum_{i \in \mathbb{N}} \mu\left(E_{i} \triangle E_{i}^{\prime}\right)<\infty,
$$

E be strongly cofinal with $E^{\prime}\left(E \tilde{=} E^{\prime}\right)$ if and only if
(SCF) there is $n \in \mathbb{N}$ such that $\mu\left(E_{i} \triangle E_{i}^{\prime}\right)=0$ for each $i>n$,
where $E_{i} \triangle E_{i}^{\prime}=\left(E_{i} \backslash E_{i}^{\prime}\right) \cup\left(E_{i}^{\prime} \backslash E_{i}\right), \Sigma(E):=\left\{E^{\prime}: E^{\prime} R E\right\}$.
Put $\nu_{E}\left(E^{\prime}\right)=\prod_{i \in \mathbb{N}} \mu\left(E_{i}^{\prime}\right)$ for each $E^{\prime} \in \Sigma(E)$. In view of the Kolmogorov's Theorem [6] ν_{E} has the σ-additive extension onto the minimal σ-algebra $\mathrm{M}(E)$ generated by $\Sigma(E)$.

The symmetric group of \mathbb{N} is denoted by $\tilde{\Sigma}_{\infty}$, its subgroup of finite permutations of \mathbb{N} is denoted by Σ_{∞}. For $g \in G$ there is $g x=\left(g x_{i}: i \in \mathbb{N}\right)$, where $x=\left(x_{i}: i \in \mathbb{N}\right) \in X$, for $\sigma \in \tilde{\Sigma}_{\infty}$ let $x \sigma=$ $\left(x_{i}^{\prime}: i \in \mathbb{N}\right), x_{i}^{\prime}=x_{\sigma(i)}$ for each i. Quite analogously to Lemma 1.3 [13] we have the following Lemma 4.5 due to $\operatorname{supp}(g) \subset U^{E(g)}$ for some $E(g) \in \Sigma$ and $\mu\left(U^{E(g)}\right)<\infty$, where $U^{E}=\bigcup_{j \in E} U_{j},\left(U_{j}, \psi_{j}\right)$ are charts of $A t^{\prime}(M)$.

Lemma 4.5. Let E be a unital product subset of X. Then
(i) $(g E) R E$ for each $g \in G$,
(ii) $\Sigma(E)$ is invariant under G and Σ_{∞}.
4.6. In view of $2.6,2.8,4.2 .1$ and the proof of 4.1 we may choose μ such that for each $g \in G$ there is its neighbourhood W_{g} and there are constants $0<C_{1}<C_{2}<\infty$ such that

$$
\text { (i) } C_{1} \leq q_{\mu}(f, z) \leq C_{2}
$$

for each $x \in m$ and $f \in W_{g}$ with $\operatorname{supp}(f) \subset U^{E(g)}$. Indeed, for each U_{j} there exists $y \in U_{j}$ such that $\exp _{y}^{-1} U_{j}$ is bounded in $T_{y} M$. Hence for each fixed $R, \infty>R>0$, for operators $Y_{f}=U$ of non-linear transformations the term $\left|\operatorname{det}\left(\left(Y_{f}\right)^{\prime}(x)\right)\right|^{-1} \exp \left\{\sum_{l=1}^{\infty}\left[2\left(x-Y_{f}^{-1}(x)\right.\right.\right.$, $\left.\left.\left.e_{l}\right)\left(x, e_{l}\right)-\left(x-Y_{f}^{-1}(x), e_{l}\right)^{2}\right] / F_{l}\right\}$ is bounded (see f after (i)) for each $x \in l_{2}$ with $\|x\|<R$. For $z \in M \backslash U^{E(g)}$ we have $q_{\mu}(f, z)=1$. Therefore, we suppose further that μ satisfies (i).

If $S \in A f(M, \mu)$ and $\mu(S)<\infty$ we may consider measures $\mu_{k}=\mu$ on $E_{k}^{\prime}, \nu_{k}=\mu_{k}$ on $E_{k}^{\prime} \backslash S$ and $\nu_{k}=0$ on S, suppose $L_{n}=\prod_{i=1}^{n} M_{i}$, $\mu_{L_{n}}=\bigotimes_{i=1}^{n} \mu_{i}, P_{n}: X \rightarrow L_{n}$ are projections, $\rho_{k}(x)=\nu_{k}(d x) / \mu(d x)$. Then $\rho_{k}(x)=0$ for each $x \in S$. Using the analog of Lemma 16.1 [23] for our case we obtain the analog of Lemmas 1.4, 1.6, 1.7 and Theorem 1.5 [13], since M has a countable open base $\left\{\tilde{U}_{j}: j \in \mathbb{N}\right.$ there is $E \in \Sigma$ such that $\left.\tilde{U}_{j} \subset U^{E}\right\}$.
4.7. The manifold M is Polish, hence M is the Radon space [6] and for each unital product subset E for each i there is a compact $\tilde{E}_{i} \subset M$ such that $\mu\left(E_{i} \triangle \tilde{E}_{i}\right)<2^{-i-1}$ and $\tilde{E}_{i} \subset U^{h(i)}$ for corresponding $h(i) \in$ Σ. Since each open covering of \tilde{E}_{i} has a finite subcovering we may
choose $E_{i}^{\prime} \in A t(M, \mu)$ with finite number of connected components. As in Section 1.8 [13] we can construct $E " R E$ such that $E "{ }_{i}$ are mutually disjoint.

Proposition 4.8. Each unital product subset E is cofinal with E^{0} satisfying the following conditions:
(UP3) the closure $\operatorname{cl}\left(E_{i}^{0}\right)$ and $c l\left(\bigcup_{j \neq i} E_{j}^{0}\right)$ are mutually disjoint and E_{i}^{0} is open for each i and $\inf _{i} \inf _{x \in E_{i}^{0}, y \in \bigcup_{j \neq i} E_{j}^{0}} d_{M}(x, y)>0$, $E_{i}^{0} \subset U^{h(i)}, h(i) \in \Sigma ;$
(UP4) E_{i}^{0} and $E_{i, k}^{0}$ are connected and simply connected, there is $n \in$ \mathbb{N} such that for each $k>n$ and $i \in \mathbb{N}$ there exists $g \in G$ with $g\left(E_{i, k}^{0}\right)=B_{i, k}$ being an open ball in a coordinate neighbourhood of M_{k} with $g \mid\left(M \backslash M_{k}\right)=$ id and $\inf _{x \in \partial M_{k}, y \in E_{i, k}^{0}} d_{M}(x, y)>0$, $g\left(\bar{E}_{i, k}^{0}\right)=\bar{B}_{i, k}$, where $\bar{B}:=\operatorname{cl}(B), E_{i, k}^{0}:=E_{i}^{0} \cap M_{k}$. For $i \neq j$, E_{i}^{0} and E_{j}^{0} can be connected by an open path $P_{i, j}$ such that $\bar{P}_{i, j} \cap c l\left(\bigcup_{k \neq i, j} E_{k}^{0}\right)=\emptyset$.

Proof. In view of 3.4, M and M_{k} are connected for each $k>n$ and some fixed $n \in \mathbb{N}$. Then using 3.1, locally finite coverings of M and M_{k} [9] and shrinking slightly E_{i}^{0} such that ∂E_{i}^{0} are of class $E_{\omega, \delta}^{\infty}$ analogously to steps 1-4 [13] and using properties of μ we prove this proposition. Indeed, μ is approximable from beneath by the class of compact subsets [6].
4.9. Henceforth, $\Pi: \Sigma_{\infty} \rightarrow U(V(\Pi))$ denotes a unitary representation on a Hilbert space $V(\Pi)$ over $\mathbb{C}, H\left(\sum\right)$ denotes a Hilbert space that is the completion of $\bigcup_{E^{\prime} \in \Sigma(E)} H_{\mid E^{\prime}}^{\Pi}$ with the scalar product
$<\phi_{1}, \phi_{2}>=\sum_{\sigma \in \Sigma_{\infty}} \int_{E^{1} \cap E^{2} \sigma}<\phi_{1}(x), \Pi(\sigma)^{-1} \phi_{2}\left(x \sigma^{-1}\right)>_{V(\Pi)} \nu_{E}(d x)$,
where $H_{\mid E^{\prime}}^{\Pi}:=L^{2}\left(E^{\prime} ; \mathrm{M}(E) ; \nu_{E} \mid E^{\prime} ; V(\Pi)\right)$ is a Hilbert space of functions on E^{\prime} with values in $V(\Pi), \sum:=(\Pi ; \mu, E) ; E^{\prime} R E, E$ is a unital product subset of X. Then we define a representation
(i) $T_{\Sigma}(g) \phi(x):=\rho_{E}\left(g^{-1} \mid x\right)^{1 / 2} \phi\left(g^{-1} x\right)$,
where $\rho_{E}\left(g^{-1} \mid x\right):=\left(\nu_{E}\right)_{g}(d x) / \nu_{E}(d x),\left(\nu_{E}\right)_{g}(C):=\nu_{E}\left(g^{-1} C\right)$ and $\rho_{E}(g \mid x)=\prod_{i \in \mathbb{N}} \rho_{M}\left(g ; x_{i}\right), \rho_{M}\left(g ; x_{i}\right):=q_{\mu}\left(g^{-1} ; x_{i}\right)$ (see Section 2 [13] and 5.9 [18]).

Proposition 4.10. The formula 4.9(i) determines a strongly continuous unitary representation of G (given by 4.2 and 4.3) on the Hilbert space $H(\Sigma)$.

Proof. The space $H\left(\sum\right)$ is isomorphic with the completion $H^{\prime}\left(\sum\right)$ of $\bigcup_{E^{\prime} \in \Sigma(E)} H_{\mid E^{\prime}}^{\prime \Pi}$ with the scalar product $<f_{1}, f_{2}>_{H^{\prime}}:=\int_{F}<$ $f_{1}(x), f_{2}(x)>_{V(\Pi)} \nu_{E}(d x)$, where $f_{i} \in H_{\mid E^{(i)}}^{\prime \Pi}, E^{(i)} \in \Sigma(E), F \in$ $\mathrm{M}(E), F \sigma$ for $\sigma \in \Sigma_{\infty}$ are disjoint and $\operatorname{supp}\left(f_{1}(x) f_{2}(x)\right) \subset \bigcup_{\sigma \in \Sigma} F \sigma$. Here ${H^{\prime}}_{\mid E^{\prime}}^{\Pi}$ is a space of functions $f=Q_{\Pi} \phi$, where $\phi \in H_{\mid E^{\prime}}^{\Pi}$ and
(i) $Q_{\Pi} \phi:=\sum_{\sigma \in \Sigma}(R(\sigma) \Pi(\sigma)) \phi,\left(Q_{\Pi}(\phi)\right)(x \sigma)=\Pi(\sigma)^{-1} \phi(x)$;
(ii) $R(\sigma) \phi(x):=\phi(x \sigma)$;
(iii) $\Pi(\sigma) \phi(x):=\Pi(\sigma)(\phi(x)),\|f\|^{2}=\int_{E^{\prime}}\|f(x)\|_{V(\Pi)}^{2} \nu_{E}(d x)<\infty$,
since $E^{\prime} \sigma$ for $\sigma \in \Sigma_{\infty}$ are disjoint for different σ. Therefore, as in 2.1 [13] we get

$$
\begin{aligned}
& <T_{\sum}(g) f_{1}, f_{2}> \\
& \quad=<v_{1}, v_{2}>_{V(\Pi)} \times \prod_{i \in \mathbb{N}} \int_{\left(g B_{i}^{(1)}\right) \cap B_{i}^{(2)}} \rho_{M}\left(g^{-1} ; x_{i}\right)^{1 / 2} \mu\left(d x_{i}\right),
\end{aligned}
$$

for $f_{j}=Q_{\Pi} \phi_{j}, \phi_{j}=\chi_{B^{(j)}} \otimes v_{j}$, where χ_{C} is the characteristic function of C (see also 4.6(i)).

Let us fix $J \in \Sigma$ and take $U^{J}=\bigcup_{j \in J} U_{j} \subset M$. As in the proof of Theorem 5.6(a) [19] (see 4.6(i)) we can find a neighbourhood $W \ni$ id in G and $0<c_{1}<c_{2}<\infty$ such that $c_{1} \leq \rho_{M}\left(g^{-1} ; y\right) \leq c_{2}$ for each $y \in U^{J}$ and $\rho_{M}\left(g^{-1} ; y\right)=1$ for each $y \notin U^{J}$ for each $g \in W$ with $\operatorname{supp}(g) \subset U^{J}$. Hence for each $\epsilon>0$ there exists $W \ni i d$ such that $\left|<T_{\sum}(g) f_{1}, f_{2}>-<f_{1}, f_{2}>\right|<\epsilon$, consequently, due to the Banach-Steinhaus Theorem [36] there exists a neighbourhood $V \ni$ id such that $\left\|\left(T_{\sum}(g)-I\right) f_{1}\right\|<\epsilon$ and T_{\sum} is strongly continuous.

It is interesting to note that 4.10 may be proved from the inequality:

$$
\begin{aligned}
& \left\|T_{\sum}(g) f_{1}-f_{1}\right\|_{H^{\prime}(\Sigma)} \\
& \quad \leq|v|^{2} \int_{F}\left|f_{1}(x)-f_{1}\left(g^{-1}, x\right) \rho_{E}\left(g^{-1} \mid x\right)^{1 / 2}\right|^{2} \nu_{E}(d x) .
\end{aligned}
$$

Then we consider restrictions $g \mid M_{k}$ and properties of $\left(Y_{g}\right)^{\prime}$ (or g on $\left.M \backslash M_{k}\right)$ such that $\operatorname{card}\left\{i: \operatorname{supp}(g) \cap F_{i, k}\right\}<\aleph_{0}$ for each $k \in \mathbb{N}$. In view of Theorems 26.1,2 [23] for each sequence g_{n} with $\lim _{n} g_{n}=e$ and for each $\epsilon>0$ there is m such that

$$
\int_{F}\left|f_{1}(x)-f_{1}\left(g_{n}^{-1} x\right) \rho_{E}\left(g_{n}^{-1} \mid x\right)^{1 / 2}\right|^{2} \nu_{E}(d x)<\epsilon
$$

for all $n>m$, since there is $E \in \Sigma$ with $\operatorname{supp}\left(g_{n}\right) \subset U^{E}$ for every $n>m$.
4.11. Let E_{1}, \ldots, E_{r} be mutually disjoint open subsets of $M, H_{1}:=$ $\bigotimes_{i=1}^{r} L^{2}\left(E_{i}\right), L^{2}\left(E_{i}\right):=L^{2}\left(E_{i} ; \mu \mid E_{i}\right), G_{1}:=\prod_{i=1}^{r} G_{\mid E_{i}}, G_{\mid E_{i}}:=\{g \in$ $\left.G: \operatorname{supp}(g) \subset E_{i}\right\}$, denote by $G\left(E_{i}\right)$ the connected component of $i d \in$ Diff $f_{\beta, \gamma}^{t}\left(E_{i}\right)$, also let $\left\{E_{i, j}: j \in J_{i}\right\}$ be the connected components of E_{i}. Then $G_{\mid E_{i, j}}=G\left(E_{i, j}\right)$, since for each continuous mapping $F:[0,1] \rightarrow G$ we have by continuity that
(i) $F(\epsilon)\left(E_{i, j}\right) \subset E_{i, j}$ for each $\epsilon \in[0,1] \subset \mathbb{R}$ and each $j \in J_{i}$.

Indeed, suppose J is the connected subset of $[0,1]$ such that $0 \in J$ and for each $\epsilon \in J$ is satisfied (i). If $v=\sup (J)<1$ then by continuity there is $w>v$ for which $[0, w]$ have the same properties as J. Hence the maximal such J coincides with $[0,1]$.

We define and consider $\tilde{G}\left(E^{\prime}\right):=\prod_{i \in \mathbb{N}} G\left(E_{i}^{\prime}\right):=\left\{g=\left(g_{i}: i\right):\right.$ $g_{i} \in G\left(E_{i}^{\prime}\right), \operatorname{supp}\left(g_{i}\right) \subset U^{E\left(g_{i}\right)},\left(\bigcup_{i \in \mathbb{N}} E\left(g_{i}\right)\right) \in \Sigma$ for each $\left.i\right\}$. Therefore, $\prod^{"}{ }_{j \in J_{i}} G\left(E_{i, j}\right)=G_{\mid E_{i}}$. Then quite analogously to Lemma 3 [13] and Lemma 5.12 II [18] we get that the following representation L_{1} of G_{1} is irreducible: $\left(L_{1}(g) f\right)(y)=\prod_{i=1}^{r} \rho_{M}\left(g_{i}^{-1} ; y_{i}\right)^{1 / 2} f\left(g^{-1} y\right)$ for $f \in H_{1}, g=\left(g_{i}: i\right) \in G_{1}$ and $y=\left(y_{i}: i\right) \in \prod_{i=1}^{r} E_{i}$, since $G_{\mid E_{i}}$ is dense in $G_{i}:=G \cap \prod_{j \in J_{i}} G\left(E_{i, j}\right)$ and L_{1} is strongly continuous, $G_{\mid E_{i}} \subset \prod_{j \in J_{i}} G\left(E_{i, j}\right)$. Indeed, in view of Proposition $4.8 G_{\mid E_{i}}$ is connected, since G is connected.

Then L_{1} on G_{i} is decomposable into irreducible components, since L_{1} of $G\left(E_{i, j}\right)$ on $L^{2}\left(E_{i, j}\right)$ is irreducible. In view of strong continuity of L_{1} on the dense subgroup $G_{\mid E_{i}}$ it follows that its strongly continuous extension on G_{i} is also unitary. Then the rest of Section 3.1 [13] may be transferred onto the case considered here.
Let $L_{E^{\prime}}(g) f(x)=\rho_{E}\left(g^{-1} \mid x\right)^{1 / 2} f\left(g^{-1} x\right)$ for $g \in \tilde{G}\left(E^{\prime}\right), f \in H_{\mid E^{\prime}}:=$ $L^{2}\left(E^{\prime}, \mathrm{M}(E)\left|E^{\prime}, \nu_{E}\right| E^{\prime}\right), x \in E^{\prime}$. Then we get the following.

Lemma 4.12. Let $E^{\prime} \in \Sigma(E)$ and E_{i}^{\prime} be open and connected. Then the unitary representation $L_{E^{\prime}}$ of $\tilde{G}\left(E^{\prime}\right)$ on $H_{E^{\prime}}$ is irreducible.
4.13. Let us consider
(i) $G\left(\left(E^{\prime}\right)\right):=\left\{g \in G \mid\right.$ there is $k=k(n), n \in \mathbb{N}$ and $\sigma \in \Sigma_{\infty}$, such that $g\left(E_{i, k}^{\prime}\right)=E_{\sigma(i), k}^{\prime}$ for each $i \in \mathbb{N}$ and $\left.g \mid M \backslash M_{k}=i d\right\}$, where $E^{\prime}=\prod_{i \in \mathbb{N}} E_{i}^{\prime}\left(E_{i}^{\prime} \subset M\right)$ satisfies $(U P 3-4)$ and $E^{\prime} \in \Sigma(E)$, $E_{i, k}=E_{i} \cap M_{k}$. In view of the foliated structure in M this group is dense in
(ii) $\left\{g \in G: \operatorname{supp}(g) \subset \bigcup_{i \in \mathbb{N}} E_{i}^{\prime}\right\}$.

Lemma 4.14. Let $E^{\prime} \in \Sigma(E)$ satisfy $(U P 3-4)$. Then for any $\sigma \in \Sigma_{\infty}$ there is n such that for each $k>n$ there exists $g \in G\left(\left(E^{\prime}\right)\right)$ with $g\left(E_{i, k}^{\prime}\right)=E_{\sigma(i), k}^{\prime}$ for each i, moreover, $g\left|E_{i}^{\prime}=i d\right| E_{i}^{\prime}$ if $\sigma(i)=i$.

Proof. It is quite analogous to that of Lemma 3.4 [13], since each M_{k} is locally compact and connected, also due to properties of μ induced as the image of the Gaussian σ-additive measure. On the other hand, the latter is fully characterised by its weak distribution and is with the Radon property (see Lemma 2 and Theorem 1 in Section 2 [23]).
4.15. Let E^{\prime} be as in 4.12, $H_{\mid E^{\prime}}^{\Pi}=L^{2}\left(E^{\prime}, \mathrm{M}(E)\left|E^{\prime}, \nu_{E}\right| E^{\prime} ; V(\Pi)\right)$, $H_{\mid E^{\prime}}^{\prime \Pi}=Q_{\Pi} H_{\mid E^{\prime}}^{\Pi}$ (see the proof of 4.10). For each $g \in G\left(\left(E^{\prime}\right)\right)$ there are $\sigma \in \Sigma_{\infty}$ and $k=k(n), n \in \mathbb{N}$ such that $g\left(E_{i, k}^{\prime}\right)=E_{\sigma(i), k}^{\prime}$ for each $i \in \mathbb{N}$ and $g \mid\left(M \backslash M_{k}\right)=i d$. Suppose $f=Q_{\Pi} \phi, \phi \in$ $H_{\mid E^{\prime}}^{\Pi}$. If $(\alpha) \phi$ depends only on $\left\{x=\left(x_{i}: i\right) \mid x_{i} \in E_{i, k}^{\prime}\right\}$ then $\left(T_{\sum}(g) f\right)(x)=\rho_{E}\left(g^{-1} \mid x\right)^{1 / 2} \Pi(\sigma) \phi\left(g^{-1} x \sigma\right)$. If $(\beta) \phi$ depends only on $\left\{x=\left(x_{i}: i\right) \mid x_{i} \in E_{i}^{\prime} \backslash M_{k}\right\}$ then $\left(T_{\sum}(g) f\right)(x)=f(x)$. Then if $\phi(x)=\phi_{1}(x) \times \phi_{2}(x)$, where $\phi_{2}(x)$ is of type (α) or (β) and ϕ_{1} :
$E^{\prime} \rightarrow \mathbb{C}$ is also of type analogous to (α) or (β) then $T_{\sum}(g) f \in H^{\prime}{ }_{\mid E^{\prime}}$. Let $G_{k}\left(\left(E^{\prime}\right)\right)=\left\{g \in G\left(\left(E^{\prime}\right)\right): g \mid\left(M \backslash M_{k}\right)=i d\right\}$, then $\bigcup_{k} G_{k}\left(\left(E^{\prime}\right)\right)$ is dense in $G\left(\left(E^{\prime}\right)\right)$. Denote $H_{k}:=\left\{\phi \in H_{\mid E^{\prime}}^{\mathrm{I}} \mid \phi(x)\right.$ is constant on $\left.M \backslash M_{k}\right\}, H_{k}^{\prime}:=Q_{\Pi} H_{k}$. In view of Proposition 4.8 we have that the following representation $T_{E^{\prime}}(g) \phi(x)=\rho_{E}\left(g^{-1} \mid x\right)^{1 / 2} \Pi(\sigma) \phi\left(g^{-1} x \sigma\right)$ is irreducible, where $\phi \in H_{k}, g \in G_{k}\left(\left(E^{\prime}\right)\right), x \in E^{\prime}, \sigma \in \Sigma_{\infty}$ is such that $g\left(E_{i, k}^{\prime}\right)=E_{\sigma(i), k}^{\prime}$ for each i (see also Lemma 3.5 [13]). Then we obtain analogously to Lemma 4.2 [13] the following lemma.
Lemma 4.16. Let $F=\prod_{i \in \mathbb{N}} F_{i}$ satisfies $(U P 3-4)$. Then there exists $F^{\prime} \in \Sigma(F)$ satisfying $(U P 3-4)$ and

$$
(U P S 5) \quad M \backslash \operatorname{cl}\left(\bigcup_{i>N} F_{i}\right) \text { is connected for every } N>0
$$

Proof. Consider $F_{i, k}=F_{i} \cap M_{k}$ and measures μ_{k} on M_{k} induced by μ on M and the projection $P_{k}: l_{2} \rightarrow \mathbb{R}^{k}$ and choose F^{\prime} such that

$$
\begin{aligned}
\mid \mu_{k(n+1)}\left(F_{i, k(n+1)}^{\prime} \triangle F_{i, k(n+1)}-\mu_{k}(\right. & \left.F_{i, k(n)}^{\prime} \triangle F_{i, k(n)}\right) \mid \\
& <3^{-i-2(k(n)+1)} \mu\left(F_{i}\right),
\end{aligned}
$$

for each $k=k(n)$ and $i, n \in \mathbb{N}$. Then use Theorem 3.1 [13].
Theorem 4.17. The unitary representation T_{\sum} of G (defined in 4.2) on $H\left(\sum\right)$ is irreducible.

Proof. Considering the sequences $\left\{M_{k}: k\right\},\left\{G_{k}\left(\left(E^{\prime}\right)\right): k\right\}$ and $\left\{H_{k}\right.$: $k\}$, using 4.2-4.16 and strong continuity of T_{\sum} we get from the proof of Theorem 4.1 [13] that T_{\sum} is irreducible. Indeed, we may consider $\Delta:=\left\{E^{\prime}: E^{\prime} \tilde{=} E^{0}, E^{\prime}\right.$ satisfies $\left.(U P 3-4)\right\}$ instead of Δ in Section 4.3 [13].

Theorem 4.18. Suppose $T_{\sum_{i}}$ are unitary representations of G with parameters $\sum_{i}=\left(\Pi_{i} ; \mu, E^{\prime}\right)$. Then, $\left(T_{\sum_{i}}, H\left(\sum_{i}\right)\right), i=1,2$ are mutually equivalent if and only if there exists $a \in \tilde{\Sigma}_{\infty}$ such that $\Pi_{1} \tilde{=}{ }^{a} \Pi_{2}$ and $E_{1} \in \Sigma\left(E_{2} a^{-1}\right)$, where $\left({ }^{a} \Pi\right)(\sigma):=\Pi\left(a^{-1} \sigma a\right)$.

Proof. In view of 4.8 and 4.9 we may assume without loss of generality that E^{i} satisfies ($U P 3-4, U P S 5$) for $i=1$ and 2 . Then we consider $G^{(1)}:=G\left(\left(E^{(1)}\right)\right) \cap G\left(\left(E^{(2)}\right)\right) \subset G$ and $G^{(2)}:=\prod "{ }_{k \in \mathbb{N}} G\left(C_{k}\right)$,
where C_{k} are all connected components of $E_{i, j}^{(1)}=E_{j, i}^{(2)}$ (with $E^{(2)}$ here instead of $F^{(2)}$ in [13]). Instead of equations (5.7) [13] we have corresponding expressions as intersections with M_{k} in both sides for some $k=k(n), n \in \mathbb{N}$. Using the sequences $\left\{M_{k}\right\},\left\{G_{k}\left(\left(E^{\prime}\right)\right)\right\}$ and strong continuity of $T_{\sum_{i}}$ we get the statement of Theorem 4.18 analogously to Section 5 [13].

Note 4.19. The construction presented above of irreducible unitary representations is valid as well for each dense subgroup G^{\prime} of Dif $f_{\beta, \gamma}^{t}(M)$ such that the corresponding non-negative measure λ on M is left-quasi-invariant relative to G^{\prime} and satisfies 4.2 and 4.6.

References

[1] Averbukh V.I. and Smolyanov O.G., The theory of differentiation in linear topological spaces, Usp. Mat. Nauk. 22 (1967), 201-260.
[2] Bao D., Lafontaine J. and Ratiu T., On a non-linear equation related to the geometry of the diffeomorhism group, Pacif. J. Math. 158 (1993), 223-242.
[3] Belopolskaya Ya.I. and Dalecky Yu.L., "Stochastic equations and differential geometry", Kluwer, Dordrecht, 1990.
[4] Bourbaki N., "Integration", Chapters 1-9, Nauka, Moscow, 1970 and 1977.
[5] Chaljub-Simon A. and Choquet-Bruhat Y., Problemes elliptiques du second ordre sur une variete Euclidienne a l'infini, Ann. Fac. Sci. Toulouse Math. Ser. 51 (1979), 9-25.
[6] Dalecky Yu.L. and Fomin S.V., "Measures and differential equations in infinite-dimensional spaces", Kluwer Acad. Publ., Dordrecht, 1991.
[7] Ebin D.G. and Marsden J., Groups of diffeomorphisms and the motion of incompressible fluid, Ann. of Math. 92 (1970), 102-163.
[8] Eichhorn J., The manifold structure of maps between open manifolds, Ann. Global Anal. Geom. 3 (1993), 253-300.
[9] Engelking R., "General topology", Mir, Moscow, 1986.
[10] Flashel P. and Klingenberg W., "Riemannsche Hilbertmannigfaltigkeiten. Periodische Geodatisch", Lect. Notes in Math. 282, Springer-Verlag, Berlin, 1972.
[11] Gelfand I.M. and Vilenkin N.Ya., "Generalized functions", v. 4, Fiz.-Mat. Lit., Moscow, 1961.
[12] Hector G. and Hirsch U., "Introduction to the geometry of foliations", Friedr. Vieweg and Sons, Braunschweig, 1981.
[13] Hirai T., Irreducible unitary representations of the group of diffeomorphisms of a non-compact manifold, J. Math. Kyoto Univ. 33 (1993), 827-864.
[14] Hirsch M.W., "Differential topology", Springer-Verlag, New York, 1976.
[15] Kobayashi S. and Nomizu K., "Foundations of differential geometry" v. 1 and 2, Nauka, Moscow, 1981.
[16] Kuo H.-H., "Gaussian measures in Banach spaces", Springer, Berlin, 1975.
[17] Lang S., "Differential manifolds", Springer-Verlag, Berlin, 1985.
[18] LüDkovsky S.V., Representations and structure of groups of diffeomorphisms of non-Archimedean Banach manifolds, parts 1 and 2, preprints No. IC/96/180 and No. IC/96/181, Intern. Centre for Theoret. Phys., Trieste, Italy, September, 1996.
[19] LÜDkovsky S.V., Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional Hilbert manifold and its representations, preprint No. IC/96/202, Intern. Centre for Theoret. Phys., Trieste, Italy, October, 1996.
[20] Lüdkovsky S.V., Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds, preprint No. IC/96/218, Intern. Centre for Theoret. Phys., Trieste, Italy, October, 1996.
[21] Pietsch A., "Nuclear locally convex spaces", Springer, Berlin, 1972.
[22] Riordan J., "Combinatorial identities", John Wiley, New York, 1968.
[23] Schaefer H.H., "Topological vector spaces", Mir, Moscow, 1971.
[24] Skorohod A.V., "Integration in Hilbert space", Springer-Verlag, Berlin, 1974.

Received May 5, 1997.

[^0]: ${ }^{(*)}$ Author's address: Theoretical Department, Institute of General Physics, Str. Vavilov 38, Moscow, 117942 Russia
 1991 Mathematical Subject Classification: 22A10, 43A05, 46B.

