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Irreducible Unitary Representations

of a Di�eomorphisms Group of an

In�nite-dimensional Real Manifold

S.V. L�udkovsky (�)

Summary. - Groups of di�eomorphisms Diff t�;
(M) of in�nite-di-
mensional real Banach manifolds M are de�ned. Their struc-

ture is studied. Irreducible unitary representations of a group of

di�eomorphisms associated with quasi-invariant measures on a

Banach manifold are constructed.

1. Introduction

For a locally compact (�nite-dimensional) manifold M irreducible
unitary representations of a group of di�eomorphisms were con-
structed in [13] with the help of a measure on M induced by the
Lebesgue measure on R

n and the Riemannian metric g on M . Each
group of di�eomorphisms is an in�nite-dimensional manifold itself.
Their structure for locally compact M was investigated in [2,7].

This article is devoted to the de�nition of a group of di�eomor-
phisms of a Banach manifold and the construction its irreducible
unitary representations. For this are used quasi-invariant Gaussian
measures on M .

In Section 2 notations and de�nitions are given. Section 3 con-
tains results about the structure of a group of di�eomorphisms. Ir-
reducible unitary representations of a group of di�eomorphisms as-
sociated with a quasi-invariant measure on a Banach manifold are
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described in Section 4. There is the great di�erence in investigations
between cases of �nite-dimensional and in�nite-dimensionalM . The
main results of the present paper are deduced for the �rst time and
given below in Theorems 3.3, 4.1, 4.17, 4.18.

2. Notations and de�nitions

To avoid misunderstandings, we �rst present our notations and ter-
minology.

De�nition 2.1. Let U and V be open subsets in l2. We consider
a space of all in�nitely many times Frech�et (strongly) di�erentiable
functions f; g : U ! V ful�lling (i, ii) and with a �nite metric
�t�;
(f; h) < 1, where h is some �xed smooth mapping h : U ! V
(that is of class C1);

(i) �t�;
(f; g) := sup
x2U; y 6=x; y2U

(

1X
n=0

[dtn;�;
(f; g)]
2)1=2 <1;

dt0;�;
(f; g) := k < x >� (f(x)� g(x))kl2;
 ;

(dtn;�;
(f; g))
2 :=

X
�n 6=0; j�j�t

�=(�1;:::;�n)

k�n�
 < x >�+j�j D�
x (f(x)� g(x))k2l2;
+

+
X

�=(�1;:::;�n)
j�j=[t]

kn�n�
 < ~x >�+j�j+b [D�
x (f(x)� g(x))

�D�
y (f(y)� g(y))]k2l2;
 =jx

n � ynj2b;

for n 2 N := f1; 2; 3; : : :g, dtn;�;
 (f; g) = dtn;�;
(f; g)(x; y), such that

(ii) lim
R!1

�t�;
(f jU
c
R; hjU

c
R) = 0:

Here x = (xj : j 2 N; xj 2 R) 2 l2;
 that is

kxkl2;
 =

� 1X
j=1

(xjj
)2
�1=2

<1;
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1 > 
 � 0, l2 = l2;0 is the standard separable Hilbert space over R
with the orthonormal base fen : n 2 Ng, U c

R := (x 2 U : kxkl2 > R);
f(x) = (f j(x) : j 2 N; f j (x) 2 R), t � 0, [t] is the integral part of t
(the largest integer such that) [t] � t, b = ftg := t � [t]; 0 � b < 1
(for b = 0 the last term in the de�nition of dtn;�;
 is omitted), D

ej
x :=

@=@xj =: @j ; D
�+

x f(x) := D


x(D�
xf(x)), ej = (0; : : : ; 0; 1; 0; : : :) with

1 in the j-th place, � = (�1; : : : ; �n), �j 2 N [ 0 =: No , j�j = �1 +
: : :+�n, � 2 R, < ~x >:= min(< x >;< y >), < x >:= (1+kxk2l2)

1=2,
f(x) � g(x) 2 l2, f jA denotes a restriction of f on a subset A � U ,
�n� := 1�

1
2�

2
: : : n�

n
for n 2 N.

We denote by Et;h
�;
(U; V ) the completion of such metric space,

E1
� :=

T1
j=1E

j
�(U; V ) with the topology given by the family (�j�;
 :

j 2 N) in the latter case. For V = l2 and h(u) = 0 it is the
Banach space with kf � gk

Et;h
�;
(U;l2)

:= �t�;
(f; g) = �t�;
(f � g; 0)

that is, the in�nite-dimensional separable analog of the weighted
H�older space Ct

�(U
0;Rm ) (compare with [5]) for open U 0 � Rk , k

and m 2 N. When 
 = 0 or h(U) = 0 we omit 
 or h respectively.
It is evident that each cylindrical function g(Pkx) is in Et

�(U; l2)

if g 2 Ct
�(U

0;Rm ), Pk : l2 ! R
k is the orthogonal projection,

U = (Pk)
�1(U 0), g(Pkx) := (g1(Pkx); : : : ; g

m(Pkx); 0; 0; : : :). The
spaces Et

�(U; V ) di�er from Et
0(U; V ) =: E

t(U; V ) for unbounded U
if � > 0.

De�nition 2.2. Let M be a manifold modelled on l2 and ful�lling
conditions (i-vi) below:

(i) an atlas At(M) = [(Uj ; �j) : j = 1; : : : ; k] is �nite, k 2 N

(or countable, k = 1), �j : Uj ! l2 are homeomorphisms
of Uj onto �j(Uj) 3 0, Uj and �j(Uj) are open in M and l2
respectively, (�j � �

�1
i � id) 2 E1

!;� (�i(Ui \ Uj); l2) for each
Ui \ Uj 6= ;, where ! > 0, 
 � 0, id is the identity mapping
id(x) = x for each x;

(ii) TM is a Riemannian vector bundle with a projection � : TM!
M and a metric gx in TxM induced by k � kl2 with a RMZ-
structure. This means that a connector K and g are such
that gc(X;Y ) is constant for each C1-curve c : I ! M , I =
[0; 1] � R and parallel translation along c of X and Y 2 �(M),
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�(M) := �TM (M) is the algebra of in�nitely di�erentiable
vector �elds on M (see 3.7 in [10]);

(iii) (M; g) is geodesically complete and supplied with the Levi-
Civita connection and the corresponding covariant di�erentia-
tion r (see 1.1, 2.1 and 5.1 in [10]);

(iv) the charts (Uj ; �j) are natural with the natural (Gaussian) co-
ordinates with locally convex �j(Uj) and the exponential map-
ping expp : Vp ! M corresponding to r, where Vp is open
in TpM for each p 2 M , each restriction exppjVp is the local
homeomorphism (see Section III.8 in [15], Section 6, 7 in [10])
such that rinj := infx2M rinj(x) > 0, where rinj(x) is a radius
of injectivity for expx, rinj is for entire M ;

(v) M is Hilbertian at in�nity, that is, there exists ~MR �M with
M n ~MR =: M c

R equal to �nite (or countable) disjoint union
of connected open components 
a, a = 1; : : : ; p, such that
��1a (
a) = l2 n Ba, where Ba are closed balls in l2, each 
a

is with a metric ~e induced by ��1a and the standard metric in
l2. Let a metric g for M be elliptic, that is, there exists � > 0
such that �~ex(�; �) � gx(�; �) for each � 2 TxM and x 2 M ,
where ~MR := [x 2 M : dM (x; x0) � R], x0 is some �xed
point in M , dM is the distance function on M induced by g,
1 > R > 0 (see for comparison the �nite-dimensional case of
M in [5]);

(vi) M contains a sequence ofMk and Nk. They are supposed to be
closed E1

!;
-submanifolds with �nite dimensions dimRMk = k
forMk and codimensions codimRNk = k for Nk, k = k(n) 2 N,
k(n) < k(n + 1) for each n, Mk � Ml and Nk � Nl for each
k < l, M = Mk [ Nk, Mk \ Nk = @Mk \ @Nk for each k
such that

S
kMk is dense in M , At(M) and M are foliated in

accordance with this decompositions. These means that (�)
�i;j := �i � �

�1
j j�j(Ui \ Uj) ! l2 are of the form �i;j((x

l : l 2

N)) = (�i;j;k(x1; : : : ; xk); 
i;j;k((x
l : l > k))) for each n 2 N, k =

k(n), when M is without boundary, @M = ;. If @M 6= ; there
is the following additional condition: (�) for each boundary
component M0 of M and Ui \M0 6= ; we have �i : Ui \M0 !
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Hl, where Hl = f(xj : j 2 N)j xl � 0g. If Ui\M0 6= ; and Uj \
M0 6= ; we have both images in H1 (or in Hl with l > 1), then
the foliation is called transverse (tangent respectively) to M0.
Then the equivalence relation of E1

!;
-atlases that produces
foliated M (see also [12] for �nite-dimensional Cr-manifolds)
is as usually considered.

De�nition 2.3. Let M and ~M be two manifolds as in 2.2 with a
smooth mapping (for example, an embedding) � : ~M ,! M , ! and
~! � max(0; �), � 2 R, t 2 �R+ := [0;1), 1 > 
 � 0, � and ~� � 
.

We denote by ~Et;�
�;
(

~M;M) a space of functions f : ~M ! M with

fi;j := �i�f � ~�
�1
j j(~�j( ~Uj)\ ~�j(f

�1(Ui))), (fi;j��i;j) 2 E
t;�
�;
(

~�j( ~Uj)\
~�j(f

�1(Ui))); �i(Ui)) for each i and j. When At(M) is �nite it
is metrizable by a metric (i) ~�t�;
(f; �) :=

P
i;j �

t
�;
(fi;j; �i;j) with

(ii) limR!1 ~�t�;
(f jM
c
R; �) = 0: For in�nite countable At(M) we de-

note by ~Et;�
�;
(

~M;M) the strict inductive limit str�ind�lim[ ~Et;�
�;
(

~UE ;

M);�F
E ;�], where E 2 �, � is the family of all �nite subsets of

N directed by the inclusion E < F if E � F , ~UE :=
S
j2E

~Uj,

( ~Uj ; ~�j) are charts of At(M), �F
E : ~Et;�

�;
(U
E ;M) ,! ~Et;�

�;
(U
F ;M)

and �E : ~Et;�
�;
(

~M;M) are uniformly continuous embeddings (iso-

metrical for 0 � t < 1). Evidently, ~Et;�
�;
(

~M;M) is the space of

functions f of the class ~Et;�
�;
 with supports supp(f) := clfx 2 ~M :

f(x) 6= 0g � UE(f), E(f) 2 � and 0 2 W � ~Et;�
�;
(

~M;M) is open if

and only if ��1E (W ) \ ~Et;�
�;
(U

E ;M) is open for each E 2 �.

LetHom(M) be a group of homeomorphisms ofM andDiff t�;
(M) :

= [f 2 Hom(M) : f and f�1 2 ~Et
�;
(M;M)] be a group of homeo-

morhisms (di�eomorhisms for t � 1) of class ~Et
�;
 . When At(M) is

�nite it is metrizable with the right-invariant metric

(iii) d(f; g) := ~�t�;
(g
�1f; id);

where � is the identity map for ~M = M , � = id (in this case the
index � is omitted), � � 0 (see also [14] for �nite-dimensional M ,
correctness of this de�nition is proved in Theorem 3.1). Henceforth,
we omit tilde in ~E.
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De�nition 2.4. A Riemannian metric g forM Hilbertian at in�nity
is called regular Hilbertian asymptotically, if there exist � > 0, t0 >
1, �0 > 0, 1 > 
0 � 0 such that (g � ~e)x(�; �) 2 Et0

�0;
0(M;R)
by x for each � 2 TM , � = (�x : x 2 M), k�xkl2 � 1 for each
x 2 M , sup�2TM; k�xk�1 k(g � ~e)x(�; �)kEt0

�0;
0
(M;R) � �. For spaces

Et
�;
(M;N) with M = N or N being a Banach space over R we

assume that ! � max(0; �) and �0 � max(0; �), t0 > t+1, 
0 � 
 in
2.2, 2.4.

Definition 2.5.1. Let X be separable BS over R. Suppose that
Fn � Fn+1 � � � � � X, dimRFn = n, is a sequence of �nite-
dimensional subspaces. Let fzn : n 2 Ng be a sequence of linearly
independent vectors in X with kznkX = 1, spRfz1; : : : ; zng = Fn for
each n. For open U and V in X we consider a space of all in�nitely
many times Frech�et di�erentiable functions f; g : U ! V ful�lling (i,
ii) in 2.1 and with �t�;
(f; h) < 1, where h : U ! V is some �xed

smooth (of class C1) mapping h : U ! V , D�
x for � = (�1; : : : ; �n)

is the operator of di�erentiation by (x1; : : : ; xn) 2 Fn, but with
U c
R := fx 2 U : kxkX > Rg and < x >= (1 + kxk2X )

1=2. We

denote by Et;h
�;
 the completion of such metric space and consider

E1
� (U; V ) as in 2.3.

Definition 2.5.2. Let M be a paracompact separable metrizable
manifold modelled on X [17] and ful�lling (i, ii) below:

(i) an atlas At(M) = [(Uj ; �j) : 1 � j < k + 1] is �nite, k 2 N

(or countable k = !0), �j : Uj ! X are homeomorphisms
of Uj onto �j(Uj) 3 0, Uj and �j(Uj) are open in M and X
respectively, (�j � �

�1
i � id) 2 E1

!;�(�j(Ui \ Uj);X) for each
Ui \ Uj 6= ;, where ! > 0, 
 � 0, id(x) = x is the identity
mapping, !0 is the initial number of cardinality @0 [9];

(ii) M contains a sequence of Mk and Lk submanifolds. They are
of class E1

!;
 with dimRMk = k for Mk and codimRLk = k for
Lk, k = k(n) 2 N, k(n) < k(n + 1) for each n, Mk � Ml and
Lk � Ll for each k < l, M =Mk [ Lk, Mk \ Lk = @Mk \ @Lk
for each k such that

S
kMk is dense in M . Moreover, M and

At(M) are foliated. That is, they ful�l (�; �):
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(�) �i;j : �i � �
�1
j j�j(Ui \ Uj) ! X are of the form �i;j((x

l :

l 2 N)) = (�i;j;k(x
1; : : : ; xk), 
i;j;k((x

l : l > k))) for each
n 2 N, k = k(n), whenM is without a boundary, @M = ;.
If @M 6= ; then:

(�) for each boundary component M0 of M and Ui \M0 6= ;
we have �i : Ui \M0 ! Hl, where Hl = fx 2 X : xl � 0g,
xl = Pzl(x) is the projector of X onto Rzl along X 	 Rzl
(see [22]).

Definition 2.5.3. Analogously to De�nition 2.3 we consider spaces
Et;�
�;
(

~M;M) and Diff t�;
(M) for M and ~M as in 2.5.2.
ThenDiff11;
(M) is de�ned as

T
l2N Diff

1
l;
(M) andDiff1�;
(M) =T

t2N Diff
t
�;
(M) with the corresponding standard topologies of pro-

jective limits [9,22].

De�nition 2.6. Let G be a topological group. A Radon measure �
on Af(G;�) (or � on Af(M;�)) is called left-quasi-invariant relative
to a dense subgroup G0 of G, if ��(�) (or ��(�)) is equivalent to
�(�) (or �(�) respectively) for each � 2 G0. Henceforth, we assume
that a quasi-invariance factor q�(�; g) = ��(dg)=�(dg) (or q�(�; x)) is
continuous by (�; g) 2 G0�G (or 2 (G0�M)), � : Af(G;�)! [0;1),
�(V ) > 0 (or � : Af(M;�) ! [0;1), �(V ) > 0) for some (open)
neighbourhood V � G (or � M) of the unit element e 2 G (or a
point x 2M), �(G) <1 (or �(M) � 1 and is �-�nite respectively),
where ��(E) := �(��1E) for each E 2 Af(G;�), Af(G;�) is the
completion of Bf(G) by �, Bf(G) is the Borel �-�eld on G [6].

Let (M;F) be a space M of measures on (G;Bf(G)) (or (M;Bf(M))
) with values in R and G" be a dense subgroup in G such that a
topology T on M is compatible with G", that is, �! �h (or � ! �h)
is the homeomorphism of (M;F) onto itself for each h 2 G". Let T
be the topology of convergence for each E 2 Bf(G) (or 2 Bf(M))
and W be a neighbourhood of the identity e 2 G such that J is
dense in W , where J := [h : h 2 G" \W =: W", there exists b 2
(�1; 1) and g(b) = h with [g(c) : c 2 (�1; 1)] � W"], g(c1 + c2) =
g(c1)g(c2), g(0) = e are one parameter subgroups, c1; c2 2 R. We
assume also that for each f 2 W" there are g(b1); : : : ; g(bk) 2 J
such that f = g(b1) : : : g(bk). A measure � 2 M (or � 2 M ) is



28 S.V. L�UDKOVSKY

called di�erentiable along g(b) in a point g(c) if �(g(b)�1E)��(E) =
(b�c)(�0(g(c);E)+�(g(b);E)) and there exists limb!c �(g(b);E) = 0
and �0(g(c);E) 2 R is continuous by g(c) for each E 2 Bf(G), where
b and c 2 R, �0(g(c);E) is called the derivative (by Lagrange) along
g(b) in g(c) (analogously for � on M). Let by induction �(�) =
�(j�1)(g(c1); : : : ; g(cj�1); �) and there exists �0(g(cj);E), then it is
denoted �(j)(g(c1); : : : ; g(cj);E) and is called the j-th derivative (by
Lagrange) of � along (g(b1); : : : ; g(bj)) in (g(c1); : : : ; g(cj)), where
j 2 N.

Lemma 2.7. Let M be a E1
!;�-domain in X. Then there exists a

Hilbert space Y such that Y � X, Y is dense in X, kxkY � kxkX
for each x 2 Y and Diff t

0

�0;
0(N) is a dense subgroup in Diff t�;
(M),
where N = M \ Y , 1 � t � 0, t0 � t, 1 � t0 � 1, �0 � � � 0,

0 > 
 + 2, ! � �0, � � 
0.

Proof. In view of Theorem I.4.4 [16] for BS X there exists a Hilbert
space Y , Y � X, kxkY � kxkX for each x 2 X. We take fFn :
n 2 Ng in X and an orthonormal base fen : n 2 Ng in Y with
e1 = z1, ei =

Pi
j=1 bi;jzj are chosen by induction, bi;i 6= 0. Since

k
Pn

i=1 x
izikY �

Pn
i=1 jx

ij � kzikY , k
Pn

i=m x
izikX �

Pn
i=m jx

ij �
(
Pn

i=m jx
ij2)1=2(n�m)1=2,

P1
n=1(

P2n
m=nm

d) <1 for each d < �2,
then there is a Hilbert space Y0 with an injection T : Y0 ! X being
a nuclear operator [20,22], Tx =

P1
i=1(x; yi)Y0zi, where x 2 Y0,

(�; �)Y0 is an inner product in Y0, fyig is a base in Y0 such thatP1
i=1 jyijY0 <1. Moreover, we can choose ei = bi;izi. Let Y0 � Y �

X, kxkY0 � kxkY � kxkX for each x 2 Y0. Then from De�nition
2.1 of �t�;
 and l2;
 , also from the consideration of multipliers �n�
 ,

n�n�
 , it follows that each g 2 Diff t
0

�0;
0(N) belongs to Hom(M),
since Fn � Y � X, t0 � 1, < x >Y�< x >X for each x 2 Y .
Therefore, g has the unique continuous extension ~g on M such that
~g 2 Diff t�;
(M), since N is dense in M and we can choose for each

0 < � the space Y0 with jyij � i�2�� for each i 2 N.

De�nition 2.8. Let M be a E1
!;�-manifold as in 2.5 that has a lo-

cally �nite partition of unity of the same class of smoothness. Hence-
forward, we suppose that there exists E1

!;�0 -submanifold N in M ;
N is modelled on a Hilbert space Y , where Y is as in 2.7 with
Diff1!;�0(Y ) � Diff1!;�(X) for the corresponding �0 � �, where M
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and N are separable. Also let N satisfy conditions in 2.2 and 2.4
such that Mk � N , Nk � N; Nk is dense in Lk for each k 2 N.

Corollary 2.9. LetM be a Banach E1
!;�-manifold and N be a Hilbert

E1
!;�0 -manifold such that they satisfy 2.8. Then Diff t

0

�;
0(N) is a

dense subgroup of Diff t�;
(M), if �0 � � � 
0 > 
 + 2, t0 � 1;
1 � t0 � t � 0 and ! � �.

Proof. For charts (Vj ;  j) of N with Vj \ Vi 6= ; a mapping  j � 
�1
i

is in the class of smoothness E1
!;�0 . In view of De�nitions 2.5, 2.8 and

Lemma 2.7 Diff t
0

�;
0(N) is a dense subgroup of Diff t�;
(M).

3. Structure of groups of di�eomorphisms

Theorem 3.1. Let G = Diff t�;
(M) be de�ned as in 2.5, 2.8. Then
it is a separable topological group. If At(M) is �nite, G is metrizable

by a left-invariant metric d.

Proof. Let at �rst At(M) be �nite. If f and g 2 G then f � g�1 2 G
due to Theorem 2.5 [1] and Ch. 5 in [21] about di�erentiation and
di�erence quotients of composite functions and inverse functions,
since �i � �

�1
j 2 E1

!;� for each i and j. At �rst we have d(f; id) > 0
for f 6= id in G, since there are i and j such that fi;j 6= idi;j .
Then d(hf; hg) = d(g�1h�1hf; id) = d(g�1f; id) = d(f; g), hence d
is left-invariant, where f; g; h 2 G. Therefore, d(f�1; id) = d(id; f);
in view of 2.1 and 2.3(i,ii) we have that d(id; f) = d(f; id), hence
d(f; g) = d(g; f).

It remains to verify, that the composition map (f; g)! f �g from
G�G! G and the inversion map f ! f�1 are continuous relative
to d. Let W = [f 2 G : dt�;
(f; id) < 1=2] and f; g 2 W . We have
fi;j � gj;l � idi;l = (fi;j � gj;l � fi;l) + (fi;l � idi;l) for corresponding
domain as an intersection of domains of fi;j � gj;l and fi;l. Hence,
using induction by p = 1; 2; : : : ; [t] + 1 and the Cauchy inequality we
have that there are constants 1 > C1 > 0, 1 > C2 > 0 such that
d(f �g; id) � C1(d(f; id)+d(g; id)) and d(f

�1; id) � C2d(f; id), since
limn!1[d

t
n;�;
(fi;j; idi;j) + dtn;�;
(gj;l; idj;l)] = 0, [t] + 1 and At(M)

are �nite, rinj > 0 and g satis�es 2.4 [8].
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Indeed, in normal local coordinates x (omitting indices (i; j) for
fi;j), M 3 x = (xj : j 2 N), f = (f j : C ! Rjj 2 N), C open in
X, using the Cauchy inequality we get:

P
i2N(j(f � g)

i � xiji
)2 �

2(
P

i[j(f �g)
i�giji
 ]2)1=2� (

P
i[jg

i�xiji
)2)1=2 +
P

i[j(f �g)
i�giji
 ]2

+
P

i[jg
i � xiji
 ]2 and

P
i;j[(@j(f � g)

i � �ij)i

j
 ]2 � a + b + ab +

2(a1=2b+ab1=2)+2a1=2b1=2, where a =
P

i;j2N[(@jf(f�g)
i�gig)j
 i
 ]2,

b =
P

l;j2N[(@jg
l � �lj)j


 l
 ]2, �il = 1 for i = l and �il = 0 for each
l 6= i, f � g = f � g(x), f; g 2 G.

Then we can proceed by induction for �nite products of D�
g (f �

g)i and Dxg
l, because D�

x id(x) = 0 for j�j > 1. For f = g�1 we

can express recurrently (D�
xf

�1) by (D�
xf) with �i � �i for each

i, since j�j � t. Analogously, for di�erence quotients, since (1 +
�)b = 1 +

P1
m=1

� b
m

�
�m for 0 < b < 1 and 0 < j�j < 1, � 2 R and

(1 + �b)b = 1 + b�b + z(�) with z : R ! R, lim�!0(z(�)=�
b) = 0

[21]. For countable in�nite At(M) for each f; g 2 G there are E(f),
E(f�1), E(g) and E(g�1) 2 � such that supp(f) � UE(f), etc.,
consequently, f(supp(f)) [ g�1(supp(g�1)) � UF for some F 2 �,
whence g�1 � f 2 G and there is E 2 � with supp(g�1 � f) � UE . If
(f
 : 
 2 �) and (g
 : 
 2 �) are two nets converging in G to f and
g respectively, so for each neighbourhood W � G there exist E 2 �
and � 2 � such that g�1
 � f
 2W and supp(g�1
 � f
) � UE for each

 2 �, where � is a limit ordinal.

In view of the Stone-Weierstrass Theorem and 2.1(i,ii) in each
E1
�;
(U; V ) for open U and V in X are dense cylindrical polyno-

mial functions with rational coe�cients, consequently, G is sepa-
rable, since E1

�;
(U; V ) is dense in Et
�;
(U; V ). Due to conditions

2.2(i-vi) and 2.5.2 for each open submanifold V � M with V � Mk

and � > 0 every f 2 Diff t�(Mk) has an extension ~f onto M such

that ~f 2 Diff t�;
(M) with ~�t�;
(
~f j(M nMk) \ U

E( ~f); id) < �.

Lemma 3.2. Let M be a manifold de�ned in 2.2, 2.4 with subman-

ifolds Mk and Nk, k = k(n), n 2 N. Then there exist connections

kr induced on Mk by r are the Levi-Civita connections, where r
is the Levi-Civita connection on M .

Proof. For each chart (Uj ; �j) we have �j(Uj) � l2 and in l2 for
each sequence of subspaces Rn � Rn+1 � � � � � l2 there are induced
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embeddings ��1j (Rn) \ Uj ,! ��1j (Rn+1) \ Uj ,! Uj. The Levi-
Civita connection and the corresponding covariant di�erentiation r
for the Hilbertian manifold M induces the Levi-Civita connection
r0 for each submanifold M 0 embedded into M , if M 0 is a totally
geodesic submanifold. That is, for each x 2M 0 and X 2 TxM

0 there
exists � > 0 such that a geodesic � = xt � M de�ned by the initial
condition (x,X) lies in M 0 for each t with jtj < � (Section 5 in [10],
Section VII.8 in [15]). Then using Theorem 5 in Section 4.2 [17]
and geodesic completeness of M we can choose such M 0 =Mk with
dimensions dim(Mk) = k 2 N and Mk(n) ,! Mk(n+1) ,! � � � ,! M

with
S
kMk dense inM . Each manifold

�
Mk was chosen Euclidean at

in�nity, since M is Hilbertian at in�nity. In view of Section VII.3 in
[15] and 5.2, 5.4 in [10] k(n+1)r onMk(n+1) induces k(n)r onMk(n).
The latter coincides with that of induced by r on M . Here each Mk

is geodesically complete, but normal coordinates are de�ned in Mk

in general locally as inM also, since may be rinj(x) <1 for x 2M ,
so that At(M) induces At(Mk) for each k = k(n), n 2 N.

Theorem 3.3. Let M be a manifold ful�lling 2.2, 2.4 and Diff t�;

(M) be as in 2.3 with t � 1, � � 0, 
 � 0. Then

(i) for each Et
�;
(M;TM)-vector �eld V its 
ow �t is a one-para-

meter subgroup of Diff t�;
(M), the curve t! �t is of class C
1,

the mapping ~Exp : TeDiff
t
�;
(M) ! Diff t�;
(M), V ! �1 is

continuous and de�ned on a neighbourhood of the zero section

in TeDiff
t
�;
(M);

(ii) TfDiff
t
�;
(M) = fV 2 Et

�;
(M;TM)j� � V = fg;

(iii) (V;W ) =

Z
M
gf(x)(Vx;Wx)�(dx) is a weak Riemannian struc-

ture on a Banach manifold Diff t�;
(M), where � is a mea-

sure induced on M by �j and a Gaussian measure with zero

mean value on l2 produced by an injective self-adjoint operator

Q : l2 ! l2 of trace class, 0 < �(M) <1;

(iv) the Levi-Civita connection r on M induces the Levi-Civita

connection r̂ on Diff t�;
(M);
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(v) ~E : TDiff t�;
(M)!Diff t�;
(M) is de�ned by ~E�(V ) = exp�(x)
�V� on a neighbourhood �V of the zero section in T�Diff

t
�;
(M)

and is a E1
!;� mapping by V onto a neighbourhood W� =Wid��

of � 2 Diff t�;
(M); ~E is the uniform isomorphism of uni-

form spaces �V and W . Moreover, (i; ii; v) is also true for

Diff t�;
(M), when M satis�es 2.8.

Proof. Let at �rst At(M) be �nite. In view of [12] we have that
TfE

t
�;
(M;N 0) = [g 2 Et

�;
(M;TN 0) : �0N � g = f ], where N 0 ful�ls
2.5, 2.8, �0N : TN 0 ! N 0 is the canonical projection. Therefore,
TEt

�;
(M;N 0) = Et
�;
(M;TN 0) =

S
f TfE

t
�;
(M;N 0) and the follow-

ing mapping wexp : TfE
t
�;
(M;N 0)! Et

�;
(M;N 0), wexp(g) = exp�g

gives charts for Et
�;
(M;N 0), since TN 0 has an atlas of class E1

�;�

with � � � � 0, � � 
. In view of Theorem 5 about di�er-
ential equations on Banach manifolds in Section 4.2 [17] a vector
�eld V of class Et

�;
 on M de�nes a 
ow �t of class E
t
�;
 , that is

d�t=dt = V � �t and �0 = e. Then lightly modifying proofs of Theo-
rem 3.1 and Lemmas 3.2, 3.3 in [7] we get that �t is a one-parameter
subgroup of Diff t�;
(M), the curve t ! �t is of class C

1, the map
~Exp : TeDiff

t
�;
(M) ! Diff t�;
(M) de�ned by V ! �1 is continu-

ous.

The curves of the form t! ~E(tV ) are geodesics for V 2 T�Diff
t
�;


(M), d ~E(tV )=dt is the map m ! d(exp(tV (m))=dt = 
0m(t), where

m(t) is the geodesic on M , 
m(0) = �(m), 
0m(0) = V (m). Indeed,
this follows from the existence of solutions of corresponding di�eren-
tial equations in the Banach space Et

�;
(M;TM) and then as in the
proof of Theorem 9.1 [7].

From the de�nition of � it follows that for each x 2M there ex-
ists open neighbourhood Y 3 x such that �(Y ) > 0 [6]. In view
of 2.2-4 there is the following inequality supx gf(x)(Vx; Vx) < 1
and also for W . Consequently, (V; V ) > 0 for each V 6= 0, since
V and W are continuous vector �elds and for some x 2 M and
Y 3 x with �(Y ) > 0 we have Vy 6= 0y for each y 2 Y . On
the other hand supx2M jgf(x)(Vx;Wx)j < 1, hence j(V;W )j < 1.
From gf(x)(Vx;Wx) = gf(x)(Wx; Vx) and bilinearity of g by (Vx;Wx)
it follows that (V;W ) = (W;V ) and (aV;W ) = (V; aW ) for each
a 2 R. Since t � 1, the scalar product (iii) gives a weaker topol-
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ogy than the initial Et
�;
 . For two Banach spaces A and B we

have the following uniform linear isomorhism Et
�;
(M;A � B) =

Et
�;
(M;A) � Et

�;
(M;B), where � denotes the direct sum. There-

fore, Et
�;
(M;TM) is complemented in Et

�;
(M;T (TM)), since TM
and T (TM) =: TTM are the Banach foliated manifolds of class E1

�;�

with � � �, � � 
 � 0. Then the right multiplication �h(f) = f � h,
f ! f � h is of class C1 on Diff t�;
(M) for each h 2 Diff t�;
(M).

Moreover, Diff t�;
(M) acts on itself freely from the right, hence

we have the following principal vector bundle ~� : TDiff t�;
(M) !

Diff t�;
(M) with the canonical projection ~�.

Analogously to [2,7,15] we get the connection r̂ = r � h on
Diff t�;
(M). Then (r̂X̂ Ŷ ; Ẑ) + (Ŷ ; r̂X̂Ẑ) =

R
M [< rXeYe; Ze >h(x)

+ < Ye;rXeZe >h(x)]�(dx) =
R
M [Xeg(Ye; Ze)]h(x)�(dx) = X̂(Ŷ ; Ẑ),

since Xg(Y;Z) = g(rXY;Z) + g(Y;rXZ) (Satz 3.8 in [10]) and
for each right-invariant vector �eld V on Diff t�;
(M) there exists

a vector �eld X on M with Vh = X � h for each h 2 Diff t�;
(M),

where X̂ := X � h (see also [18,19]). If r is torsion-free then r̂
is also torsion-free. From this it follows that the existence of ~E
and Diff t�;
(M) is the Banach manifold of class E1

!;�, since exp
and M are of class E1

!;�, �h(f) = f � h, f ! f � h is a C1 map

with the derivative �h : Et
�;
(M

0; TN) ! Et
�;
(M;TN) whilst h 2

Et
�;
(M;M 0), ~Eh(V̂ ) := exph(x)(V (h(x))), V̂h = V � h, V 2 �(M),

V̂ 2 �(Diff t�;
(M)).

The case of in�nite At(M) may be treated using the strict induc-
tive limit topology. �

Note 3.4. For a manifold N = �fMj : j 2 Jg, Mj =M for each j,
J � N, we have that Diff t�;
(N) is isomorphic to S 
Diff t�;
(M),
where S is a discrete symmetric group.

Henceforward, we assume thatM andMk are connected for each
k > n and some �xed n 2 N. For a �nite-dimensional manifold M
a space Et

�;
(M;R) (or Diff t�;
(M)) is isomorphic with the usual

weighted H�older space Ct
�(M;R) (or Diff t�(M) correspondingly).
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4. Irreducible unitary representations of a group of

di�eomorphisms of a Banach manifold

Theorem 4.1. Let M be a Banach manifold ful�lling 2.5, G =
Diff t�;
(M) be a group of di�eomorphisms as in 2.8 with t � 1,
� � !+ � and 
 > 2(1 + �) + �, where � > 2 for a Banach manifold,

� = 0 for a Hilbert manifold. Then (for each 1 � l � 1) there

exists a quasi-invariant (and l times di�erentiable ) measure � on

M relative to G.

Proof. The exponential mapping exp is de�ned on a neighbourhood
of the zero section of the tangent bundle TM and exp is of class E1

!;�

due to 2.5 (see also [17]). For each x 2 N we have TxN ~=l2. Suppose
F is a nuclear (of trace class) operator on l2 such that Fei = Fiei,
where ib � Fi � ic for each i, fei : ig is the standard base in l2,
1 � 
 + 2� < b � c < �1. Then there exists a �-additive Gaussian
measure � on l2 with zero mean and a correlation operator equal F .
Then a Gaussian measure on TxN induces a Gaussian measure on
TxM for x 2 N [16]. Therefore, expx induces a �-additive measure �
on W 3 x, where W = expx(V ), 0 2 V is open in TxM , 0 < �(V ) <
1, �(C) = �(exp�1x (C)) for each C 2 Bf(W ). The manifold M is
paracompact and Lindel�of [9], GW =M , hence there is a countable
family fgj : j 2 Ng � G, g1 = e, W1 = W and open Wj � W such
that fgjWj : jg is a locally �nite covering of M with W1 =W , g1 =
id. For C 2 Bf(M) let �(C) :=

P
j2N �((g

�1
j C) \Wj)2

�j (without

multipliers 2�j the measure � will be �-�nite, but not necessarily
�nite).

The following mapping Yg := (exp � g � exp�1x ) on TM for each
g 2 G satis�es conditions of Theorems 1,2 in Section 26 [23]. Indeed,
(@gi=@xj)i;j2N in local natural coordinates (x

j) is in the class Et0�1
�0+1;
0

(see 2.4, 2.8). In view of these theorems and [3,6,11] the measure
� is quasi-invariant and l times di�erentiable, since the continuous
extension of the operator ((Yg)

0 � I)F�1=2Q from TxN onto TxM
is of trace class on the Banach space TxM and dgt=dt = V � gt

(see the proof of Theorem 3.3 above and [20,22]), where gt = �t,
Qx =

P
j x

jj�ej , x =
P

j xjej 2 l2, x
i 2 R.

Definition 4.2.1. LetM satisfy conditions in 2.5. For a given atlas
At(M) we consider its re�nement At0(M) = f(U 0

j ;  j) : j 2 Ng of
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the same class E1
!;� such that fU 0

jg is a locally �nite covering of M ,

for each U 0
j there is i(j) with Ui(j) � U 0

j , exp
�1
x is injective on U 0

j for

some x 2 U 0
j, exp

�1
x (U 0

j) is bounded in TxM . Henceforward, M will
be supplied by such At0(M) and Diff t�;
(M) will be given relative
to such atlas.

Definition 4.2.2. Let � be a non-negative measure on M quasi-
invariant relative to G = Diff t�;
(M) (see Theorem 4.1) such that
�(M) = 1, � is �-�nite and �(U 0

j) < 1 for each j. Then � is
considered on Af(M;�). We consider X =

Q
i2NMi, whereMi =M

for each i. Take Ei 2 Af(Mi; �), put E =
Q

i2N Ei, which is called
a unital product subset of X if it satis�es the following conditions:

(UPS1)
X
i2N

j�(Ei)� 1j <1 and �(Ei) > 0 for each i;

(UPS2) Ei are mutually disjoint :

Note 4.3. In view of 4.2 the above de�nitions 4.2.1,2 and Lem-
mas 1.1, 1.2 [13] are valuable for the case considered here (G;M;�)
for in�nite-dimensionalM . Henceforward, we denote by G the con-
nected component of id 2 Diff t�;
(M) from 4.2.2. Further, the
construction of irreducible unitary representations follows schemes
of [13] for �nite-dimensional M and [18] for non-Archimedean Ba-
nach manifolds, so proofs are given brie
y with emphasis on features
of the case of the real Banach manifold M .

4.4. Let E be co�nal with E0 (ERE0 ) if and only if

(CF )
X
i2N

�(Ei4E
0
i) <1;

E be strongly co�nal with E0 (E ~=E0 ) if and only if

(SCF ) there is n 2 N such that �(Ei4E
0
i) = 0 for each i > n;

where Ei4E
0
i = (Ei n E

0
i) [ (E0

i n Ei), �(E) := fE0 : E0REg.
Put �E(E

0) =
Q

i2N �(E
0
i) for each E0 2 �(E). In view of the

Kolmogorov's Theorem [6] �E has the �-additive extension onto the
minimal �-algebra M(E) generated by �(E).
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The symmetric group of N is denoted by ~�1, its subgroup of
�nite permutations of N is denoted by �1. For g 2 G there is
gx = (gxi : i 2 N), where x = (xi : i 2 N) 2 X, for � 2 ~�1 let x� =
(x0i : i 2 N), x0i = x�(i) for each i. Quite analogously to Lemma 1.3

[13] we have the following Lemma 4.5 due to supp(g) � UE(g) for
some E(g) 2 � and �(UE(g)) < 1, where UE =

S
j2E Uj , (Uj ;  j)

are charts of At0(M).

Lemma 4.5. Let E be a unital product subset of X. Then

(i) (gE)RE for each g 2 G,

(ii) �(E) is invariant under G and �1.

4.6. In view of 2.6, 2.8, 4.2.1 and the proof of 4.1 we may choose �
such that for each g 2 G there is its neighbourhood Wg and there
are constants 0 < C1 < C2 <1 such that

(i) C1 � q�(f; z) � C2

for each x 2 m and f 2 Wg with supp(f) � UE(g). Indeed, for each
Uj there exists y 2 Uj such that exp�1y Uj is bounded in TyM . Hence
for each �xed R, 1 > R > 0, for operators Yf = U of non-linear

transformations the term jdet((Yf )
0(x))j�1expf

P1
l=1[2(x � Y �1

f (x);

el)(x; el) �(x�Y
�1
f (x); el)

2]=Flg is bounded (see f after (i)) for each

x 2 l2 with kxk < R. For z 2 M n UE(g) we have q�(f; z) = 1.
Therefore, we suppose further that � satis�es (i).

If S 2 Af(M;�) and �(S) <1 we may consider measures �k = �
on E0

k, �k = �k on E
0
k n S and �k = 0 on S, suppose Ln =

Qn
i=1Mi,

�Ln =
Nn

i=1 �i, Pn : X ! Ln are projections, �k(x) = �k(dx)=�(dx).
Then �k(x) = 0 for each x 2 S. Using the analog of Lemma 16.1
[23] for our case we obtain the analog of Lemmas 1.4, 1.6, 1.7 and
Theorem 1.5 [13], since M has a countable open base f ~Uj : j 2 N

there is E 2 � such that ~Uj � UEg.

4.7. The manifold M is Polish, hence M is the Radon space [6] and
for each unital product subset E for each i there is a compact ~Ei �M
such that �(Ei4 ~Ei) < 2�i�1 and ~Ei � Uh(i) for corresponding h(i) 2
�. Since each open covering of ~Ei has a �nite subcovering we may
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choose E0
i 2 At(M;�) with �nite number of connected components.

As in Section 1.8 [13] we can construct E"RE such that E"i are
mutually disjoint.

Proposition 4.8. Each unital product subset E is co�nal with E0

satisfying the following conditions:

(UP3) the closure cl(E0
i ) and cl(

S
j 6=iE

0
j ) are mutually disjoint and

E0
i is open for each i and infi infx2E0

i ; y2
S

j 6=i E
0
j
dM (x; y) > 0,

E0
i � Uh(i), h(i) 2 �;

(UP4) E0
i and E0

i;k are connected and simply connected, there is n 2
N such that for each k > n and i 2 N there exists g 2 G with

g(E0
i;k) = Bi;k being an open ball in a coordinate neighbourhood

of Mk with gj(M nMk) = id and infx2@Mk; y2E
0
i;k
dM (x; y) > 0;

g( �E0
i;k) =

�Bi;k, where �B := cl(B), E0
i;k := E0

i \Mk. For i 6= j,

E0
i and E0

j can be connected by an open path Pi;j such that
�Pi;j \ cl(

S
k 6=i;j E

0
k) = ;.

Proof. In view of 3.4, M and Mk are connected for each k > n and
some �xed n 2 N. Then using 3.1, locally �nite coverings of M and
Mk [9] and shrinking slightly E0

i such that @E0
i are of class E1

!;�

analogously to steps 1-4 [13] and using properties of � we prove this
proposition. Indeed, � is approximable from beneath by the class of
compact subsets [6].

4.9. Henceforth, � : �1 ! U(V (�)) denotes a unitary representa-
tion on a Hilbert space V (�) over C , H(

P
) denotes a Hilbert space

that is the completion of
S
E02�(E)H

�
jE0 with the scalar product

< �1; �2 >=
X
�2�1

Z
E1\E2�

< �1(x);�(�)
�1�2(x�

�1) >V (�) �E(dx);

where H�
jE0 := L2(E0;M(E); �E jE

0; V (�)) is a Hilbert space of func-

tions on E0 with values in V (�),
P

:= (�;�;E); E0RE, E is a unital
product subset of X. Then we de�ne a representation

(i) TP(g)�(x) := �E(g
�1jx)1=2�(g�1x);
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where �E(g
�1jx) := (�E)g(dx)=�E(dx), (�E)g(C) := �E(g

�1C) and
�E(gjx) =

Q
i2N �M (g;xi), �M (g;xi) := q�(g

�1;xi) (see Section 2
[13] and 5.9 [18]).

Proposition 4.10. The formula 4.9(i) determines a strongly con-

tinuous unitary representation of G (given by 4.2 and 4.3) on the

Hilbert space H(
P
).

Proof. The space H(
P
) is isomorphic with the completion H 0(

P
)

of
S
E02�(E)H

0�
jE0 with the scalar product < f1; f2 >H0 :=

R
F <

f1(x); f2(x) >V (�) �E(dx), where fi 2 H 0�
jE(i), E

(i) 2 �(E), F 2

M(E), F� for � 2 �1 are disjoint and supp(f1(x)f2(x)) �
S
�2�1

F�.

Here H 0�
jE0 is a space of functions f = Q��, where � 2 H

�
jE0 and

(i) Q�� :=
P

�2�(R(�)�(�))�, (Q�(�))(x�) = �(�)�1�(x);

(ii) R(�)�(x) := �(x�);

(iii) �(�)�(x) := �(�)(�(x)), kfk2 =
R
E0 kf(x)k2V (�)�E(dx) <1,

since E0� for � 2 �1 are disjoint for di�erent �. Therefore, as in
2.1 [13] we get

< TP(g)f1; f2 >

=< v1; v2 >V (�) �
Y
i2N

Z
(gB

(1)
i )\B

(2)
i

�M (g�1;xi)
1=2�(dxi);

for fj = Q��j , �j = �B(j) 
 vj , where �C is the characteristic
function of C (see also 4.6(i)).

Let us �x J 2 � and take UJ =
S
j2J Uj �M . As in the proof of

Theorem 5.6(a) [19] (see 4.6(i)) we can �nd a neighbourhoodW 3 id
in G and 0 < c1 < c2 < 1 such that c1 � �M (g�1; y) � c2 for each
y 2 UJ and �M (g�1; y) = 1 for each y =2 UJ for each g 2 W with
supp(g) � UJ . Hence for each � > 0 there exists W 3 id such
that j < TP(g)f1; f2 > � < f1; f2 > j < �, consequently, due to the
Banach-Steinhaus Theorem [36] there exists a neighbourhood V 3 id
such that k(TP(g) � I)f1k < � and TP is strongly continuous.
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It is interesting to note that 4.10 may be proved from the in-
equality:

kTP(g)f1�f1kH0(
P
)

� jvj2
Z
F
jf1(x)� f1(g

�1; x)�E(g
�1jx)1=2j2�E(dx):

Then we consider restrictions gjMk and properties of (Yg)
0 (or g on

M nMk) such that cardfi : supp(g) \ Fi;kg < @0 for each k 2 N. In
view of Theorems 26.1,2 [23] for each sequence gn with limn gn = e
and for each � > 0 there is m such thatZ

F
jf1(x)� f1(g

�1
n x)�E(g

�1
n jx)1=2j2�E(dx) < �;

for all n > m, since there is E 2 � with supp(gn) � UE for every
n > m.

4.11. Let E1; : : : ; Er be mutually disjoint open subsets of M , H1 :=Nr
i=1 L

2(Ei), L
2(Ei) := L2(Ei;�jEi), G1 :=

Qr
i=1GjEi

, GjEi
:= fg 2

G : supp(g) � Eig, denote byG(Ei) the connected component of id 2
Diff t�;
(Ei), also let fEi;j : j 2 Jig be the connected components
of Ei. Then GjEi;j

= G(Ei;j), since for each continuous mapping
F : [0; 1]! G we have by continuity that

(i) F (�)(Ei;j) � Ei;j for each � 2 [0; 1] � R and each j 2 Ji.

Indeed, suppose J is the connected subset of [0; 1] such that 0 2 J
and for each � 2 J is satis�ed (i). If v = sup(J) < 1 then by
continuity there is w > v for which [0; w] have the same properties
as J . Hence the maximal such J coincides with [0; 1].

We de�ne and consider ~G(E0) :=
Q
"i2NG(E

0
i) := fg = (gi : i) :

gi 2 G(E0
i); supp(gi) � UE(gi), (

S
i2N E(gi)) 2 � for each ig. There-

fore,
Q
"j2JiG(Ei;j) = GjEi

. Then quite analogously to Lemma 3
[13] and Lemma 5.12 II [18] we get that the following representation
L1 of G1 is irreducible: (L1(g)f)(y) =

Qr
i=1 �M (g�1i ; yi)

1=2f(g�1y)
for f 2 H1, g = (gi : i) 2 G1 and y = (yi : i) 2

Qr
i=1Ei, since GjEi

is dense in Gi := G \
Q

j2Ji
G(Ei;j) and L1 is strongly continuous,

GjEi
�
Q

j2Ji
G(Ei;j). Indeed, in view of Proposition 4.8 GjEi

is
connected, since G is connected.
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Then L1 on Gi is decomposable into irreducible components,
since L1 of G(Ei;j) on L

2(Ei;j) is irreducible. In view of strong con-
tinuity of L1 on the dense subgroup GjEi

it follows that its strongly
continuous extension on Gi is also unitary. Then the rest of Sec-
tion 3.1 [13] may be transferred onto the case considered here.
Let LE0(g)f(x) = �E(g

�1jx)1=2f(g�1x) for g 2 ~G(E0), f 2 HjE0 :=
L2(E0;M(E)jE0; �E jE

0), x 2 E0. Then we get the following.

Lemma 4.12. Let E0 2 �(E) and E0
i be open and connected. Then

the unitary representation LE0 of ~G(E0) on HE0 is irreducible.

4.13. Let us consider

(i) G((E0)) := fg 2 Gj there is k = k(n); n 2 N and � 2 �1, such
that g(E0

i;k) = E0
�(i);k for each i 2 N and gjM nMk = idg, where

E0 =
Q

i2N E
0
i (E

0
i � M) satis�es (UP3 � 4) and E0 2 �(E),

Ei;k = Ei \Mk. In view of the foliated structure in M this
group is dense in

(ii) fg 2 G : supp(g) �
S
i2N E

0
ig.

Lemma 4.14. Let E0 2 �(E) satisfy (UP3 � 4). Then for any

� 2 �1 there is n such that for each k > n there exists g 2 G((E0))
with g(E0

i;k) = E0
�(i);k for each i, moreover, gjE0

i = idjE0
i if �(i) = i.

Proof. It is quite analogous to that of Lemma 3.4 [13], since each
Mk is locally compact and connected, also due to properties of �
induced as the image of the Gaussian �-additive measure. On the
other hand, the latter is fully characterised by its weak distribution
and is with the Radon property (see Lemma 2 and Theorem 1 in
Section 2 [23]).

4.15. Let E0 be as in 4.12, H�
jE0 = L2(E0;M(E)jE0; �E jE

0;V (�)),

H 0�
jE0 = Q�H

�
jE0 (see the proof of 4.10). For each g 2 G((E0))

there are � 2 �1 and k = k(n), n 2 N such that g(E0
i;k) = E0

�(i);k

for each i 2 N and gj(M n Mk) = id. Suppose f = Q��, � 2
H�
jE0 . If (�) � depends only on fx = (xi : i)jxi 2 E0

i;kg then

(TP(g)f)(x) = �E(g
�1jx)1=2�(�)�(g�1x�). If (�) � depends only

on fx = (xi : i)jxi 2 E0
i nMkg then (TP(g)f)(x) = f(x). Then if

�(x) = �1(x) � �2(x), where �2(x) is of type (�) or (�) and �1 :
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E0 ! C is also of type analogous to (�) or (�) then TP(g)f 2 H 0�
jE0.

Let Gk((E
0)) = fg 2 G((E0)) : gj(M nMk) = idg, then

S
kGk((E

0))
is dense in G((E0)). Denote Hk := f� 2 H�

jE0j�(x) is constant on

M nMkg, H
0
k := Q�Hk. In view of Proposition 4.8 we have that the

following representation TE0(g)�(x) = �E(g
�1jx)1=2�(�)�(g�1x�) is

irreducible, where � 2 Hk, g 2 Gk((E
0)), x 2 E0, � 2 �1 is such

that g(E0
i;k) = E0

�(i);k for each i (see also Lemma 3.5 [13]). Then we

obtain analogously to Lemma 4.2 [13] the following lemma.

Lemma 4.16. Let F =
Q

i2N Fi satis�es (UP3 � 4). Then there
exists F 0 2 �(F ) satisfying (UP3� 4) and

(UPS5) M n cl(
[
i>N

Fi) is connected for every N > 0:

Proof. Consider Fi;k = Fi \Mk and measures �k on Mk induced by
� on M and the projection Pk : l2 ! Rk and choose F 0 such that

j�k(n+1)(F
0
i;k(n+1)4Fi;k(n+1) � �k(F

0
i;k(n)4Fi;k(n))j

< 3�i�2(k(n)+1)�(Fi);

for each k = k(n) and i; n 2 N. Then use Theorem 3.1 [13].

Theorem 4.17. The unitary representation TP of G (de�ned in

4.2) on H(
P
) is irreducible.

Proof. Considering the sequences fMk : kg, fGk((E
0)) : kg and fHk :

kg, using 4.2-4.16 and strong continuity of TP we get from the proof
of Theorem 4.1 [13] that TP is irreducible. Indeed, we may consider
� := fE0 : E0 ~=E0; E0 satis�es (UP3�4)g instead of � in Section 4.3
[13].

Theorem 4.18. Suppose TP
i
are unitary representations of G with

parameters
P

i = (�i;�;E
0). Then, (TP

i
;H(

P
i)), i = 1; 2 are

mutually equivalent if and only if there exists a 2 ~�1 such that

�1 ~=
a�2 and E1 2 �(E2a

�1), where ( a�)(�) := �(a�1�a).

Proof. In view of 4.8 and 4.9 we may assume without loss of general-
ity that Ei satis�es (UP3� 4; UPS5) for i = 1 and 2. Then we con-
sider G(1) := G((E(1))) \ G((E(2))) � G and G(2) :=

Q
"k2NG(Ck),
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where Ck are all connected components of E
(1)
i;j = E

(2)
j;i (with E(2)

here instead of F (2) in [13]). Instead of equations (5.7) [13] we have
corresponding expressions as intersections with Mk in both sides for
some k = k(n), n 2 N. Using the sequences fMkg, fGk((E

0))g
and strong continuity of TP

i
we get the statement of Theorem 4.18

analogously to Section 5 [13].

Note 4.19. The construction presented above of irreducible uni-
tary representations is valid as well for each dense subgroup G0 of
Diff t�;
(M) such that the corresponding non-negative measure � on
M is left-quasi-invariant relative to G0 and satis�es 4.2 and 4.6.
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