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Irreducible Unitary Representations
of a Diffeomorphisms Group of an

Infinite-dimensional Real Manifold
S.V. LUbpkovsky *)

SUMMARY. - Groups of diffeomorphisms Diffé’,y(M) of infinite-di-
mensional real Banach manifolds M are defined. Their struc-
ture is studied. Irreducible unitary representations of a group of
diffeomorphisms associated with quasi-invariant measures on a
Banach manifold are constructed.

1. Introduction

For a locally compact (finite-dimensional) manifold M irreducible
unitary representations of a group of diffeomorphisms were con-
structed in [13] with the help of a measure on M induced by the
Lebesgue measure on R” and the Riemannian metric g on M. Each
group of diffeomorphisms is an infinite-dimensional manifold itself.
Their structure for locally compact M was investigated in [2,7].

This article is devoted to the definition of a group of diffeomor-
phisms of a Banach manifold and the construction its irreducible
unitary representations. For this are used quasi-invariant Gaussian
measures on M.

In Section 2 notations and definitions are given. Section 3 con-
tains results about the structure of a group of diffeomorphisms. Ir-
reducible unitary representations of a group of diffeomorphisms as-
sociated with a quasi-invariant measure on a Banach manifold are
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described in Section 4. There is the great difference in investigations
between cases of finite-dimensional and infinite-dimensional M. The
main results of the present paper are deduced for the first time and
given below in Theorems 3.3, 4.1, 4.17, 4.18.

2. Notations and definitions

To avoid misunderstandings, we first present our notations and ter-
minology.

Definition 2.1. Let U and V' be open subsets in l5. We consider
a space of all infinitely many times Frechét (strongly) differentiable
functions f,g : U — V fulfilling (i, ii) and with a finite metric
ptﬂﬁ(f, h) < oo, where h is some fixed smooth mapping h : U — V
(that is of class C'™);

o0

(@) P, (frg)= sup (O [dh s, (f,9))? < o0

z€eU, y#x, yeU n=0

do 5 (f.9) = I <z > (f(2) = g(2)) s,

(s (£r9))7 = D Ia% <@ > D(f(x) — (@), ,+
a™#0, |a|<t
oz:(cz1 ..... a™)
+ Y e <@ SO D (f(z) - (@)
oz:(cz1 ..... a™)
la|=[t]

— Dy (f(y) — g, /=" = v >,

forn e N:={1,2,3,...}, dfm,ﬁ,y (f,9) = dz,ﬂﬁ(f,g)(x,y), such that
(@) Jim gl (FIUR, AIUR) = 0.

Here z = (27 : j €N, 27 € R) € Iy, that is

00 ) 1/2
el = {Z(W)Z} < oo,
j=1
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00 >y > 0, ls = l29 is the standard separable Hilbert space over R
with the orthonormal base {e, : n € N}, U§;, := (z € U : ||z||;, > R),
f(z) = (fi(z) : j €N, fi(z) € R), t > 0, [t] is the integral part of ¢
(the largest integer such that) [t] <t b= {t} =t —[t],0<b< 1

¢j

(for b = 0 the last term in the definition of dfz,ﬁ,y is omitted), Dy’ :=
0/0x) =: 9;, D§V7 f(x) := DY(D2f(x)), e = (0,...,0,1,0,...) with
1 in the j-th place, a = (a,...,a"), & e NUO = N,, |a| = o' +
c+a" BER <E>=min(<z >, <y>), <z >=(1+]z]})"?
f(z) —g(x) € la, f|A denotes a restriction of f on a subset A C U,
A% =1229" | n°" forn e N.

We denote by EE’,’;(U, V) the completion of such metric space,
EY := ;%) B}(U,V) with the topology given by the family (o7 :
j € N) in the latter case. For V = [y and h(u) = 0 it is the
Banach space with [f —gllger 11,y = P (fr9) = ph(f — 9,0)
that is, the infinite-dimensional separable analog of the weighted
Holder space Cj(U',R™) (compare with [5]) for open U’ C RE, &k
and m € N. When v = 0 or h(U) = 0 we omit 7 or h respectively.
It is evident that each cylindrical function g(Pjyz) is in EE(U, l2)
if g € CE(U’,R’”), P, : Iy — RF is the orthogonal projection,
U = (P) YU, g(Pez) := (¢"(Ppz),...,9™(Pyz),0,0,...). The
spaces EZ)(U, V) differ from E}(U,V) =: EY(U,V) for unbounded U
if B> 0.

Definition 2.2. Let M be a manifold modelled on [3 and fulfilling
conditions (i-vi) below:

(i) an atlas At(M) = [(Uj,¢;) = j = 1,...,k] is finite, &k € N
(or countable, k& = o0), ¢; : U; — lo are homeomorphisms
of Uj onto ¢;(U;) 2 0, U; and ¢;(U;) are open in M and [y
respectively, (¢; o ¢; * — id) € EX5 (¢i(U; N Uj),l2) for each
UiNU; # 0, where w > 0, v > 0, id is the identity mapping
id(z) = z for each x;

(ii) TM is a Riemannian vector bundle with a projection 7 : TM —
M and a metric g, in T, M induced by || * [|;, with a RMZ-
structure. This means that a connector K and g are such
that g.(X,Y") is constant for each C*®-curve ¢ : I — M, I =
[0,1] C R and parallel translation along ¢ of X and Y € E(M),
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E(M) := Eprym(M) is the algebra of infinitely differentiable
vector fields on M (see 3.7 in [10]);

(M, g) is geodesically complete and supplied with the Levi-
Civita connection and the corresponding covariant differentia-
tion V (see 1.1, 2.1 and 5.1 in [10]);

the charts (Uj, ¢;) are natural with the natural (Gaussian) co-
ordinates with locally convex ¢;(U;) and the exponential map-
ping exp, : V), — M corresponding to V, where V), is open
in T, M for each p € M, each restriction exp,|V), is the local
homeomorphism (see Section IIL.8 in [15], Section 6, 7 in [10])
such that r;,; := infycps rinj(x) > 0, where r4,;(z) is a radius
of injectivity for expy, rin; is for entire M;

M is Hilbertian at infinity, that is, there exists Mz C M with
M\ Mp =: M§, equal to finite (or countable) disjoint union
of connected open components §2,, a = 1,...,p, such that
¢, (Q) = Iz \ By, where B, are closed balls in 5, each €,
is with a metric & induced by ¢! and the standard metric in
lo. Let a metric g for M be elliptic, that is, there exists A > 0
such that A\é;(£,€) < gz(§,&) for each £ € T,M and =z € M,
where Mp := [z € M : dy(z,z9) < R], xo is some fixed
point in M, djs is the distance function on M induced by g,
oo > R > 0 (see for comparison the finite-dimensional case of
M in [5));

M contains a sequence of M} and Ni. They are supposed to be
closed E’ -submanifolds with finite dimensions dimg M) = k
for M}, and codimensions codimg Ny = k for Ny, k = k(n) € N,
k(n) < k(n + 1) for each n, M) C M; and Ny D N; for each
k<l, M = My UN,, M, NN, = OMy N IN;, for each k
such that J, M}, is dense in M, At(M) and M are foliated in
accordance with this decompositions. These means that («)
bij = ¢io ¢j_1|¢j(Ui NUj) — Iy are of the form ¢; j((z' : [ €
N)) = (i jr(z1,- .- 2k), Yiju((@ 1> k))) foreachn €N, k =
k(n), when M is without boundary, OM = 0. If OM # () there
is the following additional condition: (3) for each boundary
component My of M and U; N My # () we have ¢; : U; N My —
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H;, where H; = {(:E] 1] E N)| ! > 0}. If U;N My # () and U;n
My # () we have both images in Hy (or in H; with [ > 1), then
the foliation is called transverse (tangent respectively) to M.
Then the equivalence relation of E7° -atlases that produces
foliated M (see also [12] for finite-dimensional C"-manifolds)
is as usually considered.

Definition 2.3. Let M and M be two manifolds as in 2.2 with a
smooth mapping (for example, an embedding) 6 : M — M, w and
@ > maz(0 B)BERtEI&_ [0,00), 00 >~ >0, 6 and § > 7.
We denote by E (M M) a space of functions f : M — M with
0

fig = diofody B (008, i) € € B3 (¢;(U;)N
qu(f YUy))), ¢i(U;)) for each i and j. When At(M ) is finite it
is metrizable by a metric (7) ﬁgﬁ(f, 0) == >, me(fi,j,&,j) with
(47) limp_s oo ﬁtﬁ ,(f|MF,0) = 0. For infinite countable At(M) we de-
note by Et’g (]\;[ M) the strict inductive limit str—ind— lim[Et’a (UE,
M), 1L, Z] where £ € X, ¥ is the family of all finite subsets of
N directed by the inclusion E < F if E ¢ F, UF := U]eE

,0 ,0
(U, ¢5) areNChartNS of At(M), TIL : EEW(UE,M) — EZW(UF,M)
and Ilg : E;i(M , M) are uniformly continuous embeddings (iso-
metrical for 0 < ¢ < o0). Evidently, E;;i(M , M) is the space of
functions f of the class E,gev with supports supp(f) := cl{z € M :
f(z) #0} cUPY) E(fye S and 0 € W C EEZ(M,M) is open if
and only if TI,}(W) N E;;i(UE, M) is open for each E € 3.
Let Hom/(M) be a group of homeomorphisms of M and Difféﬁ(M) :
=[f € Hom(M): f and f~! € EEW(M,M)] be a group of homeo-
morhisms (diffeomorhisms for ¢ > 1) of class EEM' When At(M) is
finite it is metrizable with the right-invariant metric

(i@3)  d(f.9) = Ph (97" f,id),

where 6 is the identity map for M = M, @ = id (in this case the
index 6 is omitted), § > 0 (see also [14] for finite-dimensional M,
correctness of this definition is proved in Theorem 3.1). Henceforth,
we omit tilde in E.
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Definition 2.4. A Riemannian metric g for M Hilbertian at infinity
is called regular Hilbertian asymptotically, if there exist 6 > 0, ¢’ >
1, 8/ >0, 00 > " > 0 such that (g — €),(£,€) € Et',ﬁ,(M,R)
by z for each £ € TM, £ = (& : = € M), ||&]li, < 1 for each
z € M, supeerpy, |je,)<1 1(9 — €)a(&, f)HEt' (M) < 0. For spaces

EEW(M, N) with M = N or N being a Banach space over R we
assume that w > max(0, 8) and ' > maxz(0,5), ¢ >t+1,9 >~ in
2.2, 2.4.

DEFINITION 2.5.1. Let X be separable BS over R. Suppose that

F, C Fpyy C --- C X, dimrpF, = n, is a sequence of finite-
dimensional subspaces. Let {z, : n € N} be a sequence of linearly
independent vectors in X with ||z,||x = 1, spr{z1,...,2n} = F, for

each n. For open U and V in X we consider a space of all infinitely
many times Frechét differentiable functions f,g: U — V fulfilling (i,
ii) in 2.1 and with pfm(f, h) < oo, where h : U — V is some fixed
smooth (of class C*) mapping h : U — V, D¢ for a = (a!,...,a")
is the operator of differentiation by (z!,...,2") € F,, but with
Ug :={z € U : |z|lx > R} and < z >= (1 + [|z|%)"/2. We
denote by EZ’Z the completion of such metric space and consider
EZX(U,V) as in 2.3.

DEFINITION 2.5.2. Let M be a paracompact separable metrizable
manifold modelled on X [17] and fulfilling (i, ii) below:

(i) an atlas At(M) = [(U;,¢;) : 1 < j < k + 1] is finite, £ € N
(or countable k& = wy), ¢; : UJ — X are homeomorphisms
of U; onto ¢j(U;) 3 0, U; and ¢;(U;) are open in M and X
respectively, (qu b; v id ) € E%%(¢;(U; N Uj), X) for each
UinU; # 0, where w > 0 v > 0 id(z) = x is the identity
mapping, wy is the initial number of cardinality R [9];

(ii) M contains a sequence of My and Lj submanifolds. They are
of class E7°, with dimg M), = k for M}, and codimgLy, = k for
Ly, k= k(n) €N, k(n) < k(n+ 1) for each n, M C M; and
L; D L for each k <1, M = M U L, My N L = OM;, N 0Ly,
for each k such that (J, M}, is dense in M. Moreover, M and
At(M) are foliated. That is, they fulfil («, 3):
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() ijj: pio gbj_1|¢j(Ui NU;) — X are of the form ¢; ;((z! :
1€N) = (a iz, ..., 2%), yijk((z' 1 1 > k))) for each
n € N, k = k(n), when M is without a boundary, M = ().
If OM # () then:

(B) for each boundary component My of M and U; N My # 0
we have ¢; : U; N\ My — H;, where H; = {z € X : 2! > 0},
z! = P,/(z) is the projector of X onto Rz along X © Rz
(see [22]).

DEFINITION 2.5.3. Analogously to Definition 2.3 we consider spaces
ES’ (M, M) and Dif f} (M) for M and M as in 2.5.2.

Then Dif f55 (M) is defined as (,cyy Dif f75 (M) and Dif f2° (M) =
Nien Dif f éﬁ(M ) with the corresponding standard topologies of pro-
jective limits [9,22].

Definition 2.6. Let G be a topological group. A Radon measure p
on Af(G,p) (or von Af(M,v)) is called left-quasi-invariant relative
to a dense subgroup G’ of G, if pg(x) (or v4(x)) is equivalent to
p(x) (or v(x) respectively) for each ¢ € G'. Henceforth, we assume
that a quasi-invariance factor g, (¢, g) = pg(dg)/1(dg) (or g, (¢, z)) is
continuous by (¢,g) € G'xG (or € (G'xM)), u: Af(G,pn) — [0, 00),
p(V) >0 (or v: Af(M,v) — [0,00), (V) > 0) for some (open)
neighbourhood V' C G (or C M) of the unit element e € G (or a
point € M), u(G) < oo (or (M) < oo and is o-finite respectively),
where piy(E) := p(¢™'E) for each E € Af(G,u), Af(G,p) is the
completion of Bf(G) by u, Bf(G) is the Borel o-field on G [6].

Let (M, F) be a space M of measures on (G, Bf(G)) (or (M, Bf(M))
) with values in R and G” be a dense subgroup in G such that a
topology T on M is compatible with G”, that is, u — pp (or v — vp,)
is the homeomorphism of (M, F) onto itself for each h € G”. Let T
be the topology of convergence for each E € Bf(G) (or € Bf(M))
and W be a neighbourhood of the identity e € G such that J is
dense in W, where J :=[h: h € G NW =: W?”, there exists b €
(—1,1) and g(b) = h with [g(c) : c € (=1,1)] C W], g(c1 + ¢2) =
g(c1)g(c2), g(0) = e are one parameter subgroups, ¢1,co € R We
assume also that for each f € W” there are g(b1),...,g9(bx) € J
such that f = ¢(b1)...g(bx). A measure p € M (or v € M ) is
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called differentiable along g(b) in a point g(c) if u(g(b) 'E)—u(E) =
(b—c)(1' (g(c); E)+a(g(b); E)) and there exists limy_,. a(g(b); E) =0
and p'(g(c); E) € R is continuous by g(c) for each E € B f(G), where
band c € R, p/(g(c); E) is called the derivative (by Lagrange) along
g(b) in g(c) (analogously for v on M). Let by induction A(x) =
19 (g(cr), ..., g(cj—1); %) and there exists X(g(c;); E), then it is
denoted 1) (g(c1),...,9(c;); E) and is called the j-th derivative (by
Lagrange) of p along (g(b1),...,9(b;)) in (g(c1),-..,9(c;)), where
jEeN

Lemma 2.7. Let M be a EZs-domain in X. Then there exists a
Hilbert space Y such that Y C X, Y is dense in X, ||z]ly > ||z|x
for eachx € Y and Diffg,ﬁ, (N) is a dense subgroup in Difféﬁ(M),
where N = MNY,oc0>t>0,t' >t,co>t'>1, >5>0,
YV >y+2,w>p,629

Proof. In view of Theorem 1.4.4 [16] for BS X there exists a Hilbert
space YV, Y C X, |lz|ly > ||z||x for each z € X. We take {F,

n € N} in X and an orthonormal base {e, : n € N} in Y with
er = z1, € = 23:1 b; jzj are chosen by induction, b;; # 0. Since
IS, w2y < Sy ol x el [0, szl < S Jai] <
(0 2 )2 (n —m) 2, 3220 (302 m?) < oo for each d < —2,
then there is a Hilbert space Yy with an injection 7" : Yy — X being
a nuclear operator [20,22], Tz = > °,(z,yi)v,zi, where z € Y,
(%,%)y, is an inner product in Yp, {y;} is a base in Yj such that
S22 ilvy < 00. Moreover, we can choose e; = b;;z;. Let Yy CY C
X, lzlly, = |lzlly = ||lz||x for each x € Yy. Then from Definition
2.1 of ptﬁ,7 and [3 , also from the consideration of multipliers 17,

nn®Y, it follows that each g € Diffg,ﬁ,(N) belongs to Hom(M),
since F,, cCY C X, t >1, <z >><ax >x foreach z € Y.
Therefore, g has the unique continuous extension ¢ on M such that
g€ Difféﬁ(M), since N is dense in M and we can choose for each
0 < € the space Yy with |y;| < i 2°¢ for each i € N. O

Definition 2.8. Let M be a E°°5 -manifold as in 2.5 that has a lo-
cally finite partition of unity of the same class of smoothness. Hence-
forward, we suppose that there exists E°° o0 -submanifold N in M;
N is modelled on a Hilbert space Y, where Y is as in 2.7 with
Dif 5% (Y) C Dif f35%(X) for the corresponding ¢ > 4, where M
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and N are separable. Also let N satisfy conditions in 2.2 and 2.4
such that My C N, N C N, N; is dense in L;, for each k € N.

Corollary 2.9. Let M be a Banach EJ s-manifold and N be a Hilbert
Eg s -manifold such that they satisfy 2.8. Then Diff/gﬁ,(N) is a
dense subgroup of Diffév(M), ifd >0 >+ >y+2,t > 1,
o>t >t>0 and w > B.

Proof. For charts (V;,1;) of N with V;N'V; # ) a mapping 1); o ;"
is in the class of smoothness E7°,. In view of Definitions 2.5, 2.8 and
Lemma, 2.7 Diff/gﬁ,(N) is a dense subgroup of Difféﬁ(M). O

3. Structure of groups of diffeomorphisms

Theorem 3.1. Let G = Diffév(M) be defined as in 2.5, 2.8. Then
it is a separable topological group. If At(M) is finite, G is metrizable
by a left-invariant metric d.

Proof. Let at first At(M) be finite. If f and ¢ € G then fog™' € G
due to Theorem 2.5 [1] and Ch. 5 in [21] about differentiation and
difference quotients of composite functions and inverse functions,
since ¢; o ¢]71 € B for each ¢ and j. At first we have d(f,id) > 0
for f # 4d in G, since there are ¢ and j such that f;; # id; ;.
Then d(hf,hg) = d(g~'h~'hf,id) = d(g~'f,id) = d(f,g), hence d
is left-invariant, where f,g,h € G. Therefore, d(f ', id) = d(id, f),
in view of 2.1 and 2.3(i,ii) we have that d(id, f) = d(f,id), hence
d(f,g) = d(g, f)-

It remains to verify, that the composition map (f,g) — fog from
G x G — G and the inversion map f — f~! are continuous relative
tod. Let W =[f € G: dgﬁ(f,id) < 1/2] and f,g € W. We have
figogjp—idiy = (fij o gj0— fig) + (fig — idiy) for corresponding
domain as an intersection of domains of f;; o g;; and f;;. Hence,
using induction by p = 1,2, ..., [t] + 1 and the Cauchy inequality we
have that there are constants co > C; > 0, co > C5 > 0 such that
d(fog,id) < Cy(d(f,id)+d(g,id)) and d(f~',id) < Cod(f,id), since
limy, ooldl, g (firidig) + dl, 5. (g50,idj1)] = 0, [t] + 1 and At(M)
are finite, r,; > 0 and g satisfies 2.4 [8].
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Indeed, in normal local coordinates x (omitting indices (i, ) for
fijhy M>z=(7:j€N), f=(f:C — R|j €N), C open in
X, using the Cauchy inequality we get: >, on(|(f 0 g)" — z']i7)? <
2(:(1(fog) =g [iM1) /2 x (Xllg' —a|iM))? + 3 oi[|(fog) —g'li7)?
+Xillg" — 2171 and 35, 5(05(f 0 9)' = 8)i7571* < a+ b+ ab+
2(a1/2b+ab1/2)+2a1/zbl/2, where ¢ = Zi,jeN[(aj{(fog)i—gi})jViV]Z,
b= El’jeN[(ajgl - 5§)j717]2, 0; = 1 for i = [ and 6; = 0 for each
I # 1, ng:ng(ZE), [9€QG.

Then we can proceed by induction for finite products of D;‘( fo
9)! and D,g', because D%id(z) = 0 for |a| > 1. For f = g~! we
can express recurrently (D2f~!) by (D:%f ) with ¢ < o for each
i, since |a] < t. Analogously, for difference quotients, since (1 +
P =1+ (P)¢mfor0<b<land0<[¢|<1,¢€Rand
(1+¢%% = 1+ + 2(¢) with z : R — R, lime0(2(¢)/¢%) = 0
[21]. For countable infinite At(M) for each f,g € G there are E(f),
E(f~"), E(g) and E(g~") € ¥ such that supp(f) ¢ UPU) etc.,
consequently, f(supp(f)) U g ' (supp(g~')) C UF for some F € %,
whence g~ o f € G and there is E € ¥ with supp(g~'o f) c U". If
(fy :v € @) and (gy : ¥ € @) are two nets converging in G to f and
g respectively, so for each neighbourhood W C G there exist £ € X
and 0 € «a such that g;l of, €W and sum)(g;1 o fy) C UE for each
v € B, where « is a limit ordinal.

In view of the Stone-Weierstrass Theorem and 2.1(i,ii) in each
EE?V(U, V) for open U and V in X are dense cylindrical polyno-
mial functions with rational coefficients, consequently, G is sepa-
rable, since EZ° (U,V) is dense in EEW(U, V). Due to conditions
2.2(i-vi) and 2.5.2 for each open submanifold V' C M with V' O M;
and € > 0 every f € Diffé(Mk) has an extension f onto M such

that f € Dif f}_ (M) with gy (f|(M\ M) nUP(D)id) <e. O

Lemma 3.2. Let M be a manifold defined in 2.2, 2.4 with subman-
ifolds My and Ny, k = k(n), n € N. Then there exist connections
£V induced on My by V are the Levi-Civita connections, where V
18 the Levi-Civita connection on M.

Proof. For each chart (Uj;,¢;) we have ¢;(U;) C Iy and in Iy for
each sequence of subspaces R* C R**! C--- C Iy there are induced
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embeddings ¢; ' (R") N U; < ¢;' (R™™) NU; — U;. The Levi-
Civita connection and the corresponding covariant differentiation V
for the Hilbertian manifold M induces the Levi-Civita connection
V' for each submanifold M’ embedded into M, if M’ is a totally
geodesic submanifold. That is, for each z € M" and X € T, M’ there
exists € > 0 such that a geodesic 7 = xy C M defined by the initial
condition (x,X) lies in M’ for each ¢ with |t| < € (Section 5 in [10],
Section VIL8 in [15]). Then using Theorem 5 in Section 4.2 [17]
and geodesic completeness of M we can choose such M' = Mj, with
dimensions dim(My) = k € N and My (n) — Myy1) < -+ = M

with (J,, M}, dense in M. Each manifold ]\04 & was chosen Euclidean at
infinity, since M is Hilbertian at infinity. In view of Section VIL.3 in
[15] and 5.2, 5.4 in [10] k(n+1)v on Mk(n+1) induces k(n)V on Mk(n)
The latter coincides with that of induced by V on M. Here each M
is geodesically complete, but normal coordinates are defined in Mj
in general locally as in M also, since may be r;,;(z) < oo for z € M,
so that At(M) induces At(My) for each k = k(n), n € N. O

Theorem 3.3. Let M be a manifold fulfilling 2.2, 2.4 and Difféﬁ
(M) be as in 2.3 witht>1, 3> 0,y > 0. Then

(i) for each Eéﬁ(M, T M)-vector field V' its flow ny is a one-para-
meter subgroup of Difféﬁ(M), the curve t — 1y is of class C1,
the mapping Exp TeDifféﬁ(M) — Difféﬁ(M), V = s
continuous and defined on a neighbourhood of the zero section
in T.Dif [, (M);

(ii) TyDif f},(M) = {V € By, (M,TM)|z oV = [};

(i) (V,W) = / 9t() Ve, We)p(dz) is @ weak Riemannian struc-
M

ture on a Banach manifold Difféﬁ(M), where u is a mea-
sure induced on M by ¢; and a Gaussian measure with zero
mean value on lo produced by an injective self-adjoint operator
Q :ly — Iz of trace class, 0 < pu(M) < oo;

(iv) the Levi-Civita connection ¥V on M induces the Levi-Civita
connection V on Diffé’,y(M);
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(v) E TDiffé,v(M)%Difféﬁ(M) is defined by E, (V) = eTDn(x)
oV, on a neighbourhood V' of the zero section in TnDifféﬁ(M)
and is a Ef;?(s mapping by V' onto a neighbourhood W, = W;qon
of n € Difféﬁ(M); E is the uniform isomorphism of uni-
form spaces V' and W. Moreover, (i,ii,v) is also true for
Difféﬁ(M), when M satisfies 2.8.

Proof. Let at first At(M) be finite. In view of [12] we have that
TfE/g’,y(M, N')=1]g € EE,V(M, TN') : nly og = f], where N’ fulfils
2.5, 2.8, nfy : TN'" — N' is the canonical projection. Therefore,
TE, (M,N') = B}, (M,TN') =, TyE}, (M,N'’) and the follow-
ing mapping wegp : TfEEﬁ(M N') — Et (M, N'), Wegp(g) = expog
gives charts for EfM(M ,N"), since TN ’ has an atlas of class EJ°
with v > 8 > 0, x > . In view of Theorem 5 about differ-
ential equations on Banach manifolds in Section 4.2 [17] a vector
field V of class Et on M defines a flow 7; of class Eﬁ , that is
dn/dt =V omy and 1o = e. Then lightly modifying proofs of Theo-
rem 3.1 and Lemmas 3.2, 3.3 in [7] we get that 7; is a one-parameter
subgroup of Difféﬁ(M), the curve ¢t — 1 is of class C', the map
Exp : TeDz'fféﬁ(M) — Difféﬁ(M) defined by V' — 1 is continu-
ous.

The curves of the form ¢ — E(tV) are geodesics for V € TnDz'ffé,7
(M), dE(tV)/dt is the map m — d(exp(tV (m))/dt =+, (t), where
Ym(t) is the geodesic on M, v,,(0) = n(m), v.,(0) = V(m). Indeed,
this follows from the existence of solutions of corresponding differen-
tial equations in the Banach space EEW(M ,TM) and then as in the
proof of Theorem 9.1 [7].

From the definition of p it follows that for each x € M there ex-
ists open neighbourhood Y 3 z such that p(Y) > 0 [6]. In view
of 2.2-4 there is the following inequality sup, gf.)(Va,Ve) < o0
and also for W. Consequently, (V,V) > 0 for each V' # 0, since
V and W are continuous vector fields and for some z € M and
Y > z with u(Y) > 0 we have V,, # 0, for each y € Y. On
the other hand sup,eas |97@)(Ve, We)| < o0, hence [(V,W)] < oo.
From g7, (Va, We) = gy(2)(Wa, Vi) and bilinearity of g by (Va, W)
it follows that (V,W) = (W, V) and (aV,W) = (V,aW) for each
a € R Since t > 1, the scalar product (ii7) gives a weaker topol-
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ogy than the initial Efm. For two Banach spaces A and B we
have the following uniform linear isomorhism EfM(M ,A® B) =
E%W(M A E t (M, B), where & denotes the direct sum. There-
fore, Elt (M, TM) is complemented in E 5., (M, T(TM)), since TM
and T(TM ) =: TTM are the Banach fohated manifolds of class E}S
with v > 3, x > v > 0. Then the right multiplication ay,(f) = f o h
f — fohisof class C* on Difféﬁ(M) for each h € Difféﬁ(M).
Moreover, Dif féy(M ) acts on itself freely from the right, hence
we have the following principal vector bundle 7 : TDif féﬁ(M ) —
Difféﬁ(M) with the canonical projection 7.

Analogously to [2,7,15] we get the connection V. = V o h on
Diff} (M). Then (ViV, %)+ (Y,V2) ) = Jul< VYo, Ze >na)
+ < Yo, VX, Ze >plplde) = [1,[Xeg(Ye, Ze)payplde) = X(V, 2),
since X¢g(Y,Z) = g(VXY Z)+ g(Y,VxZ) (Satz 3.8 in [10]) and
for each right-invariant vector field V' on Dif féﬁ(M ) there exists
a vector field X on M with V}, = X o h for each h € Difféﬁ(M),

where X := X o h (see also [18,19]). If V is torsion-free then ?
is also torsion-free. From this it follows that the existence of E
and Dif fév( ) is the Banach manifold of class EJ’%, since exp

and M are of class E°°%, ap(f) = foh, f — fohlsaC°° map

w,0?
with the derivative ay, : Etﬁ(M’,TN) — EEH(M, TN) whilst h €
Et (M Ml) Eh(v) = exph(m)(v(h(x)))a Vh =Voh, Ve E(M)a
V ez E(Dif ff,, (M)).

The case of infinite A¢(M) may be treated using the strict induc-
tive limit topology. O

Note 3.4. For a manifold N = ®{M; : j € J}, M; = M for each j,
J C N, we have that Diffév(N) is isomorphic to S ® Diffév(M),
where S is a discrete symmetric group.

Henceforward, we assume that M and M}, are connected for each
k > n and some fixed n € N. For a finite-dimensional manifold M
a space Eéyv(M, R) (or Difféﬁ(M)) is isomorphic with the usual
weighted Holder space Cj(M,R) (or Dif f4(M) correspondingly).
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4. Irreducible unitary representations of a group of
diffeomorphisms of a Banach manifold

Theorem 4.1. Let M be a Banach manifold fulfilling 2.5, G =
Difféﬁ(M) be a group of diffeomorphisms as in 2.8 with t > 1,
B>w+E& andy >2(1+6)+&, where £ > 2 for a Banach manifold,
& = 0 for a Hilbert manifold. Then (for each 1 < 1 < oo) there
exists a quasi-invariant (and [ times differentiable ) measure v on
M relative to G.

Proof. The exponential mapping exp is defined on a neighbourhood
of the zero section of the tangent bundle TM and exp is of class E7°;
due to 2.5 (see also [17]). For each z € N we have T, N=l[5. Suppose
F is a nuclear (of trace class) operator on [y such that Fe; = Fje;,
where i < F; < i¢ for each i, {e; : i} is the standard base in I,
1—9+42§ <b<c< —1. Then there exists a og-additive Gaussian
measure A on /s with zero mean and a correlation operator equal F'.
Then a Gaussian measure on T, /N induces a Gaussian measure on
Ty M for z € N [16]. Therefore, exp, induces a o-additive measure v
on W 3z, where W = exp,(V), 0 € Visopen in T,M, 0 < u(V) <
00, v(C) = p(exp;1(C)) for each C € Bf(W). The manifold M is
paracompact and Lindel6f [9], GW = M, hence there is a countable
family {g; : j € N} C G, g1 = e, Wi = W and open W; C W such
that {g;WW; : j} is a locally finite covering of M with W, =W, ¢g; =
id. For C € Bf(M) let v(C) =3 en l/((gJIC) NW;)277 (without
multipliers 277 the measure v will be o-finite, but not necessarily
finite).

The following mapping Y, := (expo g o exp, ') on TM for each
g € G satisfies conditions of Theorems 1,2 in Section 26 [23]. Indeed,
(0g°/027); jen in local natural coordinates (z7) is in the class Eg,:}l’ WV
(see 2.4, 2.8). In view of these theorems and [3,6,11] the measure
v is quasi-invariant and [ times differentiable, since the continuous
extension of the operator ((Y,)' — I)F~'/2Q from T, N onto T,M
is of trace class on the Banach space T,M and dg'/dt = V o g'
(see the proof of Theorem 3.3 above and [20,22]), where g' = 1,
szzjwjj‘sej,xzzjwjej €ly, 2 €R O
DEFINITION 4.2.1. Let M satisfy conditions in 2.5. For a given atlas
At(M) we consider its refinement At'(M) = {(U},4;) : j € N} of
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the same class E_% such that {U]} is a locally finite covering of M,
for each Uj there is i(j) with Uy;) D Uj, expy ! is injective on U; for
some x € UJ'-, erpy 1(U]’-) is bounded in T, M. Henceforward, M will
be supplied by such At'(M) and Dif féﬁ(M ) will be given relative
to such atlas.

DEFINITION 4.2.2. Let 1 be a non-negative measure on M quasi-
invariant relative to G = Dif ffm(M ) (see Theorem 4.1) such that
p(M) = oo, p is o-finite and u(Uj) < oo for each j. Then p is
considered on Af (M, u). We consider X = [[;o M;, where M; = M
for each i. Take E; € Af(M;,p), put E = [[;cy Ei, which is called
a unital product subset of X if it satisfies the following conditions:

(UPS1) Z |u(E;) — 1| < oo and u(E;) > 0 for each i;
1€N

(UPS2) E; are mutually disjoint .

Note 4.3. In view of 4.2 the above definitions 4.2.1,2 and Lem-
mas 1.1, 1.2 [13] are valuable for the case considered here (G, M, 1)
for infinite-dimensional M. Henceforward, we denote by G the con-
nected component of id € Difféﬁ(M) from 4.2.2. Further, the
construction of irreducible unitary representations follows schemes
of [13] for finite-dimensional M and [18] for non-Archimedean Ba-
nach manifolds, so proofs are given briefly with emphasis on features
of the case of the real Banach manifold M.

4.4. Let E be cofinal with E' (ERE'" ) if and only if
(CF) > u(EAE]) < o,
1€EN
E be strongly cofinal with E' (E=E" ) if and only if
(SCF) there is n € N such that u(E;AE]) =0 for each i > n,

where E;AE! = (E; \ E!)U(E!\ E;), ¥(FE) := {E': E'RE}.

Put vp(E') = [[;enn(E;]) for each E' € X(E). In view of the
Kolmogorov’s Theorem [6] vg has the o-additive extension onto the
minimal o-algebra M(E) generated by X (E).
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The symmetric group of N is denoted by Yoo, its subgroup of
finite permutations of N is denoted by ¥,. For g € G there is
gz = (gz; : i € N), where 2 = (2; : i € N) € X, for 0 € Sy let 2o =
(z} 2 i € N), ] = x4(; for each i. Quite analogously to Lemma 1.3
[13] we have the following Lemma 4.5 due to supp(g) C UPW for
some E(g) € ¥ and pu(UP9) < oo, where UP = Ujer Uss (Uj.45)
are charts of At'(M).

Lemma 4.5. Let E be a unital product subset of X. Then
(i) (9E)RE for each g € G,
(1) L(E) is invariant under G and Xo.

4.6. In view of 2.6, 2.8, 4.2.1 and the proof of 4.1 we may choose p
such that for each g € G there is its neighbourhood W, and there
are constants 0 < €1 < Cy < oo such that

(IL) Cl < q;t(fa Z) < CZ

for each € m and f € W, with supp(f) C UF9) Indeed, for each
Uj; there exists y € U; such that exp, lUj is bounded in Ty M. Hence
for each fixed R, oo > R > 0, for operators Yy = U of non-linear
transformations the term |det((Yf)’(:Jc))|_lexp{2fil[2(x - Yf_l(ac),
e))(z,ep) —(:E—Yf_l(flf), e1)?]/F;} is bounded (see f after (i)) for each
z € ly with [|z]] < R. For z € M \ UP9) we have q,(f,2) = L.
Therefore, we suppose further that u satisfies (7).

IfS e Af(M, 1) and pu(S) < oo we may consider measures py = [
on E}, v, = py on E\ S and vy =0 on S, suppose L, =[], M;,
pr, = Qiy wi, Pn : X = Ly, are projections, py(z) = vg(dz)/pu(dz).
Then pg(z) = 0 for each z € S. Using the analog of Lemma 16.1
[23] for our case we obtain the analog of Lemmas 1.4, 1.6, 1.7 and
Theorem 1.5 [13], since M has a countable open base {U; : j € N
there is E € X such that U; C UF}.

4.7. The manifold M is Polish, hence M is the Radon space [6] and
for each unital product subset E for each 7 there is a compact E; C M
such that u(E;AE;) <27 ! and E; C U for corresponding h(i) €

3. Since each open covering of E; has a finite subcovering we may
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choose E! € At(M, ;i) with finite number of connected components.
As in Section 1.8 [13] we can construct E”RE such that E”; are
mutually disjoint.

Proposition 4.8. Each unital product subset E is cofinal with E°
satisfying the following conditions:

(UP3) the closure cl(EY) and cl(Uj EO) are mutually disjoint and
E? is ope@ for each i and inf; mfer?,yGU#i B9 dy(z,y) > 0,
EY Cc UM, hii) e x;

(UP4) E? and Eok are connected and simply connected, there is n €
N such that for each k > n and © € N there exists g € G with
(Ezok) = B, \. being an open ball in a coordinate neighbourhood

of My, with g|(M\Mk) =id and inf,cgp yeRy, dv(z,y) >0,

g(Ezk) Bi i, where B := cl(B), Eok := EY N My, Fori# j,
E? and E;) can be connected by an open path P;; such that

Proof. In view of 3.4, M and M}, are connected for each & > n and
some fixed n € N. Then using 3.1, locally finite coverings of M and
My, [9] and shrinking slightly EY such that OE) are of class E%
analogously to steps 1-4 [13] and using properties of y we prove this
proposition. Indeed, i is approximable from beneath by the class of
compact subsets [6]. O

4.9. Henceforth, IT : ¥, — U(V(IT)) denotes a unitary representa-
tion on a Hilbert space V(II) over C, H()_) denotes a Hilbert space
that is the completion of | J Eex(B) H ‘5[5, with the scalar product

< @1, 2 >= Z / < ¢1(2), (o) pa(wo™") >y ve(de),

1A E2
0EY 0 E'NE%o

where HHE, := L?(E'; M(E);vg|E"; V(II)) is a Hilbert space of func-

tions on E’ with values in V(II), > := (I; 4, E); E'RE, E is a unital
product subset of X. Then we define a representation

(i) Ts(9)d(x) = prlg o) *dlg " w),
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where pr(g7t|z) = (vi)y(dz)/vE(dz), (VE)e(C) = vE(¢1C) and

pe(9l%) = [Lienom(g;2i), pr(g; i) == qu(g™"52;) (see Section 2
[13] and 5.9 [18]).

Proposition 4.10. The formula 4.9(i) determines a strongly con-
tinuous unitary representation of G (given by 4.2 and 4.3) on the
Hilbert space H()").

Proof. The Space H(>") is isomorphic with the completion H'(>")
of UE'ez ‘E, with the scalar product < fi,f2 >pi= [ <
fi1(z), fa(z ) vn Ve(dr), where f; € H(g(l), EW ¢ %(E), Fe
M(E), FO' for o € X are disjoint and supp(f1(z) f2(z)) C Uyex Fo-
Here H'}} | 18 a space of functions f = Qu¢, where ¢ € H‘E, and

(i) Que =Y ,ex(R(0)1(0))¢, (Qu(¢))(zo) =TI(0) ' p(z);
(i) R(o)g(z) := p(zo);
(iti) (o) p(z) = I(0)(¢(2)), I£1* = [ If @) I} myve(dz) < oo,

since E'o for 0 € ¥4 are disjoint for different o. Therefore, as in
2.1 [13] we get

<TZ( )flaf? >

=< v v <[ [ ity P ()
1eN

for f; = Queoj, ¢; = Xpuy ® vj, where xc is the characteristic
function of C' (see also 4.6(i)).

Let us fix J € ¥ and take U’ = Ujes Uj € M. As in the proof of
Theorem 5.6(a) [19] (see 4.6(i)) we can find a neighbourhood W > id
in G and 0 < ¢; < ¢ < oo such that ¢; < par(g~ ' y) < co for each
y € U7 and pp(g~Yy) = 1 for each y ¢ U’ for each g € W with
supp(g) C U’. Hence for each € > 0 there exists W > id such
that | < T5-(g)f1, f2 > — < f1, f2 > | < ¢, consequently, due to the
Banach-Steinhaus Theorem [36] there exists a neighbourhood V' 5 id
such that [|(75~(g) — I) f1]| < € and T~ is strongly continuous.



IRREDUCIBLE UNITARY REPRESENTATIONS etc. 39

It is interesting to note that 4.10 may be proved from the in-
equality:

1T (9) f1—=Fill (s
< Jof? /F @) — filg™" 2)pnle~ 1) 2 Prs(de).

Then we consider restrictions g|M}, and properties of (Y,)" (or g on
M \ M) such that card{i : supp(g) N Fj} < Ry for each kK € N. In
view of Theorems 26.1,2 [23] for each sequence g, with lim, g, =€
and for each € > 0 there is m such that

/F (@) — fi(g7 0)pe(er |0) V2 Prs(ds) < e

for all n > m, since there is E € ¥ with supp(g,) C UF for every
n > m. O

4.11. Let FEn,..., E, be mutually disjoint open subsets of M, Hy :=
Qi1 L*(Ey), L*(Ey) = L*(Bj; p|Ei), Gi :=[1i_, G|g;, G, == {9 €
G : supp(g) C E;}, denote by G(F;) the connected component of id €
Diffév(Ei), also let {F;; : j € J;} be the connected components
of E;. Then G|g,, = G(E; ), since for each continuous mapping
F :[0,1] = G we have by continuity that

(i) F(e)(E;i,;) C E;; for each € € [0,1] C R and each j € J;.

Indeed, suppose J is the connected subset of [0, 1] such that 0 € J
and for each € € J is satisfied (i). If v = sup(J) < 1 then by
continuity there is w > v for which [0, w] have the same properties
as J. Hence the maximal such J coincides with [0, 1].

We define and consider G(E') := [17ienG(E]) :=={g = (g : ©) :
g9i € G(E!), supp(g;) C UF)] (Uien E(gi)) € X for each i}. There-
fore, [["jes,G(Eij) = G|g;- Then quite analogously to Lemma 3
[13] and Lemma 5.12 II [18] we get that the following representation
Ly of Gy is irreducible: (Lyi(g)f)(y) = [Ti—; par(g; S5 9:)' 2 f (g™ ')
for f € Hi, g = (g;:4) € Gy and y = (y; : i) € [[;_, Bi, since G,
is dense in G; := G N[];c; G(Ei;) and L; is strongly continuous,
G C Hjer- G(E; ;). Indeed, in view of Proposition 4.8 G|p, is
connected, since G is connected.
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Then L; on G; is decomposable into irreducible components,
since L of G(E; ;) on L?(E; ;) is irreducible. In view of strong con-
tinuity of L on the dense subgroup G|g; it follows that its strongly
continuous extension on G; is also unitary. Then the rest of Sec-
tion 3.1 [13] may be transferred onto the case considered here.

Let L (9)f(x) = pu(g~"|z)!/2f(g7 ) for g € G(E'), f € Hp :=
L*(E',M(E)|E',vg|E"), z € E'. Then we get the following.

Lemma 4.12. Let E' € ¥(E) and E] be open and connected. Then
the unitary representation Ly of G(E') on Hpr is irreducible.

4.13. Let us consider

(i) G((E")) :={g € G| there is k = k(n),n € N and 0 € X, such
that g(£] ;) = E:r(i),k for each i € N and g|M \ M}, = id}, where
E' = [l,en B} (E] C M) satisfies (UP3 — 4) and E' € X(E),
E;, = E; N M. In view of the foliated structure in M this
group is dense in

(i) {g € G : supp(g) C Ujen Ei}-

Lemma 4.14. Let E' € X(E) satisfy (UP3 — 4). Then for any
0 € Yoo there is n such that for each k > n there exists g € G((E"))
with g(E; ;) = E(’T(Z.) i for each i, moreover, g|E; = id|E; if o(i) = i.

Proof. 1t is quite analogous to that of Lemma 3.4 [13], since each
M, is locally compact and connected, also due to properties of
induced as the image of the Gaussian o-additive measure. On the
other hand, the latter is fully characterised by its weak distribution
and is with the Radon property (see Lemma 2 and Theorem 1 in
Section 2 [23]). O

4. 15 Let E' be as in 4.12, \E’ = L?(E',M(E)|E',vg|E"; V (II)),
H'] B = QHH‘E, (see the proof of 4.10). For each g € G((E'))
there are 0 € Yoo and k = k(n), n € N such that g(E} ;) = E’()
for each i € N and g|(M \ My) = id. Suppose f = Qu¢, ¢ €
H&, If (o) ¢ depends only on {z = (z; : i)|lz; € Ej,} then
(T (9)) (@) = prlg[2)!/*1(0)d(g~"z0). If (5) ¢ depends only
on {x = (z; : i)|z; € B\ My} then (Tx-(9)f)(x) = f(x). Then if
d(z) = ¢d1(x) X Pa(z), where ¢o(x) is of type (a) or (8) and ¢y :
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E' — C is also of type analogous to (a) or (f) then Tx~(g)f € H’EE,.
Let G((E')) = {9 € G((E')) : gl(M \ My) = id}, then Uy Gr((E"))
is dense in G((E')). Denote Hy := {¢ € H‘I}E,|¢(ac) is constant on

M\ My}, Hj, := QuHy. In view of Proposition 4.8 we have that the
following representation Tx (g)é(x) = pr (g |z) /2 (0)p(g 1zo) is
irreducible, where ¢ € Hy, g € Gr((E')), z € E', 0 € Y is such
that g(E; ;) = E:r(i),k for each 7 (see also Lemma 3.5 [13]). Then we
obtain analogously to Lemma 4.2 [13] the following lemma.

Lemma 4.16. Let F' = [[;. F; satisfies (UP3 — 4). Then there
exists F' € X(F) satisfying (UP3 —4) and

(UPS5) M\ cl( U F;) is connected for every N > 0.
>N

Proof. Consider F; , = F; N M}, and measures p on M}, induced by
pon M and the projection P, : I; — RF and choose F' such that

k) (B} ) D Fi pnar) = 16 (F ) AF k()|
< 372'72(]6(71)‘}'1)”(}72_)’

for each k = k(n) and 4,n € N. Then use Theorem 3.1 [13]. O

Theorem 4.17. The unitary representation Ts~ of G (defined in
4.2) on H(Y)) is irreducible.

Proof. Considering the sequences { My, : k}, {G((E")) : k} and {H, :
k}, using 4.2-4.16 and strong continuity of T~ we get from the proof
of Theorem 4.1 [13] that 7%~ is irreducible. Indeed, we may consider
A :={FE': E'=E° E' satisfies (UP3—4)} instead of A in Section 4.3
[13]. O
Theorem 4.18. Suppose T~ are unitary representations of G with
parameters » ;. = (i p, E').  Then, (Ts ,H(}2;)), i = 1,2 are

mutually equivalent if and only if there exists a € Yo such that
;= °Tly and Ey € %(Eya™ '), where ( “II)(0) := (a 'oa).

Proof. In view of 4.8 and 4.9 we may assume without loss of general-
ity that F’ satisfies (UP3 —4,UPS5) for i = 1 and 2. Then we con-
sider GV .= G((EMW)) nG(EP)) c G and G? := []"1enG(Ch),
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where C}, are all connected components of El(lj) = ](22) (with E®)

here instead of F() in [13]). Instead of equations (5.7) [13] we have
corresponding expressions as intersections with M}, in both sides for
some k = k(n), n € N. Using the sequences {My}, {Gr((E"))}
and strong continuity of Ty, we get the statement of Theorem 4.18
analogously to Section 5 [13]. O

Note 4.19. The construction presented above of irreducible uni-
tary representations is valid as well for each dense subgroup G’ of
Dif féﬁ(M ) such that the corresponding non-negative measure A on
M is left-quasi-invariant relative to G’ and satisfies 4.2 and 4.6.
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