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Irreducible Virasoro modules from tensor
products

Haijun Tan and Kaiming Zhao

Abstract. In this paper, we obtain a class of irreducible Virasoro modules by taking ten-

sor products of the irreducible Virasoro modules Ω(λ, b) with irreducible highest weight modules

V (θ, h) or with irreducible Virasoro modules Indθ(N) defined in Mazorchuk and Zhao (Selecta

Math. (N.S.) 20:839–854, 2014). We determine the necessary and sufficient conditions for two

such irreducible tensor products to be isomorphic. Then we prove that the tensor product of

Ω(λ, b) with a classical Whittaker module is isomorphic to the module Indθ,λ(Cm) defined in

Mazorchuk and Weisner (Proc. Amer. Math. Soc. 142:3695–3703, 2014). As a by-product we

obtain the necessary and sufficient conditions for the module Indθ,λ(Cm) to be irreducible. We

also generalize the module Indθ,λ(Cm) to Indθ,λ(B
(n)
s ) for any non-negative integer n and use

the above results to completely determine when the modules Indθ,λ(B
(n)
s ) are irreducible. The

submodules of Indθ,λ(B
(n)
s ) are studied and an open problem in Guo et al. (J. Algebra 387:68–86,

2013) is solved. Feigin–Fuchs’ Theorem on singular vectors of Verma modules over the Virasoro

algebra is crucial to our proofs in this paper.

1. Introduction

Throughtout this paper, we use Z, Z+, N, R and C to denote the sets of all in-

tegers, non-negative integers, positive integers, real numbers and complex numbers,

respectively.

The Virasoro algebra V:=Vir[Z] (over C) is the Lie algebra with the basis

{c, di|i∈Z} subject to the Lie brackets defined by

[c, di] = 0 and [di, dj ] = (j−i)di+j+δi,−j

i3−i

12
c, ∀i, j ∈Z.

The algebra V is widely known as one of the most important Lie algebras both in

mathematics and in mathematical physics, see for example [KR], [IK] and references

therein. The Virasoro algebra theory has been extensively used in physics and other
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mathematical branches, for example, quantum physics [GO], conformal field theory

[FMS], higher-dimensional WZW models [IKUX], [IKU], Kac-Moody algebras [K2],

[MoP], vertex algebras [LL], and so on.

The theory of irreducible weight modules over the Virasoro algebra with finite-

dimensional weight spaces is fairly well developed. It is well-known that a classifi-

cation of irreducible weight Virasoro modules with finite-dimensional weight spaces

was obtained by Mathieu [M], and a classification of irreducible weight Virasoro

modules with at least one finite-dimensional nonzero weight space was completely

determined in [MZ1]. There are also some known irreducible weight Virasoro mod-

ules with infinite-dimensional weight spaces, see [Zh], [CM], [CGZ] and [LLZ]. We

remark that the tensor products of intermediate series modules over the Virasoro

algebra are never irreducible [Zk]. For non-weight irreducible Virasoro modules,

there are Whittaker modules, see [BM], [LGZ] and [MW], and other non-Whittaker

modules, see [MW], [MZ2], [LZ] and [LLZ].

The purpose of the present paper is to construct new irreducible (non-weight)

Virasoro modules by taking tensor products of some known irreducible Virasoro

modules defined quite recently. Let us first recall some notions and results which

will be used later.

For any pair (λ, b)∈C∗×C, the Virasoro module Ω(λ, b) is defined on the poly-

nomial (associative) algebra C[∂] in one indeterminant ∂ over C with the action of

V given by

c·∂j =0 and dn ·∂
j =λn

(

∂+n(b−1)
)

(∂−n)j , ∀j ∈Z+, n∈Z.

It was proved in [LZ] that Ω(λ, b) is irreducible if and only if b �=1; if b=1 then

Ω(λ, 1) has a codimension one irreducible submodule isomorphic to Ω(λ, 0). The

modules Ω(1, b) were also studied in Section 4 of [BMZ].

Now let us recall the highest weight modules over the Virasoro algebra. Let

U :=U(V) be the universal enveloping algebra of the Virasoro algebra V. For any

θ, h∈C, let I(θ, h) be the left ideal of U generated by the set

{di | i> 0}
⋃

{d0−h·1, c−θ ·1}.

The Verma module with highest weight (θ, h) for V is defined as the quotient

V̇ (θ, h):=U/I(θ, h). It is a highest weight module of V and has a basis consisting

of all vectors of the form

d
k−1

−1 d
k−2

−2 ...d
k−n

−n vh and k−1, k−2, ..., k−n ∈Z+, n∈N,

where vh=1+I(θ, h). Each nonzero scalar multiple of vh is called a highest weight

vector of the Verma module. Then we have the irreducible highest weight module
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V (θ, h)=V̇ (θ, h)/J , where J is the maximal proper submodule of V̇ (θ, h). For the

structure of V (θ, h), refer to [FF] and [A] (which is a refined version of [FF]).

Denote by V+ the Lie subalgebra of V spanned by all di with i≥0. For n∈Z+,

denote by V
(n)
+ the Lie subalgebra of V generated by all di for i>n. For any V+-

module N and θ∈C, consider the induced module Ind(N):=U(V)⊗U(V+)N , and

denote by Indθ(N) the module Ind(N)/(c−θ)Ind(N). From [MZ2] we know that

for an irreducible V+-module N , if there exists k∈N such that dk acts injectively

on N and di ·N=0 for all i>k, then Indθ(N) is an irreducible V-module for any

θ∈C.

The present paper is organized as follows. In Section 2, we obtain a class of

irreducible non-weight modules by taking the tensor product of Ω(λ, b) with the

highest weight module V (θ, h) or with the modules Indθ(N) (see Theorem 1). In

Section 3, we determine the necessary and sufficient conditions for two irreducible

modules Ω(λ, b)⊗V and Ω(λ′, b′)⊗V ′ to be isomorphic (Theorem 2). In Section 4,

we compare the tensor product modules Ω(λ, b)⊗V with all other known non-weight

irreducible modules in [LZ], [LLZ], [MZ2] and [MW]. In particular, we prove that

the tensor product of Ω(λ, b) with the classical Whittaker module (see [OW] and

[LGZ]) is isomorphic to the module Indθ,λ(Cm) defined in [MW]. As a by-product,

we obtain the necessary and sufficient conditions for the modules Indθ,λ(Cm) to be

irreducible which was not solved in [MW] (Theorem 5). From these we conclude that

the modules Ω(λ, b)⊗V are new when V are not the classical irreducible Whittaker

modules. In Section 5, we generalize the modules Indθ,λ(Cm) which were defined

and studied in [MW] to the modules Indθ,λ(B
(n)
s ) for any n∈Z+. More precisely,

for n∈Z+, λ∈C∗, first we define the subalgebra of V as follows

bλ,n =spanC
{

dk−λk−n+1dn−1 : k≥n
}

.

For any θ∈C and s=(sn, sn+1, ..., s2n)∈C
n+1, we define the 1-dimensional bλ,n-

module B
(n)
s on C by

(

dk−λk−n+1dn−1

)

·1= sk, n≤ k≤ 2n.

Then we have our Virasoro module

Indθ,λ
(

B(n)
s

)

:=
(

IndVbλ,n
B(n)
s

)

/(c−θ)
(

IndVbλ,n
B(n)
s

)

,

where IndVbλ,n
B
(n)
s =U(V)⊗U(bλ,n)B

(n)
s . We use the above established results to

obtain the necessary and sufficient conditions for the modules Indθ,λ(B
(n)
s ) to be

irreducible in Theorems 7, 8 and 9 for different cases of n. We remark that the

three cases are totally different. We also study the submodules of Indθ,λ(B
(n)
s ) in

Theorem 10. As a by-product, Corollary 11 solves the open problem in [GLZ], i.e.,
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Indθ,λ(B
(0)
s ) has a unique maximal submodule. Our main technique used in this

paper is Feigin–Fuchs’ Theorem in [FF] on singular vectors of Verma modules over

the Virasoro algebra.

Using the present paper’s results, we further study irreducibility for the tensor

product of finitely many modules of the form Ω(λ, b) and Indθ(N) in the subsequent

paper [TZ].

2. Constructing non-weight modules

In this section we will obtain a class of irreducible non-weight modules over V

by taking the tensor products of Ω(λ, b) with two classes of other modules, which

is the following

Theorem 1. Let λ∈C∗ and b∈C\{1}. Assume that V is an irreducible module

over V such that each dk is locally finite on V for all k≥R where R is a fixed positive

integer. Then Ω(λ, b)⊗V is an irreducible Virasoro module.

Proof. From Theorem 2 in [MZ2] we know that V has to be V (θ, h) for some

θ, h∈C or Indθ(N) defined in [MZ2]. Let W=Ω(λ, b)⊗V . It is clear that, for any

v∈V , there is a positive integer K(v) such that dl ·v=0 for all l≥K(v).

Suppose M is a nonzero submodule of W . It suffices to show that M=W .

Take a nonzero w=
∑s

j=0 ∂
j⊗vj∈M such that vj∈V , vs �=0 and s is minimal.

Claim 1. s=0.

Let K=max{K(vj):j=0, 1, ..., s}. Using dl ·vj=0 for all l≥K and j=0, 1, ..., s,

we deduce that

λ−ldl ·w=

s
∑

j=0

(

∂+l(b−1)
)

(∂−l)j⊗vj ∈M, ∀l≥K,

which right-hand side can be written in the following form

(2.1)

s+1
∑

j=0

ljwj ∈M, ∀l≥K,

where all the wj∈W are independent of the choice of l (≥K). Taking l=K,

K+1, ...,K+s+1, we see that the coefficient matrix of the wj is a Vandermonde

matrix. So each wj∈M . In particular,

0 �=ws+1 =(b−1)(−1)s⊗vs ∈M.

Consequently, s=0.
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Claim 2. M=W .

From Claim 1 we know that 1⊗v∈M for some nonzero v∈V . By induction on

t and using

dl ·∂
t⊗v =

(

λl
(

∂+l(b−1)
)

(∂−l)t
)

⊗v

= λl(∂−l)t+1⊗v+lbλl(∂−l)t⊗v,

where l≥K(v), t∈Z+, we deduce that ∂t⊗v∈M for all t∈Z+, i.e., Ω(λ, b)⊗v⊂M .

Let X be a maximal subspace of V such that Ω(λ, b)⊗X⊂M . We know that X �=0.

Clearly, X is a nonzero submodule of V . Since V is irreducible, we obtain that

X=V . Therefore, M=W .

The theorem follows from Claim 2. �

Example 1. Let λ1, λ2, θ∈C and let J be the left ideal of U(V+) generated

by d1−λ1, d2−λ2, d3, d4, .... We define N :=U(V+)/J . Then V =Indθ(N) is the

classical Whittaker module (See [OW] or [MZ2]). From [LGZ] we know that if

λ1 �=0 or λ2 �=0, then V is both an irreducible V-module and a locally nilpotent

V
(2)
+ -module. By Theorem 1 we know that Ω(λ, b)⊗V is an irreducible V-module

for any λ∈C∗ and b∈C\{1}. These modules will be studied in detail in Section 4.

3. Isomorphisms

In this section we will determine the necessary and sufficient conditions for two

irreducible tensor products defined in Theorem 1 to be isomorphic, which is the

following

Theorem 2. Let λ, λ′∈C∗, b, b′∈C\{1}, and let V and V ′ be two irreducible

modules over V such that each dk is locally finite on both V and V ′ for all k≥R

where R is a fixed positive integer. Then Ω(λ, b)⊗V and Ω(λ′, b′)⊗V ′ are isomor-

phic as V-modules if and only if (λ, b)=(λ′, b′) and V ∼=V ′ as V-modules.

Proof. The “If” part of the theorem is obvious. We need only to prove the

“only if” part. Let ϕ be an isomorphism from Ω(λ, b)⊗V to Ω(λ′, b′)⊗V ′.

Take a nonzero element 1⊗v∈W . Suppose

ϕ(1⊗v)=

n
∑

j=0

∂j⊗wj ,
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where wj∈V
′ with wn �=0. There is a positive integerK=max{K(v),K(w0),K(w1),

...,K(wn)} such that dl ·v=dl ·wj=0 for all integers l≥K and 0≤j≤n. For any

l, l′≥K, we have

(

λ−ldl−λ−l′dl′
)

·(1⊗v)=
(

l−l′
)

(b−1)(1⊗v).

Then

(

l−l′
)

(b−1)

n
∑

j=0

∂j⊗wj

=
(

λ−ldl−λ−l′dl′
)

·
n
∑

j=0

∂j⊗wj

=

n
∑

j=0

((

λ′

λ

)l
(

∂+l
(

b′−1
))

(∂−l)j−

(

λ′

λ

)l′
(

∂+l′
(

b′−1
))(

∂−l′
)j

)

⊗wj .

We deduce that

((

λ′

λ

)l

−

(

λ′

λ

)l′)
(

∂n+1⊗wn

)

=0, ∀l, l′ ≥K.

So λ′=λ. The previous equation becomes

(

l−l′
)

(b−1)

n
∑

j=0

∂j⊗wj =

n
∑

j=0

(

b′−1
)(

l(∂−l)j−l′
(

∂−l′
)j)

⊗wj

+

n
∑

j=0

∂
(

(∂−l)j−
(

∂−l′
)j)

⊗wj ,

where l, l′≥K. If n>0, the coefficient of ln+1 is (−1)n(b′−1)(1⊗wn) which is

nonzero, yielding a contradiction. So n=0, hence b′=b. Thus there is a one to one

and onto linear map τ :V →V ′ such that

(3.1) ϕ(1⊗v)= 1⊗τ(v), ∀v ∈V.

Since

ϕ
(

dl ·(1⊗v)
)

= dl ·
(

ϕ(1⊗v)
)

, ∀l≥K,

that is,

λlϕ(∂⊗v)+λll(b−1)
(

1⊗τ(v)
)

=λl
(

∂⊗τ(v)
)

+λll(b−1)
(

1⊗τ(v)
)

,
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we see that ϕ(∂⊗v)=∂⊗τ(v). Hence, ϕ((dj ·1)⊗v)=(dj ·1)⊗τ(v), j∈Z. From

ϕ(dj ·(1⊗v))=dj ·(ϕ(1⊗v)), j∈Z we can deduce that ϕ(1⊗(dj ·v))=1⊗(dj ·τ(v)).

So

τ(dj ·v)= dj ·
(

τ(v)
)

, ∀j ∈Z, v ∈V.

Clearly, ϕ(c·(1⊗v))=c·(ϕ(1⊗v)) implies that τ(c·v)=c·τ(v). Thus τ :V →V ′ is a

V-module isomorphism, i.e., V ∼=V ′. This completes the proof. �

4. New irreducible modules Ω(λ, b)⊗V

In this section we will compare the irreducible tensor products in Theorem 1

with all other known non-weight irreducible Virasoro modules in [LZ], [LLZ], [MZ2]

and [MW].

For any s∈Z+, l,m∈Z, as in [LLZ], we denote by

ω
(s)
l,m :=

s
∑

i=0

(

s

i

)

(−1)s−idl−m−idm+i ∈U(V).

Proposition 3. Let λ∈C∗, b∈C\{1}, and let V be an infinite-dimensional

irreducible V-module such that each dk is locally finite on V for all k≥R for a fixed

R∈N.

(i) For any positive integer n, the action of V
(n)
+ on Ω(λ, b)⊗V is not locally

finite.

(ii) For any integer s>4, there exists v∈V,m, l∈Z such that in Ω(λ, b)⊗V we

have

ω
(s)
l,−m ·(1⊗v) �=0.

Proof. As we mentioned before, V has to be V (θ, h) for some θ, h∈C or Indθ(N)

defined in [MZ2]. Part (i) follows from considering dkR ·(1⊗v) for any nonzero v∈V

and any k∈N.

(ii) Take v to be the highest weight vector of V if V =V (θ, h) for some (θ, h)∈C2,

otherwise v can be any nonzero vector of V . Let S={v, d−2v, d−3v, ..., d−s−2v}. In

the case V =V (θ, h), by Theorem 3.1 in [A] we see that S consists of nonzero el-

ements with pair-wise different weights, which means that the elements in S are

linearly independent. If V =Indθ(N), from the structure of Indθ(N) described in

[MZ2] we can easily see that S consists of linearly independent vectors. Obviously,

there exists a positive integer K (depending on v and s) such that dl ·S=0 for

l>K. Letting l>K and m=s+2, and noting that ω
(s)
l,−m ·1=0 in Ω(λ, b), we deduce



188 Haijun Tan and Kaiming Zhao

that

ω
(s)
l,−m ·(1⊗v) =

s
∑

i=0

(

s

i

)

(−1)s−idl+m−id−m+i ·(1⊗v)

=

s
∑

i=0

(

s

i

)

(−1)s−i(dl+m−i ·1)⊗(d−m+i ·v)

=

s
∑

i=0

(

s

i

)

(−1)s−iλl+m−i
(

∂+(l+m−i)(b−1)
)

⊗(d−m+i ·v),

which is clearly nonzero. �

Let us recall the known non-weight irreducible V-modules. We first recall the

irreducible Virasoro modules Ab′ defined in [LZ] where b′∈C and A is an irreducible

module over the associative algebra C[t, t−1, t d
dt
]. The action on Ab′ is

c·w=0 and dn ·w=
(

tn∂+nb′tn
)

w, ∀n∈Z, w∈A,

where ∂=t d
dt

and the left hand side is associative algebra action.

Let ar :=V+/V
(r)
+ , r∈Z+ and let d̄i be the image of di in ar for 0≤i≤r. Now

let us consider the modules N (M,β) described in [LLZ], where M is an irreducible

module over ar such that the action of ḑr on M is injective, β∈C[t±1]\C. We know

that N (M,β)=M⊗C[t±1], and the action of V on N (M,β) is defined by

dn◦
(

v⊗tk
)

=

(

kv+

r
∑

i=0

(

ni+1

(i+1)!
ḋi

)

·v

)

⊗tn+k+v⊗
(

βtn+k
)

,

c·
(

v⊗tk
)

=0, n, k∈Z, v ∈M.

Corollary 4. Let λ∈C∗, b∈C\{1}, and let V be an infinite-dimensional irre-

ducible V-module such that each dk is locally finite on V for all k≥R for a fixed

R∈N. Then Ω(λ, b)⊗V is not isomorphic to any one of the irreducible modules

Indθ(N), Ab′ , and N (M,β) for corresponding parameters.

Proof. Since there is an n∈N such that the action of V
(n)
+ on the modules

Indθ(N) is locally finite, from Proposition 3(i) we see that Ω(λ, b)⊗V is not iso-

morphic to any module described in [MZ2].

Now let us consider an irreducible Virasoro module Ab′ . We may assume that

A is C[t d
dt
]-torsion-free, otherwise Ab′ will be a weight Virasoro module. From the

proof of Theorem 9 in [LLZ], we know that

ω
(s)
l,m ·Ab′ =0, ∀l,m∈Z, s≥ 3.

From Proposition 3(ii) we see that Ω(λ, b)⊗V is not isomorphic to the modules Ab′ .
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Note that if r=0 in the definition, the modules N (M,β) with β∈C[t±1]\C

are some modules of the form Ab′ (see the beginning of Section 6 in [LLZ] and

Section 4.1 in [LZ]). From the computation in (6.7) of [LLZ] we see that

ω
(s)
l,m ·

(

N (M,β)
)

=0, ∀l,m∈Z, s> 2r+2.

From Proposition 3(ii) we see that Ω(λ, b)⊗V is not isomorphic to the modules

N (M,β). �

Now we compare our modules Ω(λ, b)⊗V in Theorem 1 with the modules

Indθ,λ(Cm) defined in [MW]. Let us first recall the definition for Indθ,λ(Cm)

from [MW].

Let λ∈C∗, denote by bλ the subalgebra of V generated by dk−λk−1d1, k≥2.

For a fixed 3-tuple m=(m2,m3,m4)∈C
3, Mazorchuk and Weisner defined a bλ-

module on C by

(4.1)

(

dk−λk−1d1
)

·1=mk, k=2, 3, 4;
(

dk−λk−1d1
)

·1= (k−3)m4λ
k−4−(k−4)m3λ

k−3, k > 4.

The bλ-module is denoted by Cm. Note that the second equation in (4.1) depends

on the first one. For a fixed θ∈C, the module Indθ,λ(Cm) is defined as follows

(4.2) Indθ,λ(Cm) :=U(V)⊗U(bλ)Cm/(c−θ)U(V)⊗U(bλ)Cm.

From Theorem 1 in [MW] we know that the V-module Indθ,λ(Cm) is irreducible if

(m2,m3,m4)∈C
3 and λ∈C\{0} satisfy the following conditions

(4.3) λm3 �=m4, 2λm2 �=m3, 3λm3 �=2m4 and λ2m2+m4 �=2λm3.

Now we are ready to prove the following

Theorem 5. Let λ∈C∗, θ∈C, m=(m1,m2,m3)∈C
3 and let Indθ,λ(Cm) be

defined by (4.2).

(i) The module Indθ,λ(Cm) is isomorphic to Ω(λ, b)⊗V where V is the clas-

sical Whittaker module described in Example 1 and b, λ1, λ2 are given by

(4.4)

b=1+λ−4(m4−λm3),

λ1 =λ−3(2m4−3λm3),

λ2 =λ−2
(

m4−2λm3+λ2m2

)

;

(ii) The module Indθ,λ(Cm) is irreducible if and only if λm3 �=m4, and 3λm3 �=

2m4 or λ2m2+m4 �=2λm3.
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To prove the theorem, we need the following

Lemma 6. Suppose V is a cyclic V-module with a basis

{

d
kj−n

j−n ...d
kj−1

j−1 d
kj

j ·v :n∈N, kj , kj−1, ..., kj−n ∈Z+

}

where v∈V is a nonzero vector, j is a fixed integer and dp ·v∈Cv for all integers

p>j. Then for any pair (λ, b)∈C∗×C\{1}, the tensor product Ω(λ, b)⊗V is also a

cyclic V-module with a generator 1⊗v and a basis

{

d
kj−n

j−n ...d
kj−1

j−1 d
kj

j d
kj+1

j+1 ·1⊗v :n∈N, kj+1, kj , kj−1, ..., kj−n ∈Z+

}

.(4.5)

Proof. It is easy to see that Ω(λ, b)⊗V has a basis

B=
{

∂kj+1⊗d
kj−n

j−n ...d
kj−1

j−1 d
kj

j ·v :n∈N, kj+1, kj , kj−1, ..., kj−n ∈Z+

}

.

Let us define a partial order on B as follows

∂kj+1⊗d
kj−n

j−n ...d
kj−1

j−1 d
kj

j ·v <∂lj+1⊗d
lj−m

j−m ...d
lj−1

j−1 d
lj
j ·v

if and only if

(kj , kj−1, ..., kj−n, 0, 0, .., 0, kj+1)< (lj , lj−1, ..., lj−m, 0, 0, .., 0, lj+1)

in the lexicographical order where the first zeros are m copies and the second zeros

are n copies, i.e.,

(a1, a2, ..., am+n+2)< (b1, b2, ..., bm+n+2)

⇐==⇒ (∃r > 0)(ai = bi∀i< r)(ar <br).

When we expand the elements in (4.5) into linear combinations in terms of B:

d
kj−n

j−n ...d
kj−1

j−1 d
kj

j d
kj+1

j+1 ·(1⊗v)=λkj+1∂kj+1⊗
(

d
kj−n

j−n ...d
kj−1

j−1 d
kj

j v
)

+lower terms,

the leading terms are exactly the corresponding basis elements in B. Thus (4.5) is

a basis for Ω(λ, b)⊗V , and this implies that Ω(λ, b)⊗V is a cyclic V-module with

a generator 1⊗v. �

Now we can prove Theorem 5.

Proof of Theorem 5. Let b, λ1, λ2∈C be given by (4.4). Then

(4.6)

m2 =λ2−λλ1+λ2(b−1),

m3 =λ2
(

−λ1+2λ(b−1)
)

,

m4 =λ3
(

−λ1+3λ(b−1)
)

.
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Denote by v=1⊗1+J∈V and by W=Ω(λ, b)⊗V . Clearly, V
(0)
+ ·v⊂Cv. Since V

has a basis
{

d
k−n

−n ...d
k−1

−1 dk0
0 ·v :n∈Z+, k0, k−1, ..., k−n ∈Z+

}

,

by Lemma 6 and Theorem 1 we see that

(a) W is cyclic with a generator 1⊗v and a basis

Q1 =
{

d
k−n

−n ...d
k−1

−1 dk0
0 dk1

1 ·1⊗v : k1, k0, k−1, ..., k−n ∈Z+, n∈Z+

}

;

(b) W is irreducible if and only if b �=1, and λ1 �=0 or λ2 �=0.

In W , for k=2, 3, 4 we compute that

(

dk−λk−1d1
)

(1⊗v) =
(

dk−λk−1d1
)

(1)⊗v+1⊗
(

dk−λk−1d1
)

(v)

= λk
((

∂+k(b−1)
)

−
(

∂+(b−1)
))

⊗v+1⊗
(

δk,2λ2−λk−1λ1

)

(v)

=
(

λk(k−1)(b−1)−λk−1λ1+δk,2λ2

)

(1⊗v)

=mk(1⊗v).

It follows that

(

dk−λk−1d1
)

(1⊗v)=
(

(k−3)m4λ
k−4−(k−4)m3λ

k−3
)

(1⊗v),

for all k>4. Because of the universal property of the module Indθ,λ(Cm) we have

the following surjective (onto) homomorphism of modules

τ : Indθ,λ(Cm)→W,

uniquely determined by τ(1̄)=1⊗v where

1̄ := 1⊗1+(c−θ)U(V)⊗U(bλ)Cm ∈ Indθ,λ(Cm).

Clearly, Indθ,λ(Cm) has a basis

Q2 =
{

d
k−n

−n ...d
k−1

−1 dk0
0 dk1

1 ·1̄ :n∈Z+, k1, k0, k−1, ..., k−n ∈Z+

}

.

Since τ |Q2 :Q2→Q1 is a bijection, this means that τ :Indθ,λ(Cm)→W is an isomor-

phism. Hence (i) holds.

From (i) we see that Indθ,λ(Cm) is irreducible if and only if W is irreducible; if

and only if b �=1, and λ1 �=0 or λ2 �=0; if and only if m4−λm3 �=0, and 2m4−3λm3 �=0

or m4−2λm3+λ2m2 �=0. This is (ii) and completes the proof. �

Note that Theorem 5 actually gives the necessary and sufficient conditions for

the module Indθ,λ(Cm) described in [MW] to be irreducible.
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5. Applications

In this section we will generalize the construction of the Virasoro modules

Indθ,λ(Cm) described in [MW].

Let n∈Z+ and sn, sn+1, ..., s2n, λ, θ∈C with λ �=0. Let

bλ,n := spanC
{

dk−λk−n+1dn−1 : k≥n
}

,

which is a subalgebra of V. Denote s=(sn, sn+1, ..., s2n)∈Cn+1. We define the

action of bλ,n on C by the following

(

dk−λk−n+1dn−1

)

·1= sk, ∀k=n, n+1, ..., 2n;
(

dk−λk−n+1dn−1

)

·1(5.1)

=−(k−2n)s2n−1λ
k−2n+1+(k−2n+1)s2nλ

k−2n, ∀k > 2n,

where we have assigned that s−1=0. We denote the corresponding bλ,n-module

by B
(n)
s . Note that the second equation in (5.1) follows from the first. Let

IndVbλ,n
B
(n)
s =U(V)⊗U(bλ,n)B

(n)
s . Then the induced V-module from B

(n)
s is defined

as following

(5.2) Indθ,λ
(

B(n)
s

)

:=
(

IndVbλ,n
B(n)
s

)

/(c−θ)
(

IndVbλ,n
B(n)
s

)

.

We will determine the necessary and sufficient conditions for Indθ,λ(B
(n)
s ) to

be irreducible in the next three theorems for different cases of n. It is interesting

to remark that the three cases are totally different. Our main technique used here

is Feigin–Fuchs’ Theorem in [FF], or Theorem A in [A] (which is a refined version

of Feigin–Fuchs’ Theorem).

For convenience to study the irreducibility of the V-module Indθ,λ(B
(n)
s ), we

will denote by

1̄ := 1⊗1+(c−θ)
(

IndVbλ,n
B(n)
s

)

∈ Indθ,λ
(

B(n)
s

)

in the rest part of the section.

We first consider the case n=0. Obviously, the action (5.1) of bλ,0 on B
(0)
s ,

where s=(s0)∈C, is equivalent to the following action

(5.3)
(

dk−λkd0
)

·1= kλks0, k≥−1.

For convenience, we shall use (5.3) to deal with the irreducibility for Indθ,λ(B
(n)
s )

in the case n=0. Recall that the Verma module V̇ (θ, 0) over the Virasoro algebra

was defined in the introduction. Now we have the following
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Theorem 7. Let s=(s0)∈C, θ∈C, λ∈C
∗ and denote

M(θ, 0)= V̇ (θ, 0)/U(V)
(

d−1

(

1+I(θ, 0)
))

.

(i) The module Indθ,λ(B
(0)
s ) is isomorphic to Ω(λ, b)⊗M(θ, 0), where b=s0+1.

(ii) The module Indθ,λ(B
(0)
s ) is irreducible if and only if s0 �=0 and θ �=1−

6 (p−q)2

pq
for any coprime integers p, q≥2.

Proof. Let b=s0+1. Denote by

v=1+U(V)
(

d−1

(

1+I(θ, 0)
))

∈M(θ, 0).

Since dj ·v∈Cv, j≥−1 and M(θ, 0) has a basis

{

d
k−n

−n ...d
k−2

−2 ·v :n≥ 2, k−2, ..., k−n ∈Z+

}

,

by Lemma 6 we see that Ω(λ, b)⊗M(θ, 0) is cyclic with a generator 1⊗v and a basis

Q1 =
{

d
k−n

−n ...d
k−2

−2 d
k−1

−1 ·1⊗v :n≥ 2, k−1, k−2, ..., k−n ∈Z+

}

,

and by Theorem 1 we deduce that Ω(λ, b)⊗M(θ, 0) is irreducible if and only if b �=1,

and M(θ, 0) is irreducible.

Now let us consider the irreducibility of M(θ, 0). From Theorem A in [A] we

know that M(θ, 0) is not irreducible if and only if the maximal proper submod-

ule I(θ, 0) of the Verma module V̇ (θ, 0) cannot be generated by only one singular

vector; if and only if Conditions III− and III+ in [A] are satisfied; if and only if

θ= (3p+2q)(3q+2p)
pq

∈C, where the parameters p, q∈C∗ are such that the straight line

lθ,0 :pk+ql−p−q=0 in the plane C
2(k, l) contains infinitely many integral points

(k, l) with kl>0; if and only if θ=1−6 (p−q)2

pq
for any integers p, q with p, q≥2

and gcd(p, q)=1. Thus Ω(λ, b)⊗M(θ, 0) is irreducible if and only if s0 �=0 and

θ �=1−6 (p−q)2

pq
for any integers p, q with p, q≥2 and gcd(p, q)=1.

By simple computation we can obtain that

(5.4)
(

dk−λkd0
)

(1⊗v)= kλk(b−1)(1⊗v)= kλks0(1⊗v), k≥−1.

Comparing (5.3) with (5.4) we deduce that there exists a V-module homomorphism

and hence epimorphism ρ:Indθ,λ(B
(0)
s )→Ω(λ, b)⊗M(θ, 0) uniquely determined by

ρ(1̄)=1⊗v. Since Indθ,λ(B
(0)
s ) has a basis

Q2 =
{

d
k−n

−n ...d
k−1

−1 ·1̄ : k−1, ..., k−n ∈Z+, n∈N
}

,

noting that ρ|Q2 :Q2→Q1 is a bijection, we see that ρ is an isomorphism and (i)

holds.
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Therefore, Indθ,λ(B
(0)
s ) is irreducible if and only if Ω(λ, b)⊗M(θ, 0) is irre-

ducible. By s0=b−1 and the irreducible conditions for Ω(λ, b)⊗M(θ, 0) we can

deduce (ii). This competes the proof. �

We now handle the case Indθ,λ(B
(1)
s ) for s=(s1, s2).

Theorem 8. Let λ∈C∗, θ∈C and s=(s1, s2)∈C2.

(i) The module Indθ,λ(B
(1)
s ) is isomorphic to Ω(λ, b)⊗V̇ (θ, h), where

(5.5)
b=1+λ−2(s2−λs1),

h=λ−2(s2−2λs1).

(ii) The module Indθ,λ(B
(1)
s ) is irreducible if and only if s2−λs1 �=0 and

(5.6)
(

s2−2λs1
λ2

+ϕ(k)+
kl−1

2

)(

s2−2λs1
λ2

+ϕ(l)+
kl−1

2

)

+
(k2−l2)2

16
�=0, ∀k, l∈N,

where ϕ(j)= (j2−1)(θ−13)
24 , j∈N.

Proof. Let b, h∈C be given by (5.5). Denote by W=Ω(λ, b)⊗V̇ (θ, h). From

the structure of V̇ (θ, h) and Lemma 6 we see that W is a cyclic module with a

generator 1⊗v0 and a basis

Q1 =
{

d
k−n

−n ...d
k−1

−1 dk0
0 ·1⊗v0 :n≥ 1, k0, k−1, ..., k−n ∈Z+

}

.

And by Theorem 1 and the well-known Kac’ determinant formula (see, for exam-

ple [K1]) we can deduce that W is irreducible if and only if b �=1 and θ, h satisfy the

following condition:

(5.7)

(

h+ϕ(k)+
(kl−1)

2

)(

h+ϕ(l)+
(kl−1)

2

)

+
(k2−l2)2

16
�=0,

where ϕ(j)= (j2−1)(θ−13)
24 , j∈N.

By simple computation we can obtain the following equalities

(5.8)
(

dk−λkd0
)

(1⊗v0)=λk
(

k(b−1)−h
)

(1⊗v0), k∈N.

For k=1, 2 we have

(5.9) s1 =λ(b−1−h) and s2 =λ2
(

2(b−1)−h
)

.

Equations (5.8) and (5.9) imply that
(

dk−λkd0
)

(1⊗v0)=
(

−(k−2)s1λ
k−1+(k−1)s2λ

k−2
)

(1⊗v0), k > 2.
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Comparing (5.1) in the case n=1 and (5.8) we can deduce that there exists a

V-module homomorphism and hence epimorphism σ :Indθ,λ(B
(1)
s )→W uniquely de-

termined by σ(1̄)=1⊗v0. Since Indθ,λ(B
(1)
s ) has a basis

Q2 =
{

d
k−n

−n ...d
k−1

−1 dk0
0 ·1̄ : k0, k−1, ..., k−n ∈Z+, n∈N

}

and since σ|Q2 :Q2→Q1 is a bijection, this means that σ is an isomorphism and (i)

follows.

Therefore, Indθ,λ(B
(1)
s ) is irreducible if and only if W is irreducible; if and only

if b �=1 and (5.7) holds; if and only if s2−λs1 �=0 and

(5.10)
(

s2−2λs1
λ2

+ϕ(k)+
kl−1

2

)(

s2−2λs1
λ2

+ϕ(l)+
kl−1

2

)

+
(k2−l2)2

16
�=0, ∀k, l∈N,

where ϕ(j)= (j2−1)(θ−13)
24 , j∈N. This is (ii) and completes the proof. �

Before treating the case Indθ,λ(B
(n)
s ), n>1, let us first recall the Whittaker

modules Lψn,θ defined in [LGZ].

Let n∈N and (αn, αn+1, ..., α2n)∈C
n+1. Define ψn :V

(n−1)
+ →C by the following

(5.11)
ψn(dj)=αj , j=n, n+1, ..., 2n;

ψn(dj)= 0, j > 2n.

This can actually define a V
(n−1)
+ -module action on C by dj ·1=ψn(dj), j≥n. De-

note the V
(n−1)
+ -module by Cψn

. Then

(5.12) Lψn,θ =U(V)⊗
U(V

(n−1)
+ )

Cψn
/(c−θ)U(V)⊗

U(V
(n−1)
+ )

Cψn
.

From Theorem 7 in [LGZ] we know that Lψn,θ is an irreducible V-module if and

only if α2n−1 �=0 or α2n �=0. Moreover, it is easy to see that Lψn,θ is a locally finite

V
(2n)
+ -module.

For the modules Indθ,λ(B
(n+1)
s ), where s=(sn+1, sn+2, ..., s2n+2)∈C

n+2 with

n≥1, we have the following

Theorem 9. Let n∈N, s=(sn+1, sn+2, ..., s2n+2)∈C
n+2, θ∈C and λ∈C∗.

(i) The module Indθ,λ(B
(n+1)
s ) is isomorphic to Ω(λ, b)⊗Lψn,θ, where

(5.13)

b=1+λ−2n−2(s2n+2−λs2n+1),

αn =λ−n−2
(

(n+1)s2n+2−(n+2)λs2n+1

)

,

αk = sk−λk−2n−2
(

−(k−2n−2)λs2n+1+(k−2n−1)s2n+2

)

, n+1≤ k≤ 2n.
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(ii) The module Indθ,λ(B
(n+1)
s ) is irreducible if and only if

s2n+2−λs2n+1 �=0, and(5.14)

s2n−1 �=λ−3(3λs2n+1−2s2n+2) or s2n �=λ−2(2λs2n+1−s2n+2),(5.15)

where we have assumed that s1=0 if n=1.

Proof. Take b, αn, αn+1, ..., α2n∈C to be determined by (5.13). Then

(5.16) sk =λk(k−n)(b−1)+
(

αk−λk−nαn

)

, n+1≤ k≤ 2n+2.

Let αk=0, k>2n, and let Lψn,θ be defined by (5.11) and (5.12). Denote

v=1+(c−θ)U(V)⊗
U(V

(n−1)
+ )

Cψn
∈Lψn,θ

and W=Ω(λ, b)⊗Lψn,θ. Clearly, V
(n−1)
+ ·v⊂Cv and Lψn,θ has a basis

{

d
kn−m

n−m ...d
kn−1

n−1 ·v :m≥ 1, kn−1, ..., kn−m ∈Z+

}

.

Then by Lemma 6 we know that W is a cyclic module with a generator 1⊗v and a

basis

Q1 =
{

d
kn−m

n−m ...d
kn−1

n−1 dkn

n ·1⊗v0 :m≥ 1, k−m, ..., kn−1, kn ∈Z+

}

.

By Theorem 1 and the irreducible conditions for the Whittaker module Lψn,θ we

can deduce that W is irreducible if and only if b �=1, and α2n−1 �=0 or α2n �=0.

For k>n we compute

(

dk−λk−ndn
)

(1⊗v) =
(

dk−λk−ndn
)

(1)⊗v+1⊗
(

dk−λk−ndn
)

(v)

=
(

λk
(

∂+k(b−1)
)

−λk
(

∂+n(b−1)
))

⊗v+1⊗
(

αk−λk−nαn

)

v

=
(

λk(k−n)(b−1)+
(

αk−λk−nαn

))

(1⊗v).

Noting (5.16), we obtain that

(

dk−λk−ndn
)

(1⊗v)= sk(1⊗v), n+1≤ k≤ 2n+2.

Then

(

dk−λk−ndn
)

(1⊗v)

=
(

−(k−2n−2)s2n+1λ
k−2n−1+(k−2n−1)s2n+2λ

k−2n−2
)

(1⊗v),

where k>2n+2. Noting that Indθ,λ(B
(n+1)
s ) satisfies (5.1) in the case n+1 and has

a basis

Q2 =
{

d
kn−m

n−m ...d
kn−1

n−1 dkn
n ·1̄ :m≥ 1, kn−m, ..., kn−1, kn ∈Z+

}

,
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we see that there exists a V-module homomorphism from Indθ,λ(B
(n+1)
s ) to W ,

whose restriction to Q2 is a bijection from Q2 onto Q1. Thus this V-module homo-

morphism is an isomorphism. Hence (i) holds.

Therefore, Indθ,λ(B
(n+1)
s ) is irreducible if and only if Ω(λ, b)⊗Lψn,θ is irre-

ducible; if and only if b �=1, and α2n−1 �=0 or α2n �=0; and if and only if (5.14) and

(5.15) hold. This implies (ii) and completes the proof. �

Note that the modules Indθ,λ(Cm) defined in [MW] are just the modules

Indθ,λ(B
(2)
s ) we defined here for s=(m2,m3,m4).

Now we will characterize the submodules of Indθ,λ(B
(n)
s ). Because of Theo-

rems 7, 8 and 9, it is enough to consider submodules of Ω(λ, b)⊗V where V is

determined by Theorems 7, 8, 9, which is the following

Theorem 10. Let n∈N, λ∈C∗, b, θ∈C, and let V be a highest weight module

or Lψn,θ over V.

(i) If b �=1, then each submodule M of Ω(λ, b)⊗V is of the form Ω(λ, b)⊗X

for some submodule X of V .

(ii) If b=1, then each submodule M of Ω(λ, b)⊗V is of the form ∂Ω(λ, 1)⊗

X1+Ω(λ, 1)⊗X2 where X1 and X2 are submodules of V .

Proof. (i) b �=1.

Then Ω(λ, b) is an irreducible V-module. Let Y be a nonzero submodule of

Ω(λ, b)⊗V .

Claim 1. If
∑s

j=0 ∂
j⊗vj∈Y , where vj∈V , then Ω(λ, b)⊗vj⊂Y for all j=

0, 1, ..., s.

Using the same arguments as in the proof of Theorem 1 we can deduce that

Ω(λ, b)⊗vs⊂Y and hence Ω(λ, b)⊗vj⊂Y , j=0, 1, ..., s, by induction on j.

Claim 2. Y =Ω(λ, b)⊗X , where X is a submodule of V .

Let X be the maximal subspace of V satisfying Ω(λ, b)⊗X⊂Y . The max-

imality of X forces that X is a submodule of V . Using Claim 1 we see that

Ω(λ, b)⊗X=Y .

Thus (i) follows.

(ii) Now consider the case b=1.

Let Z be a submodule of Ω(λ, b)⊗V . Take a nonzero w=
∑s

j=0 ∂
j⊗vj∈Z

where vj∈V .
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Claim 3. Ω(λ, 1)⊗v0⊆Z and ∂Ω(λ, 1)⊗vj⊂Z for all j≥1.

We will prove this by induction on s. This is true for s=0 by simple com-

putations. Now suppose s>0. As in the proof of Theorem 1, we can take K=

max{K(vj):j=0, 1, ..., s} such that dl ·vj=0 for all l≥K and j=0, 1, ..., s. Then

dl ·w=
s

∑

j=0

λl∂(∂−l)j⊗vj ∈Z, ∀l≥K.

Since the coefficient of ls is (−1)lλl∂⊗vs which has to be in Z, by simple compu-

tations we deduce that ∂Ω(λ, 1)⊗vs⊂Z. Claim 3 follows.

Let SZ be the set consisting of the submodules of Z in the form Ω(λ, 1)⊗H1+

∂Ω(λ, 1)⊗H2 whereH1, H2 are subspaces of V . Note that the U(V)vj are subspaces

(actually, submodules) of V . By Claim 3 we can easily deduce that Ω(λ, 1)⊗U(V)v0
and ∂Ω(λ, 1)⊗U(V)vj , 1≤j≤s are submodules of Z. Then for each 1≤j≤s, we

have Ω(λ, 1)⊗U(V)v0+∂Ω(λ, 1)⊗U(V)vj∈SZ �=∅. Let X1, X2 be two subspaces of

V such that Ω(λ, 1)⊗X1+∂Ω(λ, 1)⊗X2 is a maximal element of SZ . It is easy to see

that X1 and X2 are submodules of V . Using again Claim 3 it is not hard to deduce

that Z=Ω(λ, 1)⊗X1+∂Ω(λ, 1)⊗X2. This is (ii) and completes the proof. �

Note that when θ=0, the modules Indθ,λ(B
(0)
s ) are exactly the highest weight-

like modules defined in [GLZ]. Now we can answer the open problem in [GLZ]: if

s=s0∈C
∗, whether or not Ind0,λ(B

(0)
s ) has a unique maximal submodule. From (i)

of Theorem 10 we know that the maximal submodules of Indθ,λ(B
(0)
s ) correspond

to the maximal submodules of M(θ, 0). Since M(θ, 0) is a highest weight module,

it has a unique maximal submodule, so does Indθ,λ(B
(0)
s ). In the special case θ=0,

the conclusion is certainly true. Therefore, we have the following

Corollary 11. Let λ, s=s0∈C
∗. Then Ind0,λ(B

(0)
s ) has a unique maximal

submodule.
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[LZ] Lü, R. and Zhao, K., Irreducible Virasoro modules from irreducible Weyl mod-
ules, J. Algebra 414 (2014), 271–287.

[M] Mathieu, O., Classification of Harish–Chandra modules over the Virasoro Lie
algebra, Invent. Math. 107 (1992), 225–234.



200 Haijun Tan and Kaiming Zhao: Irreducible Virasoro modules from tensor products

[MW] Mazorchuk, V. and Weisner, E., Simple Virasoro modules induced from codi-
mension one subalgebras of the positive part, Proc. Amer. Math. Soc. 142

(2014), 3695–3703.
[MZ1] Mazorchuk, V. and Zhao, K., Classification of simple weight Virasoro modules

with a finite-dimensional weight space, J. Algebra 307 (2007), 209–214.
[MZ2] Mazorchuk, V. and Zhao, K., Simple Virasoro modules which are locally finite

over a positive part, Selecta Math. (N.S.) 20 (2014), 839–854.
[MoP] Moody, R. V. and Pianzola, A., Lie Algebras with Triangular Decompositions,

Canad. Math. Soc., Ser. Mono. Adv. Texts, a Wiley-Interscience Publication,
Wiley, New York, 1995.

[OW] Ondrus, M. and Wiesner, E., Whittaker modules for the Virasoro algebra,
J. Algebra Appl. 8 (2009), 363–377.

[TZ] Tan, H. and Zhao, K., Irreducible Virasoro modules from tensor products (II),
J. Algebra 394 (2013), 357–373.

[Zh] Zhang, H., A class of representations over the Virasoro algebra, J. Algebra 190

(1997), 1–10.
[Zk] Zhao, K., Representations of the Virasoro algebra (I), J. Algebra 176 (1995),

882–907.

Haijun Tan
College of Mathematics and
Information Science
Hebei Normal (Teachers) University
Shijiazhuang
Hebei CN-050016
P.R. China
and
Department of Applied Mathematics
Changchun University of Science
and Technology
Changchun
Jilin CN-130022
P.R. China
hjtan9999@yahoo.com

Kaiming Zhao
Department of Mathematics
Wilfrid Laurier University
Waterloo
ON N2L 3C5
Canada
and
Department of Mathematics
Xinyang Normal University
Xinyang
Henan CN-464000
P.R. China
kzhao@wlu.ca

Received February 26, 2015

in revised form May 5, 2015

published online July 21, 2015

mailto:hjtan9999@yahoo.com
mailto:kzhao@wlu.ca

	Irreducible Virasoro modules from tensor products
	Abstract
	Introduction
	Constructing non-weight modules
	Isomorphisms
	New irreducible modules Omega(lambda,b)V
	Applications
	References


