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SUMMARY 
Tomographic inversion of traveltimes is often carried out by discretizing the Earth as 
a grid of regular pixels. This choice simplifies the related ray-tracing algorithms, but 
contributes significantly to the non-uniqueness of the estimated velocity distribution. 
A singular value decomposition of the tomographic matrix enables one to recognize 
the causes of this mathematical ambiguity in the model space. This is more intuitive 
than introducing arbitrary damping factors and spatial filters, and allows one to control 
the non-uniqueness of solutions by modifying the pixel distribution or the acquisition 
geometry. This approach lends itself to the adoption of irregular grids and to the 
definition of a new ray-tracing algorithm, based on Fermat’s principle of minimum 
time, which is able to simulate transmitted, reflected, refracted and diffracted waves. 
The joint tomographic inversion of these different types of waves potentially provides 
an additional improvement to the quality and reliability of the estimated velocities. 

Key words: inversion, ray tracing, tomography, traveltime. 

INTRODUCTION 

In the standard seismic processing for the exploration and 
production of hydrocarbons, the velocity analysis often relies 
on quite restrictive hypotheses, such as nearly horizontal 
reflectors and small incidence angles (Shah 1973; Al-Chalabi 
1974, 1994). In this case, the traveltimes of the reflected arrivals 
at the surface may be approximated by the moveout curve, i.e. 
a function of the offset between source and receiver, the 
reflector depth and the sought velocity (Dix 1955; Taner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Koehler 1969; Hubral & Krey 1980). Recently, Boehm et al. 
( 1996) compared the results obtained by the conventional 
stacking velocity analysis with those of reflection tomography. 
They showed that when the hypotheses of stacking velocity 
analysis break down, as in the presence of dipping reflectors 
or strong lateral velocity gradients, reflection tomography still 
provides accurate images of the geological structures. 

Adopting more recent and general methods, such as the 
migration velocity scans (see for example the textbook by 
Yilmaz 1987), seismic waves with different propagation geo- 
metries (such as transmitted and reflected waves) cannot be 
jointly processed. Conversely, the traveltime inversion works 
better when sources and receivers are placed not only at the 
surface, but also in wells, and several type of waves (trans- 
mitted, reflected, refracted and diffracted) are picked. The 
images thus obtained are better resolved, and allow one to 
match data acquired with different geometries (such as VSP, 
cross-well and at the surface) and different frequencies (for 
example with sonic logs). 

Tomographic estimation of local velocities by traveltime 

inversion is carried out iteratively, alternating two procedures: 
a forward modelling by ray tracing, and a back-propagation of 
the residuals (the differences between modelled and measured 
traveltimes). This procedure allows reconstruction of the depth 
model for the spatial distribution of velocities, which can 
significantly improve the quality of the depth migration. The 
main drawback of the linearized traveltime inversion is the 
non-uniqueness of its solutions, due to the so-called null space. 
Thus it may be necessary to treat the obtained results, and, 
therefore, their large-scale use, with some caution. 

In this paper, I demonstrate that the null space can be 
reduced or eliminated by an improved design of the earth 
model. Some tools are introduced to measure the local 
reliability derived from the singular value decomposition of 
the tomographic matrix. This indicator can be used to merge 
adjacent pixels or to modify their boundary interactively, 
increasing the inversion stability and reliability. 

The paper consists of two parts. In the first, an analysis of 
some of the causes of non-uniqueness in traveltime inversion 
solutions is carried out, which leads to the introduction of 
irregular pixels in the earth discretization. In the second part, 
a new ray-tracing algorithm is introduced, based on Fermat’s 
principle of minimum time. This method allows a kinematic 
simulation of diffracted, refracted and converted waves, besides 
the more usual reflected and transmitted waves, in irregular 
grids. 

THE INVERSION PROBLEM 

In the popular approach to traveltime inversion, the Earth is 
modelled by pixels, i.e. zones where the local velocity (or its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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gradient) is assumed to be constant. This simplification allows 
one to express the vector of measured traveltime vector t as a 
function of the unknown pixel slowness vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu by a linear 
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t = A u ,  (1) 

where the element Aij  of the tomographic matrix A is the path 
length of the ith ray in the j th pixel. The problem is non- 
linear, since the ray trajectories depend on the unknown 
velocity values; it must be solved iteratively, therefore, alter- 
nately updating the velocity distributionland the ray paths. 

The information carried by each ray to the inversion process 
is a row of matrix A in system (1). The transpose of this row 
can be considered as a vector associated with that ray. Two 
different rays may cross the same pixels in a particular grid, 
and sometime they may be associated with linearly dependent 
vectors. In some other space discretization, those rays may 
cross different group of pixels, so becoming certainly linearly 
independent. 

Generally, matrix A is not square, and so I do not assume 
that the number of pixels equals that of rays. If we have fewer 
rays than pixels (and so fewer equations than unknowns), we 
know a priori that we have multiple solutions, but also in the 
opposite case, i.e. with more rays than pixels, we are not 
guaranteed that the system (1) has a unique solution. In fact, 
it is often the case that not all rows of the matrix A are linearly 
independent, so A may be rank-deficient anyway and a null 
space may exist. This means that vectors u,, exist which satisfy 
the homogeneous system 

Au,=O. (2) 

The null-space vectors cause the ambiguities in the traveltime 
inversion, since any vector u,, of the null space can be added 
to the solution of system (1) and a new solution obtained that 
fits the experimental data as well as the first one. We therefore 
obtain a space of solutions instead of a unique solution. Hence 
we must improve on this approach to finding the velocity 
distribution in the Earth from measured traveltimes. 

DRAWBACKS OF SOME CONVENTIONAL 
APPROACHES 

The most common solutions to eq. (1) adopt the least-squares 
criterion (see, for example, Claerbout 1976; Aki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Richards 
1980; Lines & Treitel 1984), which provides more tractable 
equations. Unfortunately, the new equations system so 
obtained (for computer applications of practical interest) may 
be huge in two dimensions, and prohibitive in three dimensions. 
To improve the inversion stability and smoothness of the 
solutions, some damping term is often introduced. Usually, the 
damping parameter A is found by trial and error (Levenberg 
1944; Marquardt 1963). However, a subjective bias is thus 
introduced into the solution. It can also be demonstrated that 
the presence of a damping parameter significantly distorts the 
solution obtained (Lines & Treitel 1984). The resolution matrix 
R relates the estimated subsurface structure to the ‘true’ velocity 
structure (van der Sluis & van der Vorst 1987; Vasco 1991), 
and should be the identity matrix I if the inversion procedure 
is correct. By decomposing A and R into singular values 
(Golub & Van Loan 1983) in the case of a damped least- 
squares inversion, the singular values r, of the resolution matrix 

R can be written as a function of the corresponding a, of the 
tomographic matrix A (see Appendix A): 

ri = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:/[a’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA]. (3) 

For ill-posed problems, some values of a, are very small or 
zero. We see from eq. (3 )  that, by increasing the damping 
factor A, the denominator is moved away from zero but the 
singular values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri are moved away from unity, so producing 
stable but distorted results. On the other hand, if we do not 
consider the coefficients not resolved by the data, our solution 
will remain largely undetermined. 

Several other procedures have been introduced to stabilize 
the inversion at the expense of resolution: a comprehensive 
comparative review was carried out by Phillips & Fehler (1991). 
For example, local instabilities can be reduced by applying 
averaging or median filters, which smooth the velocity field, 
or alternatively the solution roughness can be limited by intro- 
ducing into the object function some first- or second-difference 
operator. 

SOME RECIPES FOR THE TRAVELTIME 
INVERSION 

A good way to deal with the non-uniqueness of traveltime 
inversion is to reduce or even eliminate the null space. Two 
situations typically give rise to the null space: 

(1) pixels not crossed by any ray; 
(2) groups of two or more rays that are linearly dependent. 

Both causes can be eliminated by modifying the tomographic 
grid. Fig. 1 shows (on the left) a conventional regular grid with 
a few straight rays and many void pixels, and (on the right) a 
possible modified grid, obtained by merging all void pixels 
with some neighbour crossed by at least one ray. We thus 
reduce the null space dimension, but the resolution decreases. 

The fact that pixels not hit by any ray produce vectors of 
the null space is widely recognized, but this awareness has not 
led to adequate reactions. Void pixels could be simply ignored 
in the tomographic inversion, leading to the same algebraic 
result as by merging pixels. Nevertheless, zones with undefined 
velocity would appear in the model, and this fact is highly 
undesirable if the estimated velocity field has to be fed later 
to a ray-tracing procedure. This is, however, exactly what 
happens in the linearized inversion, where the ray paths and 
the velocity distribution are alternately updated. Furthermore, 
it is worthwhile to note that omitting the estimation of some 
pixel velocity is equivalent to adopting a regular grid with an 
irregular boundary: this is just half a step in the desired 
direction. 

Pixel merging may be viewed as a nearest-neighbour inter- 
polation. Naturally, higher-order interpolants or more sophis- 
ticated techniques based on stochastic constraints (see for 
example Neri et al. 1993) can provide results with a better 
apparent resolution. An effective resolution enhancement will 
be obtained, on the other hand, if and only if the actual 
velocity distribution has the same properties as the criterion 
chosen to assign the velocity in the void pixels, i.e. spatial 
smoothness for the higher-order interpolants, and some spatial 
texture for the stochastic constraints. 

From the algebraic point of view, pixel merging corresponds 
to the summation of two adjacent columns of the tomographic 
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Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn a regular grid (left) with a walk-away VSP acquisition geometry, several pixels are not crossed by any ray, unlike in the irregular 
pixel discretization (right). 

matrix, whose size is therefore reduced. Alternatively, the same 
effect is achieved by imposing the constraint that the velocities 
in the two pixels be the same: 

U ~ = U ~ + ~ ,  or U ~ = U ~ - ~ .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

This is nothing other than a hard constraint, which can be 
introduced very easily by an automatic computer program. 
The equation so added to the tomographic system reduces 
the uncontrolled degrees of freedom, but increases the com- 
putational effort. Therefore, the use of irregular grids should be 
preferred to the mathematically similar option of constraining. 

In some cases the data can be better exploited by shifting 
the pixel boundaries without changing their total number. This 
operation can be carried out both to eliminate void pixels 
(Fig. 2) as well as to make two rays linearly independent 
(Fig. 3). (As the horizontal boundaries of pixels lie along 
parallel lines, Thales’ theorem is valid: the initial segment of 
one ray is then proportional to that in the other ray, and this 
holds for all corresponding ray-segment couples.) In this way, 

‘global’ resolution (the number of pixels) is not changed, but 
only the local resolution, in an attempt to obtain the best 
compromise between the desired resolution and the available 
rays. 

Fig. 4 shows an example of two rays that are linearly 
dependent in a grid consisting of five pixels (left). If the lowest 
pixel is split into two parts, the rays become linearly indepen- 
dent (right), and their traveltimes can be explained to detect a 
possible lateral variations of velocity in the deeper zone. 

As a conclusion to these considerations, the following 
empirical rules can be stated: 

(1) merging adjacent pixels is a good way of removing 
uncrossed pixels, or zones poorly constrained by experimental 
data; 

(2) shifting pixel boundaries may be an effective way to 
make rays that are not linearly independent into ones that are; 

(3) splitting a pixel into two or more new ones allows a 

Figure 2. In a regular grid (left) with a surface seismic acquisition geometry, several pixels are not crossed by any ray, unlike in the irregular pixel 
discretization (right). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1996 RAS, GJI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA126, 147-165 
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Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn a regular grid (left) with a common mid-point acquisition geometry, the two reflected rays are linearly dependent, but not in the 
irregular grid (right) obtained by shifting the pixel boundaries. 

Figure 4. In a five-pixel grid (left) with a common mid-point acquisition geometry, two rays are linearly dependent, but not in the six-pixel grid 
(right) obtained by introducing an additional pixel boundary. 

local increase in the resolution, provided that the new model 
discretization is sufficiently stable to support it; 

(4) joining adjacent pixels will never make linearly dependent 
rays that cross each other become linearly independent. 

Naturally, we need at least some quantitative hint to modify 
our model, especially when dealing with a large number of 
rays and pixels. In the next paragraph I will introduce an 
indicator for guiding an interactive application of these rules 
in practice. 

The proposed approach is different from a method intro- 
duced by Bamford (1976): in that case, irregularly distributed 
sources and receivers are grouped into ‘areas’ to obtain a more 
robust parametric inversion of the velocity field, whose reliability 
is measured a posteriori by the traveltimes residuals and variance. 
Here, the solution reliability is estimated a priori, before its 
actual computation, by a singular value decomposition of the 
tomographic matrix. 

THE USE OF SINGULAR VALUE 
DECOMPOSITION 

Singular value decomposition of the tomographic matrix can 
be used to diagnose the possibility of inversion, and its stability. 
Singular values that are zero or too small with respect to the 
others cause serious difficulties and must be removed. The 

zeros can be viewed as the origin of the null space, whilst the 
very small values determine numerical instabilities, which can 
often produce data overflows or underflows. 

I define the quasi-zero singular values as those that are 
smaller than a defined minimum threshold, which should be 
chosen taking into account the average of all singular values, 
as well as the available computer precision. The corresponding 
columns of the matrix V (defined in Appendix A) constitute 
an orthonormal basis of what could be called the quasi-null 

space, that is, the sum of the null space plus the ill-conditioned 
part of the range of matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. 

A map of the quasi-null space is built in order to understand 
the inversion instabilities from a geometric point of view. The 
elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi of the vector map m can be defined as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 5 )  

where y j  are the elements of matrix V, and the summation is 
carried out over the columns of the quasi-zero singular values 
only. Owing to the orthonormality of such basis vectors, values 
equal (or very close) to 1 will be obtained for some element 
mi; the index of those equal to 1 will indicate pixels crossed 
by no rays or by very short rays. 

What about linearly dependent rays? They can still be 
identified using the quasi-zero singular values by exclusion. In 
fact, once the quasi-void pixels are identified by the quasi-null 
space map m just described, the remaining quasi-zero singular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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values will indicate the rows of the tomographic matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA that 
are linearly dependent. So we identify the pixels that could be 
reshaped or split, getting more independent rays, and therefore 
reducing the null space dimension or increasing the local 
resolution respectively. 

Fig. 5 shows a model composed of five layers over a half- 
space. Three shots with 48 receivers were simulated by the 
ray-tracing technique described below: the source interval is 
500 m, and the receiver interval is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 m. The first, third and 
fifth layers are homogeneous, with velocities of 1500,2200 and 
2700 m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-', respectively. In the second layer the velocity 
increases linearly from 1700 (left) to 2100 m s-' (right); in the 
fourth layer the velocity ranges from 2500 (left) through 2100 
(centre) to 2500 (right) ms- l .  The layer depths are (on the 
left) 200, 500, 750, 1050 and 1250 m, respectively. 

Fig. 6 displays the estimated velocity and reliability (i.e. the 
vector m) obtained by the dual tomography algorithm (Carrion 
1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). The practical implementation of this procedure is based 
on Kaczmarz's method, which does not require any damping 
factor (Kaczmarz 1937; van der Sluis & van der Vorst 1987). 
The same pixel discretization of the forward modelling was 
assumed for the inversion. A homogeneous medium with a 
velocity of 2200 m s-' was the initial guess; this value remained 
unchanged in the pixels not crossed by any ray. The velocity 
field obtained (Fig. 6a) is reasonable but should be improved; 
the local reliability distribution (Fig. 6b) is lowest in the dark 
pixels, in particular in those uncrossed in the deeper part, and 
highest in the upper and central part. A certain instability may 
be noticed in both images in the first, third and fifth layers, 
which are homogeneous. 

Merging all pixels in the first layer (Fig. 7) provides an 
important constraint (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori information) to the inversion 
process. The lateral gradient in the second layer is partially 
reconstructed, and also the velocity anomaly in the fourth 

(Fig. 7a). The estimated reliability is higher not only at the 
surface, but also in the whole central part (Fig. 7b). 

A good result is obtained by merging the pixels in all the 
homogeneous layers (Fig. 8a): both the lateral gradient and 
the velocity anomaly are well resolved. The local reliability 
(Fig. 8b) is quite flat, except at borders (uncrossed pixels) and 
near the surface, where the coverage is much higher than in 
all other pixels. 

THE GRID DESIGN 

The proposed solution for reducing the null-space size actually 
introduces a new question: what is the best way to modify the 
pixel shape and distribution? This problem requires additional 
studies (see also Backus & Gilbert 1967; Vesnaver & Boehm 
1995). Here I discuss some of the factors to be considered. 

A viable practical solution is to use the singular values and 
the quasi-null-space vector map m. A flat reliability distribution 
should be sought interactively by merging, splitting or shifting 
the boundaries of adjacent pixels. Unfortunately, this problem 
is highly non-linear, since m depends on the ray distribution, 
and therefore also on the velocity field. 

In the inversion examples just considered, I modified the 
lateral boundaries of pixels, assuming the reflectors' position 
to be known. This is a strong hypothesis, but it is quite realistic, 
if conventional surface seismic data are available, because 
reflection tomography can provide this information with a 
good accuracy (see, for example, Carrion et al. 1993a, b). Fig. 9 
shows three velocity scans for the tomographic inversion of 
the seafloor in a seismic profile acquired by OGS in the ROSS 
Sea (Antarctica). The optimal average velocity is 1460 m s-', 
because then the estimated reflection points (indicated by dots) 
are less dispersed: we can discern variations of only 0.3 per 
cent. Dots with different grey tones belong to different shots: 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan anticline with minimum-time ray paths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 6. Estimated velocity (a) and reliability (b) with the same grid as the original model. 

when the dispersion is minimum, the seafloor structure esti- 
mated by each shot is consistent with that of others. Another 
example of application to real data can be found in Boehm 
et al. (1995). 

The pixel boundaries not associated with reflecting surfaces 
are much more questionable. Fig. 10 shows (top) a set of 
parallel rays crossing three pixels. The vertical boundaries can 
be shifted in several ways, without changing their partial 
traveltime: for example, by reducing the size and the velocity 
of the central pixels, or (leaving the velocities unchanged) by 

reducing the width of the first while increasing that of the 
third by the same amount, and so on. These degrees of freedom 
are reduced when the ray distribution better constrains the 
velocity distribution (bottom). 

Some ambiguities may not be eliminated in the pixel design. 
If the rays and velocity distribution are uniquely determined, 
so are the intersection points of rays with the pixels boundaries; 
however, an infinite number of curves can be drawn that pass 
through these points (Fig. 11). This ambiguity decreases if 
many ray intersections are available around the pixels, and if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Estimated velocity (a) and reliability (b) after merging the pixels of the uppermost layer. 

some class of smooth functions is chosen for the boundary 
definition. In this paper, vertical boundaries are described by 
straight lines and horizontal boundaries by splines. 

instabilities and ambiguities are caused by an insufficient local 
angular coverage. This is certainly the case for reflected arrivals 
recorded at the surface, which are mostly near-vertical, but 
also in cross-hole acquisition geometry, where the seismic 

ANGULAR COVERAGE IS NOT THE 
PROBLEM 

energy propagates mostly along nearly horizontal paths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASince 
these common seismic experiments in hydrocarbon exploration 
and production suffer from limited angular coverage of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - 

Before concluding the first part of this paper, something target, this conception reflects adversely on tomographic 
should be said about the common conception that inversion methods: therefore many geophysicists think that tomographic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEstimated velocity (a) and reliability (b) after merging the pixels of the homogeneous layers. 

inversion will never be sufficiently reliable. Let us consider this 
problem closely. 

An insufficient local angular coverage may be an insuperable 
difficulty if the inversion problem is approached in continuous 
2-D or 3-D space. Fortunately, there is clear evidence that this 
is not true when the space is discretized by pixels. Fig. 12 
shows two common seismic experiments: well logging and well 
shooting. In both cases, the local angular aperture is practically 
zero; nevertheless, both methods are universally considered as 

very reliable for measuring seismic velocities. If the area 
penetrated by the wells is discretized as shown, the velocity 
field can be inverted without ambiguities: there is in fact a 
sufficient pixel coverage, and the ray paths are all linearly 
independent. 

This idea is further explained in Fig. 13. The model is 
composed of two pixels only, which are crossed by rays with 
their sources located on the boundary of the first, and their 
receivers on that of the second, but not on the common zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Min, Velocity Max, Velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. A set of parallel rays (top) does not sufficiently constrain 
the position of lateral pixel boundaries, unlike other configurations 
(bottom). 

boundary. Let us suppose that the velocity contrast in the two 
pixels is small enough that straight lines may approximate 
the actual rays. Then, an infinite number of rays can be 
traced, covering the pixels at any angle, which are all linearly 
dependant. For example, this is shown for rays passing through 
the mid-point of the pixels’ common boundary. This infinite 
number of rays, which provides a significant coverage of this 
simple model, does not provide a unique solution. 

Another example is shown in Fig. 14. Let us assume that 
the velocity contrasts in the investigated medium are small 
enough to make ray bending negligible. In this case, we see 
that by simply rotating the pixels’ orientation we can transform 
a tomographic inversion from undetermined (left) to well- 
conditioned (right). The model coverage of rays is the same in 
both cases, as is the pixel resolution. It should be emphasized 
therefore, that inversion feasibility depends on the relationship 
between all rays and all pixels. 

Angular coverage is the false appearance of a real problem. 
If a set of rays are very close to each other, they may cross 
the same pixels; in this case, some of them may be (nearly) 
linearly dependent. If two or more rays cross different pixels, 

they are certainly linearly independent; this often happens 
when rays cross the same pixel at very different angles. Thus, 
when most pixels of the tomographic grid are crossed at 
various angles, it is reasonable to assume that the rows of the 
tomographic matrix associated with these rays are linearly 
independent, and so that the dimension of the null space is 
small or zero. 

On the other hand, it was shown that introducing hard 
constraints gives similar results to increasing the angular 
coverage (Carrion et al. 1993c) or, in more precise terms, the 
model coverage: both operations reduce the influence of the 
null space. 

THE U S E  OF DIFFERENT WAVE TYPES 

P waves and S waves can be used to obtain two independent 
images of the velocity distribution in the Earth. A strong 
correlation can be expected between the two images, but, since 
the velocity ratio V,/& is not constant, it cannot be used as a 
deterministic constraint: at the most it can guide an interactive 
model-driven interpretation. P and S waves can be properly 
related in the tomographic inversion if, in addition, converted 
waves are observed and picked. 

A much more interesting role is played by refracted and 
diffracted waves, whose traveltimes can be directly compared 
with those of transmitted and reflected waves. The rays of 
refracted waves will generally cross some horizontally adjacent 
pixels along an interface, unlike reflected rays, and most of 
them will be linearly independent of the reflected rays: there- 
fore, they will provide new information for the tomographic 
inversion, reducing the dimension of the null space. Similarly, 
the ray paths of diffracted waves are useful for reconstructing 
the velocity distribution around the diffraction points; here 
several rays branch at different angles according to geometries 
that are quite different with respect to those of reflected, 
transmitted and refracted waves, and therefore will be mostly 
linearly independent. This usually undesired type of wave 
should be exploited, therefore, as a local increase in information 
that improves the tomographic image of fault edges. This 
philosphy is not new to the analysts processing seismic profiles: 
seismic migration collapses the energy diffracted by faults to 
image their edges, while at the same time refining the migration 
velocities. 

MINIMUM-TIME RAY TRACING 

As a provisional conclusion to the first part of this paper, I 
note that a method for reducing the null-space dimension (and 

Figure 11. Several curves may intersect the rays at the same points (left), but this ambiguity can be reduced if more intersections are available (right). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 12. Well-shooting (left) and sonic-log (right) experiments can provide a perfect model reconstruction with a null angular aperture. 

Figure 13. A simple model of two pixels can be covered by an infinite 
number of rays with full angular coverage, which are all linearly 
dependent. 

the related indefiniteness of the tomographic inversion) is to 
discretize the Earth by irregular pixels, designed or iteratively 
fitted to the available rays to make them as linearly indepen- 
dent as possible. Second, not only transmitted or reflected, but 
also refracted and diffracted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP waves should be simulated by 
the ray-tracing algorithm, in order to exploit their independent 
information with respect to the other wave types. Finally, if 
one intends to carry out a joint inversion of P and S waves, 

converted waves should also be generated; otherwise, in fact, 
P and S ray segments are the coefficients of uncoupled tomo- 
graphic equations, with uncoupled estimation of V, and V’ 
velocities. 

Conventional techniques fail to produce all the types of 
waves together. Rays can be computed by finite-difference 
methods based on the wave equation; this approach allows 
computation of the amplitude of the propagating wave, and 
not just its traveltime and ray path (see among others: Julian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Gubbins 1977; Nolet 1987; Cerveny 1987; Vidale 1988, 1990; 
Virieux & Farra 1991; Pereyra 1992; Zelt & Schmidt 1992). 
On the other hand, numerical instabilities may occur in some 
of these algorithms if strong inhomogeneities or strongly 
dipping layers are present; in other cases, it is not possible to 
derive the velocity field at pixels boundaries. Thus, some other 
approach to ray tracing was sought, for these reasons as well 
as to reduce the required computational effort (and sometimes 
also the required computer memory). 

An alternative solution relies on the minimum-time principle 
of Fermat. Some recent papers have introduced fast and stable 
algorithms of this type, which seem very amenable to the 
tomographic inversion of traveltime. Moser (1989, 1991), Saito 
(1989) and Fischer & Lees (1993) proposed some shortest- 
path ray-tracing techniques, discretizing the spatial distribution 
of velocities by regular networks: the ray is computed by 
minimizing the traveltime from the source to the receiver, and 
passing through the network nodes. Asakawa & Kanawaka 
(1993) suggested a way to eliminate the approximations due to 
network quantization by interpolating the traveltimes between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe same ray distribution is not able to resolve the model on the left, but is sufficient for that on the right. 

the network nodes. Their practical implementation, however, 
still requires a noticeable regularity in the node distribution, 
and involves overheads due to the initial computation of the 
traveltimes along many couples of nodes. 

In the following paragraphs, a further method based on 
Fermat’s principle is introduced, which does not require any 
regular network. In particular, a very parsimonious represen- 
tation of the velocity field is possible where homogeneous 
zones are assumed; for example, sea water can be represented 
by a single pixel. At the same time, a local fine discretization 
can be introduced into the target zone or where lateral 
variations are present. Similarly, the reflecting interfaces can 
be defined by a few points only, facilitating user interaction 
with the reflection tomography algorithms. 

THE RAY-TRACING ALGORITHM 

Since the propagation velocity is assumed constant inside each 
pixel, the ray path is a line composed of straight segments, 
determined by the intersection points of the ray with the pixel 
boundaries. For assigned source and receiver positions, the ray 
path can be computed as the piecewise linear path connecting 
them with the minimum traveltime for a seismic signal. The 
key point of the algorithm is that Fermat’s principle can be 
applied not only to the whole ray, determined in general by 
several points, but also to its parts. In particular, any triplet 
of consecutive points along the ray path must satisfy Fermat’s 
principle. 

The iterative minimization procedure can be started with an 
initial guess, which can even be very rough: for example, a 
straight line from the source to the receiver (for transmitted 
waves), or a straight line from the source to a point in the 
reflecting interface and then from there to the receiver (for 
reflected waves). The initial guess determines what is sometimes 
called the ray signature. 

In general; the traveltime along the initial guess will not be 
a minimum. The traveltime along the whole path can be 
decreased by reducing that in all the triplets of consecutive 
points. Let us consider three adjacent points A, Xo and B 
(Fig. 15). The traveltime zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto from A to B measured through the 
central point X, can be compared with t ,  and t 2  obtained from 
the perturbed ray points X, and X,, respectively, located along 
the pixel boundaries. A new point can thus be calculated to 
substitute for X, in the triplet, and a parabola passing through 
the points ( x i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i ) ,  given by the abscissae of the ray points Xi, 

Figure 15. The path from A to B passing through Xo and the 
perturbed points XI and X,. 

and the relative traveltimes, can be computed. The parabola 
apex will generally provide the abscissa of a new point with a 
traveltime that is smaller than for the three considered points 

Very often a local traveltime reduction in a triplet of adjacent 
points is achieved by such a parabolic fit, but not always. 
When it is not, the point just computed with abscissa x4 and 
partial traveltime t ,  can be used to build a fourth-order 
rational function (see Appendix B). If its minimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx5 still does 
not provide a traveltime smaller than all preceding estimates, 
it is possible to go on increasing the order of the rational 
function. It is only rarely that orders higher than the sixth 
are needed. 

The traveltime minimization in the triplets can be carried 
out using various strategies. The considered triplet can be 
moved forwards along the path from the source to the receiver 
(as implemented here); or forwards and backwards, proceeding 
from source or receiver towards the ray centre and vice versa 
(Fig. 16). The second strategy is more amenable to parallel 
implementations, and is more consistent with the reciprocity 
principle. The iterations required are generally not many, and 

(Xi, t i ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe minimization procedure can proceed from left to right 
(above) or  can be split into two parts (below), starting from the source 
and the receiver and proceeding towards the centre of the ray path. 

may be stopped when the sum of the ray-point variations is 
smaller than a predetermined threshold. Some comparison 
tests carried out with simple models have demonstrated that 
the proposed algorithm provides results with the same pre- 
cision in a shorter time with respect to finite-difference 
solutions. 

In the actual algorithm implementation, long pixels were 
chosen whose lateral boundaries are vertical lines, whilst the 
upper and lower boundaries coincide with tracts of the 
reflecting horizons. This choice was due to the fact that the ray- 
tracing code was designed to be part of a reflection tomography 
program. Since vertical velocity gradients cannot be 
reconstructed very well by conventional surface seismic data 
(see, for example, Carrion et al. 1993a), they are not taken 
into account. 

The precision of ray-tracing algorithms is quite hard to 
estimate or compare: in fact, some methods require smooth 
velocity variations and others do not. If full-waveform model- 
ling is assumed as a reference, the problem of picking the 
traveltime of seismic signals arises, with difficulties due to 
interfering waves, time sampling, possible phase rotations, and 
so on. In a few cases, an analytic solution is available, such as 

for a single homogeneous layer with parallel interfaces. I 
simulated a shot with 100 receivers, spaced 25 m apart, over a 
reflector with a depth of 1 km and a velocity of 1500 m s-’, 
discretizing the illuminated space by an increasing number of 
pixels. The traveltime at each receiver was correct typically to 
the first five significant digits. The precision depended on the 
model discretization (Fig. 17): a plot of the logarithm of the 
sum of absolute traveltime errors versus the pixel number 
shows a nearly linear trend. 

The convergence rate of the proposed algorithm decreases 
when the number of pixels is very large, and so I introduced 
some tricks to speed up the minimization convergence. First 
of all, Snell’s law provides an analytical solution to the 
traveltime minimization in the triplets, except when diffractions 
occur. Although Snell’s law would be in any case automatically 
‘discovered by the procedure itself, some iterations are spared. 
Second, I exploited the information about the medium’s 
behaviour carried by the neighbouring rays that have just been 
computed. By translating and stretching the shape of these 
known rays, a good initial guess and consequently a much 
faster convergence towards a minimum-time condition can 
be obtained. 

Some intelligent strategy has to be adopted to relate the ray 
points to the pixels. In fact, this operation is trivial in regular 
grids, but may be quite time-consuming in irregular ones. A 
consistent speed-up was obtained, for example by storing the 
pointers to the pixels crossed by the previous ray (or previous 
iteration in the minimization procedure for that ray). If 
common source, common receiver or common mid-point 
gathers are simulated, the pointers to the corresponding ray 
parts will not change a lot, and I used the previous pointers 
to initialize the search for the new one required. It is not 
necessary to have a lot of memory for this: it is sufficient to 
store the last pixels crossed in the down-going and up-going 
parts of the ray path for each model layer. 

The computer code implementing the proposed method is 
composed of some thousands of instructions. A significant 
number of them are used for moving the ray nodes around 
the boundaries of the irregular pixels. Fortunately, this boring 
work pays off: the pixel edges may behave as diffractors, 
therefore producing waves that cannot be simulated by adopt- 
ing Snell’s Law only or smooth velocity fields. 

As for all minimization problems, the search for the path 
with a minimum traveltime is impeded by local minima. From 
the ray’s point of view, local minima correspond to multiple 
paths for a given source-receiver configuration. This case is 
quite common, for example when a seismic profile passes 

4.48 

(In) 3.36 
Total Error 

1.12 2.242 
0.00 J I I I 1 

I 100 200 300 400 

Pixel Number 

Figure 17. The logarithm of the total traveltime error versus the pixel 
number in a model with a plane parallel layer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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above a syncline. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA classic pathological example is to place 
the source and receiver at the foci of an elliptical reflector, so 
that each reflecting point corresponds to a minimum-time 
path. In these cases, the final solution depends strongly on the 
initial guess. 

The minimization may fail, providing a local minimum, 
when both strong and sharp velocity anomalies are present 

and the initial guess is far from the true solution, but works 
very well in relatively smooth media. According to my experi- 
ence, the bending methods (such as that proposed here) con- 
verge better than those of the shooting type in complex velocity 
fields. Local minima can be avoided in the two approaches by 
using a set of different initial guesses instead of just one, i.e. 
different take-off angles for the shooting methods and various 

Figure 18. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA model with a fault step and a laterally increasing velocity in the second layer. Diffracted rays can be observed. 

Figure 19. Rays of refracted waves in a flat model. The arrow indicates a collapsed couple of points, indicating that the offset between source and 
receiver is smaller than the critical distance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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initial paths for the bending methods. If distinct solutions are 
obtained, we can choose the ray path associated with the first 
arrival only or consider all of them. 

Fig. 19 shows a nearly flat model, where the paths of 
refracted waves were computed. To obtain refracted waves 
instead of reflected ones, it is only necessary to insert two 
or more points lying on the chosen marker instead of only 
one. Naturally, if the velocity distribution and the interface 
geometry are complex, it will not be known if the offset is 
larger than the critical distance. If the distance between source 
and receiver is smaller than the critical distance, these two (or 
more) points along the marker will collapse into a single point, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEXAMPLES 

Fig. 18 shows a model with a fault edge in a laterally varying 
velocity distribution: the rays corresponding to diffracted 
arrivals can be clearly seen. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20. Estimated velocity (a) and reliability (b) of the model in Fig. 19, using refracted waves. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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and a simple reflected wave is obtained: this is the case for the 
four leftmost rays in the figure. The nature of the wave is 
therefore guessed initially to be refracted, and this is confirmed, 
or not, at the end of the traveltime minimization. 

This ‘automatic’ feature of the algorithm can be exploited 
to compute the critical distance at any depth for arbitrary 
geological structures. Starting with an offset close to zero, it is 
possible to trace rays initially assumed to be refracted waves, 
increasing the offset gradually: the smallest offset such that the 
refracted part of the ray path does not collapse into a single 
point will be the critical distance sought. In Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19 this 
condition is satisfied close to the fourth ray from the left. In 
general, two different values for it are expected, by moving the 
receiver either left or right away from the source. 

Fig. 20 displays the estimated velocity and reliability 
obtained by inverting the refracted arrivals. The reconstruction 
of the lateral gradient is good not only in the layer just above 
the refractor, but also below it. A poorer result is obtained by 
reflected ray paths (Fig. 21): the velocity gradient in the second 
layer was revealed but with some incorrect oscillations, and 
the underlying layer (not crossed by the reflected rays) was not 
determined. Comparing the two reliabilities (Figs 20b and 
22b), we notice that a flatter distribution characterizes the 
estimate by refracted waves; this result is consistent with that 
of the previous inversion example, where we obtained better 
results by adapting the pixel distribution and flattening the 
reliability field. 

Converted waves can be simulated very easily, using the P 

or S propagation velocity for the ray-path segments crossing 
the chosen domains or layers (Fig. 23). In the most general 
case, for each pixel it is necessary to define both Vp and V, 

velocities. A mode conversion at an interface is simulated by 
switching from one velocity type to the other when the ray 
crosses an interface. Thus, an increase in the required computer 
memory can occur, but this is not always the case: in fact, if 

the velocity types along the ray are symmetric (e.g. PSPPPSP, 

as in Fig. 23b), it would be possible to store only the proper 
velocity values (V, or V’) for each layer. 

CONCLUSIONS 

The null space of the tomographic matrix is the cause of the 
non-uniqueness of solutions in the linearized inversion of 
traveltimes. If we extend its definition, a quasi-null space can 
be introduced which is also responsible for the numerical 
instabilities. Limited angular coverage is not an obstacle to 
a successful inversion, but only an empirical indication of 
possible rank deficiency in the tomographic matrix, which has 
to be verified using singular value decomposition. 

The dimension of the (quasi-) null space can be reduced 
or zeroed by adopting a simple trick, such as eliminating 
uncrossed pixels or trying to obtain linearly independent rays 
by moving the pixel boundaries. In this way, we transform a 
rank-deficient system into an overdetermined one. The solution 
so obtained is unique in the mathematical sense, is more robust 
with respect to noise (such as mispicks of traveltimes), and 
does not require any initial model nor any a priori information 
about the velocity distribution to guide the algorithm. 

As a consequence of this inversion procedure, we have to 
deal with irregular grids, whose local resolution depends 
strongly on the acquisition geometry and the spatial distri- 
bution of seismic velocities. In other words, we have to adapt 
our model to the available data. The local reliability, estimated 
by a singular value analysis, is a practical tool for an interactive 
grid optimization. 

An important advantage of irregular grids is the possibility 
of reducing the pixel density in zones that are nearly homo- 
geneous (such as sea water) or do not affect the target: here, 
on the contrary, the resolution can be maximized according 
to the available data and desired reliability. This flexibility is 

Figure 21. Reflected ray paths in the model of Fig. 19. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 22. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEstimated velocity (a) and reliability (b) of the model in Fig. 19, using reflected waves. 

particularly useful in 3-D models, where the total pixel number 
can be dramatically reduced. 

Fermat’s principle of minimum time allows one to trace the 
ray paths not only of reflected and transmitted P and S waves, 
but also of diffracted, refracted and converted ones. Refracted 
and diffracted waves can play a significant role in the traveltime 
inversion, since their ray paths are quite different from those 

of reflected waves; therefore, they often carry new information, 
i.e. additional rows in the tomographic matrix that are linearly 
independent with respect to those of the reflected waves. 

A spin-off from the proposed method for tracing the ray 
path of refracted waves is the possibility of computing the 
critical distance for complex models at any depth, with possible 
applications to crustal studies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure23. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConverted waves can be simulated using P or S velocity 
in the appropriate ray segments. 
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APPENDIX A: SINGULAR VALUES AND 
THE DAMPING FACTOR 

Matrix A can be decomposed as follows: 

A=UWV T . . . ,  ('41 1 

UTU = I ,  VVT= VTV = I .  (A21 

where 

The solution - u of the damped least-squares inversion is 

given by 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = (ATA)-'ATt, (A31 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is a vector of traveltimes. 

properties (A2) gives 
Inserting eqs (1) and (Al) into eq.(A3) and using the 

- u = R u ,  (A41 

where u is the 'true' velocity distribution and the resolution 
matrix R is 

R = (ATA + /lI)-'ATA 

= (VWTUTUWVT+ /lI)-'VWTUTUWVT 

= I[WZ(W2 + /lI)-l]lT, (A51 

where ai are the singular values of the tomographic matrix A. 
A similar result was presented by Lines & Treitel (1984) and 
by van der Sluis & van der Vorst (1987). 

APPENDIX B: INTERPOLATION BY A 
RATIONAL FUNCTION 

An efficient way to build a rational function for a stable and 
accurate interpolation is described by Press et al. (1989). Let 
us consider, for example, a fourth-order function, interpolating 
the points (xo, to), (xl, t l ) ,  (xz, tz) and (x3, t 3 ) .  It is necessary 
to define some working variables: 

and, using the recursion 

we obtain the desired rational function R1234(x), according to 
the following tree: 

Rl 
R12 

R2 R123 

R23 R1234 

R3 R234 
R34 

R4 

It is interesting to note that, if a fourth-order function is not 
sufficiently accurate, all the R coefficients just computed can 
be reused to build a new fifth- or higher-order rational function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1996 RAS, GJI 126, 147-165 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
6
/1

/1
4
7
/6

0
5
8
0
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


