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1 Introduction

The identification problem in econometrics is a first step that one must explore and carefully

analyze before any meaningful inferences can be reached. Identification clarifies what can

be learned about a parameter of interest in a given model. There is a class of models in

econometrics, mainly arising in limited dependent variable models, that attain identification

by requiring that covariate variables take support in regions with arbitrary small probability

mass. These identification strategies sometimes lead to estimators that are weighted by a

density or a conditional probability, and these weights take arbitrarily large values on these

regions of small mass. For example, an estimator that is weighted by the inverse of the

density of a continuous random variable, effectively only uses observations for which that

density is small. Taking values on these “thin sets,” is essential (often necessary) for point

identification in these models. This thin set identification is an essential feature of the models

we consider in this paper. We explore the relationship between the inverse weighting method

in these models and the rates of convergence of resulting estimators, and show that under

general conditions, it is not possible to attain the regular rate (square root of the sample

size) with these models. We label these identification strategies as “thin set identified” and

argue that they are “irregularly identified”, or belong to the class of “identified at infinity”

models. Note that it is part of econometrics folklore to equate the parameter being identified

at infinity with slow rates of convergence, as was also established in Chamberlain(1986) for

some particular models. See also Andrews and Schafgans(1998).

The results in this paper are connected to a set of models that we examine in detail. In

these models, the parameter of interest can be written as a weighted expectation. For com-

parison purposes, we first consider the binary choice model under a median restriction where

point identification of the regression parameters was shown in Manski(1975,1985), though it

was shown to be irregular in Chamberlain(1986), who established an impossibility theorem

for estimating these parameters at the parametric rate. Analogous impossibility theorems

hold for estimating parameters in the set of models that we study in detail and are the basis

of this paper. The first model is the binary choice model under an exclusion restriction

and mean restrictions. This model was introduced to the literature by Lewbel(1997, 1998,

2000). There, Lewbel demonstrates that this binary model is point identified with only a

mean restriction on the unobservables, by requiring the presence of a special regressor that

is conditionally independent of the error. Under these conditions, Lewbel provides a density

weighted estimator for the finite dimensional parameter (including the constant term). We

show that the parameters in a simple version of that model are thin set identified. We derive

the efficiency bound and show that it is infinite for those parameters, unless special relative
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tail behavior conditions are imposed. Two such conditions are: a support condition such

that the propensity score hits limiting values with positive measure, in which case root n

estimation can be attained; or infinite moment restrictions on the regressors. As we show

below, the optimal rate of convergence in these cases depend on the tail behavior of the

special regressor relative to the error distribution.

We also examine the censored regression model under mean restriction and random in-

dependent censoring. An inverse weighting method for identification was proposed in Koul,

Van Rysin and Susarla(1981). Again, under general conditions, we show that the regression

parameters are identified on thin sets and hence under general conditions on the censor-

ing process, non-regular rates of convergence are obtained. Newey (2003) derived efficiency

bounds for a constant censoring version of this model, and concluded the parametric rate

was unattainable.

Finally, we consider the treatment effects model under binary treatment and exogenous

selection. Hahn(1998) in important work derived the efficiency bound for this model and

provided a series based estimator that reaches that bound (See also Hirano, Imbens and

Ridder(2000)). In the case where the covariates take infinite support, the propensity score

is arbitrarily close to zero or one (as opposed to bounded away from zero or one). We show

that the average treatment effect in this case can be irregularly identified (the bound can

be infinite) and this identification results in non-regular rates of convergence for the ATE

in general: the optimal rates will depend on the relative tail thickness of the error in the

treatment equation and the covariates.

The next section reintroduces the maximum score model, which will serve as the base

model to introduce the concepts of irregular identification and relates it to the models we

study in details which is done in sections 3 - 6. Specifically, sections 3 - 5 consider the binary

choice model under median and mean restrictions, and censored regression models under

mean restrictions, respectively. Section 6 considers the average treatment effect. Section 7

concludes by summarizing and suggesting areas for future research.

2 Irregular Identification, Identification on Thin Sets

and Inverse Weighting

The notion of regularity of statistical models is linked to efficient estimation of parameters-

see, e.g. Stein(1956). The concept of irregular identification has been related to consistent

estimation of the parameters of interest at the parametric rate. An important early refer-
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ence to irregular identification in the literature appears in Chamberlain(1986) dealing with

efficiency bounds for sample selection models. There, Chamberlain showed that even though

a slope parameter in the selection equation is identified, it is not possible to estimate it at

the parametric root n rate (under the assumptions he maintains in the paper). Chamberlain

added that point identification in this case relies “on the behavior of the regression func-

tion at infinity.” In essence, since the disturbance terms are allowed to take support on the

real line, one requires that the regression function takes “large” values so that at the limit

the propensity score is equal to one (or is arbitrarily close to one). The identified set in

the model shrinks to a point when the propensity score hits one (or no selection). Heck-

man(1990) highlighted the importance of identified at infinity parameters in various selection

models and linked this type of identification essentially to the propensity score. Andrews and

Schafgans(1998) used an estimator proposed by Heckman(1990) and confirmed slow rates

of convergence of the estimator for the constant and also showed that this rate depends on

the thickness of the tails of the regression function distribution relative to that of the error

term. This rate can be as slow as cube root and can be arbitrarily close to root n.

The class of models we consider in this paper are ones where the parameter of interest

can be written as a closed form solution to a weighted moment condition, where the weight

functions take arbitrarily large values on sets of observables we call “thin sets.” Most im-

portantly, values on these thin sets are necessary conditions for point identification of the

parameters. In this class of models where point identification is fragile, the rate of conver-

gence is generally slower than the regular rate. The exact rate is determined by the properties

of the weight function on these thin sets. In some models, not only is point identification

delicate, but also if the regressors fail to take values on the “thin sets”, then the model will

not be able to have any information about the true parameter, i.e., the identified set is the

whole parameter space. This leads to a non-robust identification in the sense that one either

learns the parameter precisely, or, the model provides no information about the parameter

of interest. We view this lack of robustness as an added drawback of inference in this class

of models.

Heuristically, we consider models where the parameter of interest can be written as a

weighted expectation of some observed variables. We illustrate exactly these weight functions

in three examples: the binary response model under various point identification assumptions,

the censored regression model under mean restrictions, and the average treatment effects

model. Generally, we say that a parameter is thin set identified if it is only identified if

some observables take values on a set of arbitrary small probability mass and the weight

function on this set is unbounded. We first give a definition of irregular identification which

3



we tie in later with our thin identified models we consider below. Following the statistical

and econometric literature, we define irregular identification as follows:

Definition 2.1 (Irregular Identification of a parameter vector) We say that a para-

meter vector is irregularly point identified if it cannot be estimated regularly4 at the parametric

rate.

As we will show, the models studied in the following sections will all be irregularly

identified. We begin with the maximum score model introduced in Manski(1975) so we can

compare its properties to models studied more recently in the literature.

3 Binary Choice Model with Median Restriction

Consider the binary choice relation

y = 1[α + v − ε ≥ 0] (3.1)

where 1[.] is a function returning a 1 if . is true and 0 otherwise. We consider a set of

assumptions relating the stochastic relationship between ε and v. We go through a set of

models that make different assumptions on the joint distribution of ε and v. We start with

the maximum score model.

The first model we consider is Manski’s maximum score model in which it is assumed that

med(ε|v) = 0. Under a set of support conditions on v, Manski showed that the parameter α

is point identified . However, with ε having support on the real line, it is easy to show that

α is point identified even if we do not require v to have large support. In fact, all that is

needed for point identification of α is for α + v to be continuous in a neighborhood of zero .

Nonetheless, identification is irregular by our definitions since α cannot be estimated at the

parametric rate. (see, e.g. Chamberlain(1986)).

In addition, we see that if we remove the subset of regressor values such that |α + v| < η for

any arbitrarily small positive η, we lose point identification. However, the parameter space

can be reduced, i.e., the parameter is set identified5 using the maximum score procedure

even after removing this subset of the regressor space.

4see, e.g. Newey(1990) for the conditions for an estimator to be regular.
5For example, if for a given v, P (y = 1|v) > 1

2 , then this implies that α + v ≥ 0 which by itself restricts
the identified set to a strict subset of the parameter space.
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To compare this with the other models we consider below, we note one can easily write

α = −v∗ where P (y = 1|v∗) =
1

2

Hence, α can be written as

α = −E[
δ(P (y = 1|v)− 1

2
)

f(v)
v] ≡ −E[w(v) v]

where δ() is the Dirac delta function and f() denotes the density function of v. The above

can be seen as a weighted expectation of v where the weight function, in this case the ratio

of the delta function to the density6, takes arbitrarily large values at v∗. Moreover, if we

exclude the value v∗ from the support of v, then the model does not point identify7α. Given

this structure, we can define thin set identification in this particular context. Specifically, we

say that α is thin set identified in the maximum score model above since the weight function

w(.) takes arbitrarily large values on the set |α + v| < η for any arbitarily small positive η.

This set, which has arbitrarily small measure, is necessary for point identification.

The combination of both the loss of identification without the thin set and the fact that the

weight function above takes arbitrarily large values there are the two properties that are

shared by the identification strategies in the models we consider in the rest of this paper.

As we will also show, this will result in impossibility theorems analogous to those attained

in Chamberlain(1986).

4 Binary Choice with Mean Restrictions

Now, consider the mean independent binary choice model where (3.1) is combined with the

assumption that E(ε) = 0. Manski(1988) showed that this model does not identify the

parameter α. In fact, he showed that the mean independence assumption is not strong

enough in binary response models to even bound α. Hence, we modify this model by adding

more assumptions to ensure point identification. The ensuing model is a simplified version

of the one introduced by Lewbel(1997, 2000):

y = 1[α + v − ε ≥ 0] (4.2)

6By no means are we suggesting that the weight function is unique for identifying α as a weighted
expectation. In fact, the maximum score is not a weighted estimator. We are adopting it here to illustrate
similarities to identification strategies that have been adopted for the parameters in the models we consider
in this paper.

7Nonetheless, we can still attain set identification which is in contrast to the subsequent models we study.
To distinguish the two cases, we will say that the maximum score model is thin set robustly identified.
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where v is a scalar random variable that is independent of ε and both ε and v have support

on the real line. The object of interest is the parameter α. The location restriction on ε

point identifies α as follows where we also point out that this point identification here is

non-robust in a manner that will made clear below. We start with the following:

P (y = 1|v) = Fε(α + v) (4.3)

where Fε(.) is the cdf of ε where we assume this cdf is a strictly increasing function. Since v

and ε have support on the real line, then we see that the cdf of ε, shifted by α, is identified

on all its support. Hence, the density of ε, fε is also identified (up to location):

fε(α + v) = ∂vP (y = 1|v) (4.4)

Exploiting the mean zero condition on ε, we have:

0 = E[ε] =

∫ +∞

−∞
ufε(u)du

=(i)

∫ +∞

−∞
(α + v)fε(α + v)dv =(ii) α +

∫ +∞

−∞
v∂vP (y = 1|v)dv

where (i) follows from a change of variable and the fact that both v and ε have infinite

support and (ii) follows from (4.4). Hence this means that

α = −
∫ +∞

−∞
v∂vP (y = 1|x = v)dv

Since ∂P (y = 1|v) is identified on the support of v which is the real line, then one can

estimate α by simply taking a sample analog of the above. Lewbel(1997) derived the following

equivalent relation

α = E[(yi − I[vi > 0])f(vi)
−1] ≡ E[(yi − I[vi > 0])w(vi)] (4.5)

with the weight function w(vi) = f(vi)
−1 where f(.) here denotes the density of vi. We note

this identification result satisfies the two conditions for “thin set identification” mentioned

previously. Identification of α is lost8 when the support of α + vi is exceeded by the support

of εi, so in this case (where εi has unbounded support), v∗ = ±∞. The density of vi

vanishes at these points, implying like in the Manski model, that there is a set of arbitrarily

small measure, in this case |v| > M , for an arbitrarily large constant M , where the weight

function becomes unbounded. This suggests α is irregularly identified, a result we will

formally establish by showing an impossibility theorem analogous to Chamberlain(1986).

8If one excludes the thin set, then the model will not contain any information about α (trivial bounds).
This is a case of non-robust identification. To see this, note that if we restrict the support of v to lie on
the set [−K, K] for any K > 0, α will NOT be point identified. To see this, note that in 4.3, we can only
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4.1 Infinite Bounds

In this section, we formally show that efficiency bounds are infinite for a variant of model

(4.2) above. Now, introducing regressors xi, we alter the assumption so that ε|x, v =d ε|x
and that E[ε|x] = 0 (here, =d means “has the same distribution as”). We also impose other

conditions such that ε|x and v|x have support on the real line for all x. The model we

consider now is

y = 1[α + xβ + v − ε ≥ 0] (4.6)

The following theorem, proven in the appendix, shows the identification is irregular. Specifi-

cally, it states that there does not exist a regular root-n estimator for α and β in this model.

Theorem 4.1 In the binary choice model 4.6 with exclusion restriction and unbounded sup-

port on the error terms, and where ε|x, v =d ε|x and E[ε|x] = 0, if the second moments of

x, v are finite, then the semiparametric efficiency bound for β is not finite.

A related result, focusing exclusively on the intercept term is the following:

Theorem 4.2 In the homoskedastic binary choice model with unbounded support on the

error terms and no regressors except for v, if the second moment of v is finite, the semipara-

metric efficiency bound for the intercept term is not finite.

The proof of the above result is omitted as it follows from identical arguments used in proving

Theorem 4.1.

Remark 4.1 The proof of the above results are based on the assumption of second moments

of the regressors being finite. This type of assumption was also made in Chamberlain(1986)

in establishing his impossibility result for the maximum score model.

learn Fε from α−K to α + K. Hence,

α = −
∫ −K

−∞
vfε(α + v)dv

︸ ︷︷ ︸
(1)

−
∫ K

−K

v∂vP (y = 1|v)dv

︸ ︷︷ ︸
(2)

−
∫ ∞

K

vfε(α + v)dv

︸ ︷︷ ︸
(3)

We see that only (2) is identified, while (1) and (3) are not. However, one can bound (1) and (2). So, we see
that no matter how large K is, the model is set identified. In addition, we see that one can easily choose the
unidentified portion of fε(.) (parts (1) and (2) above) in such a way that the model provides NO information
about α. This was shown for the Lewbel model in the recent paper by Magnac and Maurin (2007). This is
in contrast to the maximum score model where one is able to nontrivially bound α even when the thin set,
|α + v| < η, is excluded.
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We see that in general, it is difficult to estimate parameters in semiparametric binary

choice models with mean restrictions. Moreover, in mean based models, the point identifi-

cation is fickle or non-robust. The above impossibility result motivates us to characterize

achievable rates of convergence for particular cases of model (4.6) above. We do this next.

4.2 Relative Tail Behavior and Rates of Convergence: Density

Weighting

The previous section established impossibility theorems for the binary response model under

mean restriction and hence showed that those are irregularly identified. Here we derive the

rates of convergence and show that these depend on the relative tail behavior. In generic

cases, the rate of convergence for the estimator of the intercept term in (4.2) is slower than

parametric rate. The result seems to hold for any model where the tail of the special regressor

v is as thin or thinner than the tail of the error term. Moreover, there are cases (when the

moment conditions in the above theorem are violated) where the rate of convergence reaches

the regular parametric rate. As we show below, when v is Cauchy, then the estimator of α

converges at root n rate9.

We start with the following estimator α that was proposed by Lewbel (1997)10:

α̂n =
1

n

n∑
i=1

yi − I[vi > 0]

f(vi)
I[vi ≤ γn] (4.7)

The estimator includes the additional trimming term I[vi ≤ γn] where γn is a deterministic

sequence of numbers that satisfies limn→∞ γn = ∞ and limn→∞ γn/n = 0. Effectively, this

extra term helps govern tail behavior. Trimming this way suffices (under the assumptions

in Lewbel(1997))to deal with the denominator problem associated with the density function

f(vi) getting small.

Next we define ᾱn = E[α̂n]. In what follows we will establish a rate of convergence

and limiting distribution for α̂n − ᾱn. To do so we first define the sequence of constants

v(γn) = Var(yi−I[vi>0]
f(vi)

I[vi ≤ γn]), and in what will follow we let hn = v(γn)−1. Based on our

9The notion of attaining a faster rate of convergence when moments are infinite is not new. For example,
it is well known that when regressors have a cauchy distribution in the basic linear model, OLS is super-
consistent.

10Actually, it is an infeasible version since we assume here the density function f(vi) is known. It is also
different in the sense trimming should be based on both tails -i.e. I[|vi| ≤ γn]. Both changes are made only
for notational convenience and do not effect the main results of upper bounds for rates of convergence.
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previous impossibility result we will generally have limn→∞ v(γn) = ∞, which will result in

a slower rate of convergence.

To do so, we will apply the Lindeberg condition to the following triangular array:

√
nhn(α̂n − ᾱn) =

n∑
i=1

√
hn

n

(
yi − I[vi > 0]

f(vi)
I[vi ≤ γn]− ᾱn

)
(4.8)

Before claiming asymptotic normality of the above term we verify that the Lindeberg con-

dition for the array is indeed satisfied. Specifically, we need to establish the limit of

hnE

[(
(yi − I[vi > 0])

f(vi)
I[vi ≤ γn]− ᾱn

)2

I[

(
(yi − I[vi > 0])

f(vi)
− ᾱn

)2

>
n

hn

ε2]

]
(4.9)

for ε > 0. The above limit is indeed zero since hnE[

[(
(yi−I[vi>0])

f(vi)
I[vi ≤ γn]− ᾱn

)2
]

= 1 and

n
hn
→∞. Therefore, we can conclude that

√
nhn(α̂n − ᾱn) ⇒ N(0, 1) (4.10)

So we have established that the rate of convergence of the centered estimator is governed

by the limiting behavior of hn. As we will show below, in most cases, hn → 0, resulting

in a slower rate of convergence, as is to be expected given our previous efficiency bound

calculations.

Of course, the above calculations only derives rates for the centered estimator, and not

the estimator itself. To complete the distribution theory we need to derive the rate of

convergence of the bias term:

√
nhn(ᾱn − α0) (4.11)

where from Lewbel(1997) we know that

α0 = E[
yi − I[vi > 0]

f(vi)
] (4.12)

so we have:

bn ≡ ᾱn − α0 =

∫ ∞

γn

(p(v)− 1)dv (4.13)

where p(v) = P (yi = 1|vi = v). Clearly we have limn→∞ bn = 0 if we maintain that

limn→∞ γn = ∞.
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There we can see that the limiting distribution of the estimator can be characterized by

two components, the variance, which we see depends on the limiting ratio of the propensity

score divided by the regressor density, and the bias, which depends on the rate at which the

propensity score converges to 1. Our results are “high level” as stated since we have not

yet stated conditions on γn except that it increases to infinity. Nor have we stated what

the sequences hn and bn look like as functions of γn. We show now how they relate to tail

behavior assumptions on the regressor distribution and latent error term.

First we calculate the form of the variance term v(γn) as a function of γn. Note we can

express v(γn) as the following integral:

v(γn) =

∫ γn

−∞

p(v)(1− p(v)

f(v)
dv + Var((E[(

yi − I[vi > 0]

f(vi)
I[vi ≤ γn])|vi]− ᾱn)) (4.14)

We will focus on the first term because we will show the second term is negligible when

compared to the first. The second term in the variance is of the form:

Var(E[(
yi − I[vi > 0]

f(vi)
I[vi ≤ γn])|vi]− ᾱn) (4.15)

The above variance is of the form:

E[(ᾱn(vi)− ᾱn)2] (4.16)

where ᾱn(vi) denotes the conditional expectation in (4.15). Note that since ᾱn converges to

α0 and E[ᾱn(vi)] = ᾱn the only term in the above expression that may diverge is

E[ᾱn(vi)
2] (4.17)

This term can be expressed as the integral:
∫ γn

−∞

(1− p(v))2

f(v)
dv (4.18)

which will generally be dominated by the first piece of the variance term, which recall was

of the form:∫ γn

−∞

p(v)(1− p(v))

f(v)
dv (4.19)

So generally speaking, as far as deriving the optimal rate of convergence for the estimator,

we can ignore this component of the variance.

Using similar arguments we can show that the bias term behaves asymptotically like:

bn ≈ γn(1− p(γn)) (4.20)

With these general results, we now calculate the rate of convergence for some special cases

corresponding to various tail behavior conditions on the regressors and the error terms.
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4.2.1 Rates of Convergence in Special Cases

Here we derive the rates of convergence under various tail behavior conditions on both the

latent error and the regressor.

- [Logit Errors/Logit Regressors] Here we assume the latent error term and the regressors

both have a standard logistic distribution. We consider this to be the main example, as

the results that arise here ( a slower than root-n rate) will generally also arise anytime

we have distributions whose tails decline exponentially, such as the normal, logistic

and Laplace distributions. From our calculations in the previous section we can see

that

v(γn) = γn and bn = γn
exp(−γn)

1 + exp(−γn)
(4.21)

So to minimize mean squared error we set γn

n
= γ2

n
exp(−2γn)

(1+exp(−γn))2
to get γn = O(log n1/2),

resulting in the rate of convergence of the estimator:

√
n

log n1/2
(α̂− α0) = Op(1) (4.22)

Furthermore, from the results in the previous section, the estimator will be asymptot-

ically normally distributed, and have a limiting bias.

- [Normal Errors/Normal Regressors] Here we assume that the latent error term and the

regressors both have a standard normal distribution. To calculate v(γn) in this case,

we can use the asymptotic properties of the Mills Ratio (see, e.g. Gordon(1941, AMS,

12)), r(·):

r(t) ∼ 1

t
as t →∞ (4.23)

to approximate v(γn) ≈ log(γn). For this case we have bn ≈ γn exp(−γ2
n/2). So to

minimize MSE, we set γn =
√

log n and the estimator is Op(

√
log(

√
log n)

n
).

- [Logit Errors/ Normal Regressors] Here we assume the latent error term has a logistic

distribution but the regressors have a normal distribution. As we show here the rate

of convergence for the estimator will be very slow. The variance is of the form:

v(γn) =

∫ γn

exp(v2/2)dv (4.24)
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which can be approximated as: v(γn) ≈ exp(γ2
n/2)γ−1

n see, e.g. Weisstein, Eric W.

(1999)11. The bias of the form:

bn ≈ γn exp(−γn) (4.25)

So the MSE minimizing sequence is of the form: γn =
√

log n Resulting in the rate of

convergence

Op

(
n−1/4

4
√

log n

)

- [Logit Errors/Cauchy Regressors] Here we assume the latent error term has a standard

logistic distribution but the regressor has a standard cauchy distribution. From our

calculations in the previous section we can see that

v(γn) = γn
exp(−γn)

(1 + exp(−γn))2
(1 + γ2

n) (4.26)

and

bn = γn
exp(−γn)

1 + exp(−γn)
(4.27)

We note in this situation v(γn) remains bounded as γn → ∞, so the variance of the

estimator is O( 1
n
). Therefore we can let γn increase to infinity as quickly as desired

to ensure bn = op(n
−1/2). Therefore in this case we can conclude that the estimator is

root-n consistent and asymptotically normal with no asymptotic bias.

- [Probit Errors/Cauchy Regressors] Here we assume the latent error term has a standard

normal distribution but the regressor has a standard cauchy distribution. From our

calculations in the previous section we can see that

v(γn) ≈ γn exp(−γ2
n/2)γ−1

n (1 + γ2
n) (4.28)

where the above approximation is based on the asymptotic series expansion of the erf.

Furthermore

bn = γn exp(−γ2
n/2)γ−1

n (4.29)

We can see immediately that no matter how quickly γn →∞, v(γn) = O(1), so we can

set γn = O(n2) to that

√
n(α̂− α0) = Op(1) (4.30)

11 ”Erfi.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Erfi.html.
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and furthermore the estimator will be asymptotically normal and asymptotically un-

biased.

- [Differing Support Conditions: Regular Rate] Here we assume the support of the latent

error term is strictly smaller than the support of the regression function. For γn

sufficiently large p(γn) takes the value 1, so in this case we need not use the above ap-

proximation and limγn→∞ v(γn) is finite. This implies we can let γn increase as quickly

as possible to remove the bias, so the estimator is root-n consistent and asymptotically

normal with no limiting bias. This is a case where for example α + v in (4.2) has

strictly larger support than ε’s.

So to summarize our results, we say that the optimal rate is directly tied to the relative

tail behavior of the special regressor and the error term. Rates will generally be slower than

the parametric rate, which can only be attained with infinite moments on the regressor, or

strong support conditions. The latter ensure the propensity scores attains its extreme values

with positive measure.

In one sense this is not surprising since when imposing such a strong condition, other

existing impossibility theorems can be reversed. For example, in the binary choice conditional

median model (maximum score), if the propensity score is assumed to be able to takes values

in {0, 1}, then in the appendix (Section A.1) we provide an estimator for the slope in this

maximum score setting that converges at the regular rate.

4.3 Rate Adaptive Inference

As the results in the previous section illustrates, the rates of convergence for estimators of

thinly set identified models can vary widely with tail behavior conditions on both observed

and unobserved random variables, and the optimal rate rarely coincides with the parametric

rate. As mentioned, consequently we feel semiparametric efficiency bounds might not be

as useful for this class of models. Instead, we propose the use of rate-adaptive inference

procedures as was done in Andrews and Schafgans(1998). We will illustrate this procedure,

meant to be applied to all the models considered in this paper, by focusing on the binary

choice model under a mean restriction. Here we propose a rate adaptive procedure for the

intercept term. Let α̂n denote the trimmed variant of the estimator proposed in Lewbel(1997)

for the intercept term:

α̂n =
1

n

n∑
i=1

yi − I[vi > 0]

f(vi)
I[vi ≤ γ2n] (4.31)
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And let Ŝn denote a trimmed estimator of its asymptotic variance if conditions were such

that the asymptotic variance were finite12:

Ŝn =
1

n

n∑
i=1

p(vi)(1− p(vi)

f(vi)2
I[vi ≤ γ2n] (4.32)

Our main result in this section is that the “studentized” estimator converges to a standard

normal distribution. We consider this result as rate-adaptive in the sense that the limiting

distribution holds regardless of the rate of convergence of the un-studentized estimator. We

state this formally as a theorem, which first requires the following definitions:

v(γ2n) = E[
p(vi)(1− p(vi))

f(vi)2
I[vi ≤ γ2n]] (4.33)

b(γ2n) = α0 − E[
yi − I[vi > 0]

f(vi)
I[vi ≤ γ2n]] (4.34)

Xni =
yi − I[vi > 0]

f(vi)
I[vi ≤ γ2n] (4.35)

Theorem 4.3 Suppose (i)γ2n →∞, (ii) ∀ε > 0,

lim
n→∞

1

v(γ2n)
E[X2

niI[|Xni| > ε
√

v(γ2n)] = 0 (4.36)

and (iii)
√

nv(γ2n)b(γ2n) → 0, then

√
nŜ−1/2

n (α̂− α0) ⇒ N(0, 1) (4.37)

This result is analogous to the results in Andrews and Schafagans(1998) who considered

asymptotic properties of the identification at infinity estimator proposed in Heckman(1990).

Proof: We begin by deriving a representation for Ŝn. As mentioned previously, we have

Ŝn = v(γ2n)+op(1), where the sequence of constants v(γ2n) will either converge to infinity or

a finite constant, depending on relative tail behaviors. We next turn attention to the term

1√
nv(γ2n)−1/2

n∑
i=1

(
yi − I[vi > 0]

f(vi)
I[vi ≤ γ2n]− µn

)
(4.38)

12Note here that Ŝn is infeasible since p(v) is unknown to the econometrician. This was assumed to simplify
the arguments in the proof below, but can be relaxed.
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where

µn = E[
yi − I[vi > 0]

f(vi)
I[vi ≤ γ2n] (4.39)

Under (ii), we know the above term converges to a standard normal distribution by the

Lindeberg theorem. We also note that the bias term vanishes under our conditions for a

wide ranges of rates on γ2n:

√
nv(γ2n)b(γ2n) → 0 (4.40)

establishing the desired result. ¥.

5 Censored Regression Models

In this section we characterize various identification approaches for regression parameters in

censored regression models under various error restrictions. Honore, Khan and Powell(2002)

established regular identification for fixed and randomly censored regression models under a

median restriction.

Koul, Susarla and Van Ryzin(1981) (KSV) consider identification of randomly (right)

censored regression models under a mean restriction, using an “inverse weighting” method.

However, as we establish here this approach is based on thin set identification, using our

definition, and we will establish here that no estimator converging at the parametric rate ex-

ists for this model. This generalizes the impossibility result in Newey(2003) for the censored

regression model with fixed censoring under a conditional mean restriction.

Specifically, we will consider the model:

yi = min(α0 + εi, ci) (5.1)

where the econometrician observes the vector (yi, ci) and we assume that εi and ci are inde-

pendent. Note this is a more informative sampling scheme than considered in KSV in the

sense that the censoring variable is always observed, and note for notational convenience we

have suppressed the presence of regressors to focus on the intercept term. KSV showed that

when ci and α0 + εi have the same support, α0 can be identified as:

α0 = E[diyi/Sc(yi)] = E[di(α0 + εi)w(α0 + εi)] (5.2)

where di is a censoring indicator and Sc(·) denotes the survivor function of the censoring

variable, and w(α0 + εi) = Sc(α0 + εi)
−1. Thus the above moment condition will have the
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two properties to be characterized as thin set identified. We note identification is lost in this

model when the support of the censoring variable is exceeded by the support of α0 + εi, so

in the Tobit case where α0 + εi has support on the real line the point to be removed to lose

identification is c∗ = ∞, so w(c∗) = ∞. This suggests that the above identification result is

irregular, as result we confirm for the more general model with regressors xi:

Theorem 5.1 In the model13

yi = max(x′iβ0 + εi, ci) (5.3)

with (i)E[εi|xi] = 0, (ii)E[‖xi‖2] < ∞, (iii)ci and x′iβ0 + εi are independent of each other

conditional on xi, and each have unbounded support, the information bound for β0 is 0.

P
¯
roof: See appendix. Hence no estimator can converge at the parametric rate, so the

identification is irregular.

Remark 5.1 The results here are completely analogous to the binary choice model discussed

previously. There, the regular rate could only be attained if extreme support or tail conditions

were satisfied. The same is true here where now one needs strong support or tail thickness

of the censoring variable, relative to the error term.

5.1 Estimation and Rates of Convergence

Here we follow the arguments used when considering the binary choice model to derive the

optimal rates of convergence for the inverse weight estimator proposed in Koul et al.(1981).

To clarify our arguments, we will focus on estimating the intercept term α0 in the model

yi = min(α0 + εi, ci) (5.4)

and let di denote an indicator variable taking one if the observation is uncensored. As before

we assume the censoring point ci is observed, and the latent error term εi has mean 0. From

Koul et al.(1981) we have the moment condition:

α0 = E[diyi/Sc(yi)] (5.5)

13Note our impossibility result is expressed for the left censoring model so that the result can be compared
to Newey(2003). Such a result will also hold for the right censored model.
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where Sc(·) denotes the survivor function of the censoring variable. This suggests the analog

estimator:

α̂ =
1

n

n∑
i=1

diyi

Sc(yi)
(5.6)

And as before there will be many situations when the variance of the term inside the summa-

tion will be infinite. Consequently, we will trim the variable yi at the sequence of constants

γn, and denote the variance by v(γn). Here we have:

v(γn) = E[I[α0 + εi ≤ γn]
α2

0 + ε2
i + 2α0εi

Sc(α0 + εi)
] (5.7)

whose lead term as εi approaches infinity behaves like

v(γn) ≈
∫ γn−α0

−∞

ε2
i f(εi)

Sc(α0 + εi)
dεi (5.8)

and the bias induced by trimming will be of the form

b(γn) = α0 −
∫ ∞

−∞
I[α0 + εi ≤ γn](α0 + εi)f(εi)dεi (5.9)

which can be decomposed as the sum of

−α0

∫ ∞

γn−α0

f(εi)dεi +

∫ γn−α0

−∞
εif(εi)dεi (5.10)

whose terms behave asymptotically like

γ−1
n f(γn) + f(γn) ≈ f(γn) (5.11)

So as before we can attain optimal rates of γn. We now consider some special cases of error

term and censoring variable tail behavior:

- [Logit Errors/Logit Censoring] Here we assume the latent error term has a standard logistic

distribution as does the censoring variable. From our calculations in the previous

section we can see that

v(γn) ≈ O(γ3
n) (5.12)

and

bn ≈ exp(−γn) (5.13)
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So equating the variance with the square of the bias we get

γn =
1

2
log n (5.14)

So

α̂− α0 = Op(
√

(log n)3/n) (5.15)

Differing Support Conditions:
√

n rate Here we assume the support of the latent de-

pendent variable is strictly smaller than the support of the censoring variable. Using

analogous arguments we can show the estimator is root-n consistent and asymptot-

ically normal with no limiting bias. This result is analogous to what we attained

previously since in this setting the propensity score, in this case the probability of

being uncensored becomes one with positive measure.

6 Treatment Effects Model under Exogenous Selection

This section shows that another parameter of interest- the Average Treatment Effect is only

point identified under support conditions and thus can only be estimated at the parametric

rate under strong tail behavior restrictions.

A central problem in evaluation studies is that potential outcomes that program partici-

pants would have received in the absence of the program is not observed. Letting di denote

a binary variable taking the value 1 if treatment was given to agent i, and 0 otherwise,

and letting y0i,y1i denote potential outcome variables, we refer to y1i − y0i as the treatment

effect for the i’th individual. A parameter of interest for identification and estimation is the

average treatment effect, defined as:

β = E[y1i − y0i] (6.1)

One identification strategy for β was proposed in Rosenbaum and Rubin(1983), who

imposed the following:

(i) There exists an observed variable xi s.t. di and (y0i, y1i) are independent of each other

given xi.

(ii) 0 < P (di = 1|xi) < 1 ∀xi
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from which we can identify β as

β = EX [E[yi|di = 1, xi]− E[yi|di = 0, xi]] (6.2)

or

β = EX [E[yi|di = 1, p(xi)]− E[yi|di = 0, p(xi)]] (6.3)

where p(xi) = P (di = 1|xi). Hirano et al.(1999) showed the following inverse weighting

identification result:

β = E[
yi(di − p(xi))

p(xi)(1− p(xi))
] (6.4)

Clearly identification is lost when we remove any region in the support of xi. Note how-

ever, that regions in the tails of xi where the weight function p(xi)
−1(1 − p(xi))

−1 becomes

unbounded, putting the above identification result into our class of thin set identification,

suggesting the irregularity of the identification without further restrictions than those stated

above.

Whether or not this identification result is regular is a delicate equation, and depends

on the support conditions on the propensity score. It is regular if we strengthen the above

condition on the propensity scores to be such that they are bounded away from 0 and 1:

(ii’) There exists and ε > 0 s.t. ε < P (di = 1|xi) < 1− ε ∀xi

The efficiency bound derived in Hahn(1998) holds under (i) and (ii). If we assume (ii’) we

can efficiently estimate β at the parametric rate as Hahn(1998)’s bound is finite. If on the

other hand (ii’) does not hold (but (ii) does), there will be many situations where the bound

is infinite.

For example, in the homoskedastic setting with one continuous regressor, anytime the

distribution of the regressor is the same as that of the error term in the treatment equation,

so (ii) is satisfied but not (ii’),the variance in Hahn(1998) is infinity.

So if we assume (ii) but not (ii’), the efficiency bound for β can be infinite if we rule

out models which E[p(xi)
−1] is finite, such as the class of models considered before. Thus

we see that, such as was the case in the binary choice and censored regression models,

rates of convergence will depend on relative tail behaviors of regressors and error terms.

Consequently, we do not feel it is useful to compute efficiency bounds in this setting under

Assumptions (i) and (ii).

An impossibility theorem for this model is stated in the following theorem, whose proof

is omitted as it follows from similar arguments to prove the other theorems.

19



Theorem 6.1 Assume:

(ii”) The support of p(xi) is (0, 1), EX [p0(xi)
−1] = ∞

Then Under Assumptions (i),(ii”), the variance bound for β is infinite.

6.1 Average Treatment Effect Estimation

Here we conduct the same rate of convergence exercises for estimating the average treatment

effect. We will explore the asymptotic properties of the following estimator:

α̂ =
1

n

n∑
i=1

(
diyi

p(xi)
− (1− di)yi

1− p(xi)

)
I[xi ≤ γn] (6.5)

We note that analogous to before the estimator considered is infeasible, this time because

we are assuming the propensity score is known. Like in the binary choice model this will not

effect our main conclusions. Also, like before we will assuming it suffices to trim on regressor

values, as in this case it is large regressor values which cause the denominator problem.

Furthermore, to clarify our arguments we will assume here that the counterfactual outcomes

are homoskedastic with a variance of 1.

Like before we will define the following terms:

ᾱn = E[α̂] (6.6)

and

v(γn) = E[(
1

p(xi)
+

1

1− p(xi)
)I[xi ≤ γn]] = E[

1

p(xi)(1− p(xi)
I[xi ≤ γn]] (6.7)

and

bn = ᾱn − α0 (6.8)

where here

α0 = E[

(
diyi

p(xi)
− (1− di)yi

1− p(xi)

)
] (6.9)

As before, we will define hn = v(γn)−1.

Carrying the same arguments as before we explore the asymptotic properties of v(γn) and

bn as γn → ∞. Generally speaking, anytime v(γn) → ∞, the fastest rate for the estimator

will be slower than root-n.
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We can express v(γn) as the following integral:

v(γn) =

∫ γn

−∞

f(x)

p(x)(1− p(x))
dx (6.10)

which using the same expansion as before, will behave asymptotically like

v(γn) ≈ γn
f(γn)

p(γn)(1− p(γn))
(6.11)

For the problem at hand we can write bn as the following integral:

bn = γn

∫ ∞

γn

m(x)f(x)dx (6.12)

where m(x) is the conditional ATE. We now consider some particular examples corresponding

to tail behavior on the error term in the treatment equation and the regressor.

Logit Errors/Regressors/Bounded CATE Here we assume the latent error term and

the regressors both have a standard logistic distribution, and to simplify calculations

we will assume the conditional average treatment effect is bounded on the regressor

support. We consider this to be a main example, as the results that arise here ( a slower

than root-n rate) will generally also arise anytime we have distributions whose tails

decline exponentially, such as the normal, logistic and Laplace distributions. From our

calculations in the previous section we can see that

v(γn) = γn (6.13)

and

bn ≈ γn
exp(−γn)

(1 + exp(−γn))2
(6.14)

Clearly v(γn) → ∞ resulting in a slower rate of convergence. To get the optimal rate

we solve for γn that set v(γn)/n = b2
n. We see this matches up when γn = 1

2
log n,

resulting in the rate of convergence of the estimator:
√

n

log n1/2
(α̂− α0) = Op(1) (6.15)

Furthermore, from the results in the previous section, the estimator will be asymptot-

ically normally distributed, and have a limiting bias.

We notice this the exact same result attained for the binary choice model considered

previously. As mentioned, similar slower than parametric rates will be attained when

the error distribution and regressor have similar tail behavior.
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Normal Errors/Logistic Regressors/Bounded CATE Here we assume the latent er-

ror term has a standard normal distribution and the regressors both have a standard

logistic distribution, and to simplify calculations we will assume the conditional average

treatment effect is bounded on the regressor support.

In this situation we have:

v(γn) ≈
∫ γn exp(−x)

1− Φ(x)
dx (6.16)

which by multiplying and dividing the above fraction inside the integral by φ(x), the

standard normal p.d.f, and using the asymptotic approximation to the inverse Mills

ratio, we get

v(γn) ≈
∫ γ

n

exp(x2/2)xdx = exp(γn) (6.17)

In this setting the bias is of the form

bn =

∫ ∞

γn

f(x)dx ≈ exp(−γn) (6.18)

so the MSE minimizing value of γn here is

γn = log n1/3 (6.19)

so the estimator is Op(n
−1/3).

Differing Support Conditions/Bounded CATE Here we assume the support of the

latent error term in the treatment equation is strictly larger than the support of the

regressor and the support of the regression function in the treatment equation. Here

for γn sufficiently large p(γn) remains bounded away from 0 and 1 so limγn→∞ v(γn) is

finite. Here we can let γn increase as quickly as possible to remove the bias, resulting

in a root-n consistent estimator.that is asymptotically normal, completely analogous

to the result attained before under differing supports in the binary choice model.

Cauchy Errors/Logistic Regressors/Bounded CATE Here we impose heavy tails on

treatment effect error term, assuming it has a Cauchy distribution, but we impose

exponential tails on the regressor distribution, assuming here that it has an logistic

distribution, though similar results would hold if we assumed normality.

v(γn) ≈ γn
exp(−γn)

1
4
− arctan(γn)2

(6.20)
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where after using L’Hospitale’s rule we can conclude that:

v(γn) ≈ γn exp(−γn)(1 + γ2
n) (6.21)

which remains bounded as γn → ∞. Therefore we can let γn increase arbitrarily

quickly in n, say γn = O(n2) in which case the estimator will be root-n consistent and

asymptotically normal with no asymptotic bias.

7 Conclusion

This paper related the notion of irregular identification to the concept of thin set identi-

fication. This was shown to be related to set identification and semiparametric efficiency

bounds in a wide class of nonlinear models, which included binary choice, fixed and ran-

domly censored regression models, and treatment effect models. In the process of applying

the definition to these models we established new impossibility theorems. The work here

questions the usefulness of semiparametric efficiency bounds for this class of models, and

instead proposes rate adaptive procedures for conducting inference.

For future research, it would appear useful to study our definition in the context of some

nonparametric models. For example, the nonparametric estimators of a censored and trun-

cated regression model proposed in Lewbel and Linton(2003) are based on similar support

conditions as those imposed in some of the examples considered in this paper, so a natural

question to pose would be how the rates of convergence are affected in those models which

also achieve identification at the limit support points.
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Appendix

A Proof of Theorem 4.1

To prove this theorem, we follow the approach taken in Chamberlain(1986). Specifically,

look for a subpath around which the variance of the parametric submodel is unbounded. We

first define the function:

g0(t, x) = P (εi ≤ t|xi = x)

Note it does not depend on the v because of our assumption of conditional independence.

The likelihood function we will be working with is based on the following density function:

f(y, x, z, β, g) = g(xβ + v, x)y(1− g(xβ + v, x))1−y

We first define the family of conditional distributions, Γ:

Definition A.1 Γ consists of all functions g : Rk → R such that for all (t, x) ∈ R × Rk−1

we have

1. g is continuous.

2. g′(t, x), the partial derivative of g(t, x) with respect to its first argument, is continuous

and positive.

3. lims→−∞ g(s, x) = 0, lims→+∞ g(s, x) = 1.

4.
∫

sg′(s, x)ds = 0

We next define the set of sub-paths, Λ, we will work with:

Definition A.2 Λ consists of the paths14:

λ(δ) = g0(1 + (δ − δ0)h)

where g0 is the “true” distribution function, assumed to be an element of Γ, and h : Rk →
R is a continuously differentiable function that is 0 outside a compact set, and satisfies∫

sh′(s, x)ds = 0 ∀x
14This is just one set of paths that can be used to establish the desired result. For example, one could

also work with the paths g0 + (δ − δ0)
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We note that the scores of the root likelihood function are:

ψj(y, x, v) =
1

2

{
yg

−1/2
0 (xβ0 + v, x)− (1− y)(1− g0(xβ0 + v, x))−1/2

}
g′0(xβ0 + v, x)x(j)

where x(j) the jth component of x.

ψλ(y, x, v) =
1
2

{
yg
−1/2
0 (xβ0 + v, x)− (1− y)(1− g0(xβ0 + v, x))−1/2

}
g0(xβ0 + v, x)h(xβ0 + v, x)

We will show that:

Theorem A.1 Let Iλ,j denote the partial information for the jth component of β0 as defined

in Chamberlain(1986).

If P (xiβ0 + vi = 0) = 0 then if the second moment of the vector (xi, vi) is finite,

inf
λ∈Λ

Iλ,j = 0

.

Note heuristically we will get the desired result if we define h(t, x) = a(x, v)c(t) where

a(x, v) is an arbitrarily close to fε|X(xβ0 + v|x)/g0(xβ0 + v) · x, and c(t) is the function that

takes the value 1 on its support.

To fill in these details, we define Qλ and π as:

π(A) =

∫

A

g0(xβ0 + v, x)(1− g0(xβ0 + v))−1fV (v)dFX(x)

Qλ =

∫
[b(xβ0 + v, x)x− h(xβ0 + v, x)]2 dπ(v, x)

where b(·, ·) = g′0(·, ·)/g0(·, ·). We can then add and subtract a(x, v) to the above integrand,

inside the square.

Note we can make the term
∫

[b(xβ0 + v, x)x− a(x, v)]2 dπ(v, x)

arbitrarily small by the denseness of the space of continuously differentiable functions.
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This result, that the above integral can be made arbitrarily small, will follow from Lemma

A.2 in Chamberlain(1986) if we can show that b(xβ0 + v) ∈ L2(π), where

dπ(v, x) = g0(xβ0 + v, x)(1− g0(xβ0 + v, x))−1fX(x)fV (v)dxdv

So in other words all we need to show is the finiteness of the following integral:

∫
g′0(xβ0 + v, x)2

g0(xβ0 + v, x)(1− g0(xβ0 + v, x))
x2

(j)fX(x)fV (v)dxdv (A.1)

Finiteness will follow for all distributions satisfying the assumptions in the definition of

Γ, which will imply the uniform (in v, x boundedness of the term

g′0(xβ0 + v, x)2

g0(xβ0 + v, x)(1− g0(xβ0 + v, x))

This is true because under our assumptions, for any finite t,
g′0(t,x)

g0(t,x)(1−g0(t,x))
is finite, so the

only possibility of the fraction becoming unbounded is as t → ±∞. However, by considering

t → ∞ and applying Hospitale’s rule, this would be equivalent to the unboundedness of

limt→+∞ g′′0(t, x), (with g′′0(t, x) the second partial derivative of g0(t, x)). But that would

contradict g′0(t, x) being a density function limiting to 0 as t → ±∞.

The boundedness of the above ratio will imply finiteness of the integral in (A.1) by the

finite second moment assumption of x and the fact that fV (v) is a density function and

integrates to 1.

Finally, the term:∫
[a(x, v)− a(x, v)c(t)]2 dπ(v, x)

can be made arbitrarily small by setting c(t) to 1 in most of its (compact) support. Fur-

thermore, with this same definition of c(t) we can satisfy
∫

c′(t)tdt = 0. Notice we can make

c(t) ”smoother” in the way it drops to 0. For example, we could make the support of c(t)

go from -2ρ to +2ρ, where ρ is sufficiently large. Then make c(t) = 1 if |t| < ρ, and c(t)

declines linearly to 0 when t is in (−2ρ, ρ) and (ρ, 2ρ).

A.1 Regular rates with extreme values of the propensity score:

It is interesting to note that we require that the unobserved term has support on the real

plane. This is crucial since with bounded support, the propensity score hits zero or one with
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high probability (for example if the index has larger support) and it is possible in this case

to obtain regular consistent estimators for β (up to scale). For example, consider the binary

choice model of section 3 above. Suppose that x1 is such that x1|x−1 has support on the

real line for all x−1 a.s., while x′−1β(−1) + ε has support in [K1, K2] where K1 and K2 are

finite. Then, it is easy to see that for values of |x1| that are large, the propensity score is

equal to one or zero. In this case, one is able to point identify and estimate the parameter

at the parametric rate if there is sufficient “variation” on the set where the propensity score

is zero or one. To see that, we first describe heuristically an estimation procedure and in the

appendix we show that this estimator is converges at the regular rate.

One can first collect the obervations for which the propensity score is 1 or 0 and then focus

on these observations. We normalize β1 = 1 and then for these observations (for which

propensity score is one or zero), we have (notice here we only condition on x−1)

Pr(y = 1|x−1) =

∫
Fε|x(x

′β)1
[
x1 ∈ P1(x−1) ∪ P2(x−1)

]
f(x1|x−1)dx1 (A.2)

=

∫
1
[
x1 ∈ P1(x−1)

]
f(x1|x−1)dx1 (A.3)

=

∫
1
[
x1 ≤ x−1β−1 + K1(x−1)]f(x1|x−1)dx1 (A.4)

= Fx1|x−1

(
x−1β−1 + K1(x)

)
(A.5)

where for a given X−1, P1 and P2 are regions for x1 where the propensity score is equal to

1 and zero respectively, and K1(x) (K2(x)) is the smallest (largest) value for x1 for which

the propensity is one (zero). These K’s are observed in the data. Finally, Fx1|x−1 is the

distribution function of x1 conditional on x−1 and this too is observed in the data. Hence

since K1 is observed, one can easily solve for β given the usual regularity conditions. Now,

we provide an estimator in this case when the propensity score is zero or one and show that

this estimator converges at the root n rate.

Our main result here, of establishing root-n consistency applies to any binary choice

model where the propensity scores can take the values 1 and 0. This will include the median

model in Manski(1975,1985), the Lewbel model, and a binary choice model under a mean

restriction on the error term without the exclusion restriction imposed in Lewbel.

Recall that in the regions where the propensity scores were 0 or 1, we had the following

equality:

P (yi = 1|x−1) = Fx1|x−1(x
′
−1θ0 + K1(x−1)) (A.6)

where recall K1(x−1) corresponds to the smallest (largest) value of x1 for which the propensity

score is one (zero), and whose value varies with the values of x−1. Here θ0 = β−1. In what
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follows we will refer to the term on the left hand side of the above equation as the partial

propensity score, as it is a probability conditional on a subset of the regressors.

Here we propose a method to translate the above equality into an estimation procedure

for θ0. As mentioned previously,the functions P (yi = 1|x−1 = ·)), Fx1|x−1(·), K1(·) are observ-

able from the data. Denote the kernel estimators of the first two by p̂−1(·), and F̂ (·). The

estimator of K(·) can be obtained by the smallest or largest order statistic, and we denote

its estimator by K̂(·). Recall, were are assuming that the special regressor is continuously

distributed with positive density on the real line, regardless of the value of the other regres-

sors. This motivates inverting the kernel estimator of the conditional c.d.f of x1, resulting

in a second stage least squares estimator of θ0

θ̂ = arg min
θ

∑
i

(F̂−1(p̂−1(x−1i))− x′−1iθ + K̂1(x−1i))
2 (A.7)

where the above summation is over the subset of the n observations in the data set where

the propensity scores take the values 0 or 1. We can express this estimator in a closed form.

Let ŷi denote F̂−1(p̂−1(x−1i)) + K̂1(x−1i) and let x̃−1i denote x−1iI[pi = 0 or pi = 1] with pi

denoting the propensity score. Then the estimator is of the form:

θ̂ =

(
1

n

n∑
i=1

x̃−1ix̃
′
−1i

)−1
1

n

n∑
i=1

x̃−1iŷi (A.8)

We list a set of sufficient conditions for the above estimator to be root-n consistent and

asymptotically normal.

A1 The matrix Σxx ≡ E[x̃−1ix̃
′
−1i] is invertible.

A2 The functions p−1(·), Fx1|x−1(·) are both assumed to be s times continuously differen-

tiable with bounded derivatives on their support, with the integer s satisfying s > d/2,

d being the dimension of the continuous components of xi.

A3 The bandwidth sequence h1n used in the kernel estimation of p−1(·) and Fx−1(·) sat-

isfies
√

nhs
1n → 0 and nhd−1

1n → ∞. The bandwidth sequence h2n used in the kernel

estimation of Fx1,x−1(·) satisfies
√

nhs
2n → 0 and nhd

2n →∞.

The asymptotic distribution is characterized in the following theorem:
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Theorem A.2 Under Assumptions A1-A3, we have

√
n(θ̂ − θ0) ⇒ N(0, Σ−1

xx ΩΣ−1
xx ) (A.9)

where

Ω = E[ψiψ
′
i] (A.10)

with

ψi = x̃−1i
1

fx1|x−1(F
−1
x1x−1

(p−1i))
(di − p−1i) (A.11)

where p−1i denotes p−1(x−1i).

Proof: Note we have the following relationship:

θ̂ − θ0 =

(
1

n

n∑
i=1

x̃1ix̃
′
1i

)−1
1

n

n∑
i=1

x̃1i(F̂
−1(p̂−1i)− F−1(p−1i)) + op(n

−1/2) (A.12)

where the remainder term of op(n
−1/2) results from the minimum order statistic used to

estimate K1(·) converges to the true value at a faster than parametric rate, given our positive

density assumption on x1i.

We note by Assumption A1, the denominator term converges in probability to Σxx. We

can decompose the numerator term as:

1

n

n∑
i=1

x̃1i(F
−1(p̂−1i)− F−1(p−1i))+ (A.13)

1

n

n∑
i=1

x̃1i(F̂
−1(p̂−1i)− F−1(p̂−1i)) (A.14)

Under Assumptions A2-A3, we can use the same arguments as in Khan and Powell(2001) to

conclude that (A.13) has the representation:

1

n

n∑
i=1

ψi + op(n
−1/2) (A.15)

and we can also conclude that (A.14) is op(n
−1/2). The conclusion of the theorem follows

from the CLT and Slutsky’s theorem. ¥.
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B Proof of Theorem 5.1

Here we can use arguments completely analogous to those used in Theorem 4.1.

First note that we can write the loglikelihood function for the (left) censored as:

L = di log(f(yi − x′iβ)) + (1− di) log(F (ci − x′iβ))

where di denotes a censoring indicator, taking the value 1 for uncensored observations. We

again define the function:

g0(t, x) = P (εi ≤ t|xi = x)

We again define the family of conditional distributions, Γ:

Definition B.1 Γ consists of all functions g : Rk → R such that for all (t, x) ∈ R × Rk−1

we have

1. g is continuous.

2. g′(t, x), the partial derivative of g(t, x) with respect to its first argument, is continuous

and positive.

3. lims→−∞ g(s, x) = 0, lims→+∞ g(s, x) = 1.

4.
∫

sg′(s, x)ds = 0

We next define the set of sub-paths, Λ; as before we will work with:

Definition B.2 Λ consists of the paths:

λ(δ) = g0(1 + (δ − δ0)h)

where g0 is the “true” distribution function, assumed to be an element of Γ, and h : Rk →
R is a continuously differentiable function that is 0 outside a compact set, and satisfies∫

sh′(s, x)ds = 0 ∀x

We note that for the censored model the scores of the root likelihood function are:

ψj(y, x, c) =
1

2
dg

′−1/2
0 (y − xβ0, x)g′′0(y − xβ0, x)x (B.1)

+
1

2
(1− d)(g0(c− x′β0, x))−1/2g′0(c− x′β0, x)x (B.2)
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and

ψλ(y, x, c) =
1
2
dg
′−1/2
0 (y − xβ0, x)g′0(y − xβ0, x)h(y − xβ0, x) + g0(y − xβ0, x)h′(y − xβ0, x) (B.3)

+
1
2
(1− d)(g0(c− x′β0, x))−1/2g0(c− x′β0, x)h(c− x′β0, x) (B.4)

This immediately suggests that zero information can be attained by setting h(t, x) to be

arbitrarily close in an L2 sense to
g′0(t,x)x

g0(t,x)
. To ensure it will satisfy conditions in the definition

of Λ, we can follow the arguments in the proof of Theorem 4.1.

Note that our impossibility result breaks down when g0(t, x) takes the value 0. This can

happen in the random censoring case when ci takes arbitrarily small values so no censoring

occurs. However, under our assumptions on the support of ci, εi this cannot happen with

positive probability.
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