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1. Introduction

The increasing use of large scanning arrays for space appli-
cations emphasizes a growing need for subarray technology
to reduce the number of controls in systems that scan over
limited fields of view (LFOV) or to minimize the number of
time delays for arrays with active phase control at the element
level. These two applications are addressed by the same
subarray technology, and so these will be discussed together
initially before presenting detailed results for the wideband
case. Subarray configurations for the two applications are
illustrated in Figure 1.

LFOV applications include synchronous satellites, where
the earth subtends a conical angle of 8.7◦ half angle. Other
satellite systems sometimes scan a high-directivity beam over
even smaller angles to do detailed mapping. In the LFOV
configuration shown at left in Figure 1, there is no phase shift
at the element level, but phases are introduced at the input
port to each subarray. The subarray is used as an oversized
element and the gain and pointing accuracy is maintained by
phase control at the subarray input ports. In the time-delayed
configuration of Figure 1, the subarray has phase shifters at
the element level and time delays at each subarray input [1].

The phase shifters scan the subarray beam direction, but the
time delays are required to keep the array pattern stationary
for all frequencies within the frequency band.

The subarrays most commonly used for either appli-
cation are rectangular groups of elements. When placed
in a periodic array these radiate discrete sidelobes called
quantization lobes at the location of the grating lobes of the
array factor.

Solid-state modules with phase shift pattern control are
now being used in many space applications, and they can be
designed to have good performance over wide bandwidths
but the phenomenon of beam “squint” limits their use
operationally. Beam squint is the property of a phase steered
array that results in frequency-dependent pointing angles.
This can result in severely limited instantaneous bandwidth
for large phase-steered arrays. Time-delay-steered arrays do
not exhibit this phenomenon.

Time delay control of scanning arrays remains an
expensive and often impractical option, because of the
difficulty of implementing long time delays at the element
level or switched time delay tree networks. Digital or
optical beam forming networks can introduce time delay
at element or subarray level but for reasons of economy it
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Figure 1: Subarray applications to LFOV and time-delayed wide-
band arrays.

is often convenient to introduce time delay at the subarray
level. New and projected applications with requirements for
bandwidths up to limits of 10:1 place increasingly severe
restrictions on the size of phase steered arrays or on the
subarray technology that enables the use of relatively few
time delay networks.

The two cited applications for subarray technology
exhibit similar behavior and suffer the same deficiencies.
Quantization lobes occur in the limited field of view array
because the subarrays are arranged periodically in the array.
At broadside (and for a uniform array), the array appears
continuous and no extraneous lobes are radiated. When the
array is scanned by the phase shifters behind the subarrays,
the aperture phase is quantized because the subarrays
themselves have a pattern that radiates broadside. The array
factor of this array of subarrays is, however, scanned to the
new chosen scan angle, giving rise to quantization lobes that
are only suppressed at broadside.

An upper bound for LFOV scanning in one dimension
is that for idealized subarrays with spacings of dimension D,
and maximum scan angle θ0, the subarray size D is given by
the following relationship:
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≤ 0.5. (1)

This limit is reached using an idealized subarray pattern that
is pulse-shaped, with a flat top over that range [2].

For LFOV, therefore, the quantization lobes occur
because the subarray pattern is stationary, while the array
factor is scanned. However, in the case of using time delays
for broadband radiation, the phase shifters in each subarray
do scan the subarray patterns correctly at center frequency,
and the time-delayed array of subarrays remains at the
chosen scan angle for all frequencies. However, away from
center frequency, the phase-steered subarray patterns do not
scan to the chosen location u0; but “squint” to the new
location u0( f0/ f ) for u0 = sin θ0. Since the subarray patterns
and the array factor peaks are no longer aligned, this case also
radiates quantization lobes.

This usage is indicated on the right side of Figure 1, where
it shows a subarray with element level phase shifters and
time delay at the subarray input. For modest bandwidth, an
upper bound on the system bandwidth in this case is again
obtained by the idealized case in which the subarray spacing
D is limited by the following equation:
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Reaching this limit is again only achieved if the subarray is
designed to produce the “ideal” pulse-shaped pattern.

Throughout this paper, the data that are presented
pertain to the wideband scanning case. It should be under-
stood that the results apply equally well to the LFOV case.
The LFOV case results are readily inferred from (1) and
(2) resulting in the relationship of (3) for scan to some
maximum angle θmax [3]:
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We have not discussed the issue of impedance matching
elements over such wide bandwidths. The element lattice
periodicity requires element spacing on the order of 0.5 λ
at the highest frequency, and this makes them very closely
spaced at the lowest frequency. This close spacing actually
improves the array wideband impedance match, as discussed
in the text by Munk [4]. Vivaldi elements, connected dipole
arrays and matched microstrip patch elements, have all been
used in wideband arrays.

2. Subarray Technology for Space Applications

The several upper bound equations noted above make it
clear that there can be completely different applications for
various subarray sizes. In the LFOV case, the subarray sizes
can vary from about 3 wavelengths for±10 degrees of scan to
about 14 wavelengths for ±2 degrees of scan, and even larger
for less scan. The wide instantaneous bandwidth is required
for lower orbiting radars and communication arrays, where
scanning requirements can exceed±20◦ and array sizes up to
hundreds of thousands of elements. Subarrays used to insert
such time delay can be very large.

The technology for producing large subarrays with
the qualities to suppress these quantization lobes depends
upon the size of the subarray. Large subarrays have been
constructed by dividing the array into an irregular group
of elements and building special power divider networks
for each subarray [5], or by using so-called dual-transform
or overlapped subarray networks [6, 7]. These networks
use a multiple beam feed and a focusing lens to form
overlapping distributions to radiate pulse-shaped subarrays
that approximate the ideal flat-topped subarray radiation
pattern. Such large subarrays formed in this manner can vary
from 10 to perhaps 50 elements on a side and so are useful
for very limited scan coverage or very narrow bandwidth
scanned performance, as dictated by (1) and (2). Their
advantage, however, is the huge savings in phase or time delay
control devices and resulting cost savings.
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Small subarrays have been fabricated to produce overlap
and an approximation to the pulse-shaped radiation patterns
that have wider but still limited field of view [8, 9], or
to applications involving very wide band radiation. Other
technologies applicable to smaller subarrays include using
simple rectangular subarrays but rotating them [10] or
randomly spacing them to suppress the quantization lobes
to use different-sized rectangular subarrays that do fill the
aperture [11–13], or to use some sort of irregular subarrays
that fill the aperture [14–16]. Of these, the randomly spaced
subarrays produce excellent suppression of extraneous lobes,
but radiate with reduced gain in proportion to the reduced
filling of the aperture. The use of unequal size rectangular
subarrays or dissimilar irregular subarrays introduces prob-
lems in excitation of the subarrays because of the need to use
different power divider combinations within the array. The
proposed method that we introduce employs only one type
of irregular subarray within the array, and these are rotated
(or rotated and flipped) to completely fill the array. The result
is to form an array with non-periodically spaced subarray
phase centers but with a tiled (filled) aperture that has full
array gain.

3. Irregular Polyomino Subarrays

Figure 2 shows an array with subarrays and indicates the
array filling with L-octomino subarrays. It also shows four
rotations of an L-tetromino and two kinds of octominos,
an L-octomino and a “point-up” octomino, that we use to
fill the array. In this paper, we are concerned only with
shapes that completely fill, or “tile” the array area, because
the fully filled area has maximum aperture gain. There are
many other polyomino shapes and sizes that can be used
for tiling an array, and the branch of mathematics that is
closest to polyomino tilings is called combinatorics, of which
polyominos are a subset.

A more basic combinatoric problem may query whether
a collection of identical polyominos could be tiled as to
exactly fill a rectangle. Such collections are called rectifiable.
One researcher, Michael Reid [17], has a compact, perma-
nent link for the subject [18]. A study limited to octominoes
will yield, in a recognized Wolfram reference [19], a list of
369 distinct octominos. These few topics are evidence of a
concentrated and vibrant area of mathematical research.

Throughout this work, we have dealt exclusively with
polyominos that fully tile the apertures but have allowed
some or many polyominos to extend beyond the boundaries
of the aperture, assuming that those squares outside of the
aperture need not be excited.

Figure 3 shows a group of three-dimensional patterns
radiated by an array of 64 × 64 elements at f / f0 = 1.3 and
u0 = v0 = 0.5, where u0 = sin θ0 cosφ0, v0 = sin θ0 cosφ0,
and θ0, and φ0 define the direction of scan. The array
has a 40 dB Taylor taper, and therefore has low side lobes
at broadside and/or center frequency. All element patterns
are assumed to have a cos θ angular dependence. The left
pattern in Figure 3 is that of an array with time delay at
every element. This pattern exhibits the design sidelobes

Four rotations of the L-tetromino subarray

Four rotations of the L-octomino subarray

Four rotations of the “point-up” octomino subarray

Rectangular

subarray

Rectangular subarrays

with time delay

Time delay input

L-octomino subarrays

with time delay

Phase shifters at elements

Figure 2: Irregular and rectangular subarrays.

of –40 dB with a pattern gain of 37.3 dB as determined
by integration. The center pattern corresponds to an array
in which the individual elements are grouped into 512
rectangular subarrays (two elements in the elevation plane
and four in the azimuth plane). This pattern has a gain of
37.03 dB (approximately a 0.3 dB loss due to phase error
compared to the left pattern) and has five quantization
lobes. The largest of these lobes is 11.45 dB below the
gain at broadside. The pattern at right is produced by an
array of 512 L-octominos and radiates a main beam with a
36.83 dB gain (only 0.2 dB less than the array of rectangular
subarrays). This pattern has no quantization lobes and has
side lobes that are all at least 26.6 dB below the broadside
gain.

These data are typical of results that have been presented
previously to describe this work. In general, the various
polyomino-based arrays have been found to have nearly
the same gain but much smaller sidelobes than arrays of
periodic, rectangular subarrays. Note that these residual
side lobes are not suppressed quantization lobes, since the
quantization lobe size remains constant relative to the main
beam as array size is changed. Rather, we see that the residual
side lobes of the polyomino-based arrays are reduced as the
inverse of the array area. Our experience with arrays of up
to 128 elements on a side indicate that the peak sidelobes
continue to decrease by 5 to 6 dB with each quadrupling of
array area.

Figure 4 addresses the question as to why the polyomino-
based arrays are successful at eliminating the quantization
lobes. Clearly the procedure breaks up the periodicity
of the array, and so one would expect a better result
than with contiguous rectangular subarrays, but with this
figure we investigate much suppression due entirely to the
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Figure 3: Radiation patterns at f / f0 = 1.3 for an array with time delay at element level (a), at rectangular subarray inputs (b) and at
L-octomino subarray inputs (c).

quasi-randomness and how much due to the changes in the
subarray pattern amplitude as each is rotated.

Figure 4(a) shows an array of rectangular subarrays and
the final pattern for an array of rectangular subarrays with
f / f0 = 1.3 and scanned to u0 = v0 = 0.5. The elements are
0.5 λ apart in both planes, and the inter-subarray spacing
of the eight element subarrays is λ in azimuth and 2 λ
in elevation. The array has 18 elements in azimuth and
24 in elevation. The contour levels are set at dB values
of −3, −10, −15, and −20. The scanned pattern, shown
at right in Figure 4(a), has a set of 5 quantization lobes,
with varying degrees of suppression due to the subarray
pattern. Figure 4(b) shows the array factor for the array
with the subarray patterns assumed omnidirectional, as
illustrated on the left of Figure 4(b). All the quantization
lobes of Figure 4(a) are present at the same locations, but are
now grating lobes unattenuated by the subarray pattern. A
comparison of the numerical data shows that the resulting
array factor of Figure 4(a) has its grating lobes suppressed at
least 12 dB by the subarray pattern. These peak quantization
lobes are at the same levels for much larger arrays.

Figures 4(c) and 4(d) present the same situations as
Figures 4(a) and 4(b), but for the case of irregular (point-up)
subarrays Figure 4(c) shows an actual subarray configuration
of “point-up” polyominos and the pattern for that array.
Although the array is small, the figure again demonstrates
significantly lower sidelobes than the array of rectangular
subarrays Figure 4(a). All of the larger sidelobes are in
the neighborhood of –20 dB, or 8 dB below those of the
rectangular subarrays, and they are no longer located at
the quantization lobe angles. The pattern shows that no
quantization lobes remain. Figure 4(d) shows the array factor
of the polyomino based array with the subarray patterns
replaced by omnidirectional one. This pattern thus includes
only the effect of the aperiodic grid of phase centers. This
pattern shows that only one peak sidelobe remains at the
quantization lobe locations shown in 4(b), while other peaks
do not correspond to the quantization lobe locations. Note
that some of these peaks are greater than –10 dB since
there are no element patterns to suppress them. The peak
sidelobes now are distributed throughout a much wider
area of space and our experience has shown that unlike
the data of Figure 4(a), they continue to decrease with

array size. Comparing Figures 4(a) and 4(c) shows that the
combination of the rotating subarray patterns and the phase
center displacement produce a much larger role in sidelobe
suppression than phase center displacement alone, but the
phase center displacement is the major contributor to the
successful result.

4. Power Dividers for Tetrominos
and Octominos

In general, one would expect that assembling an array
from irregular subarrays would entail some extra burden
in fabrication or assembly. However, there is little added
assembly cost for an array of polyominos that are all identical
but rotated in the plane. Therefore we have chosen to use
polyominos that have 2n elements for n = 2, and 3 for this
paper, so that the subarrays can be excited by lossless power
dividers. Other polyominos of larger size “n” can also be
used, but larger polyominos have less bandwidth (or for
LFOV they have a more limited scan region), and we have
not investigated these limits. Very few larger polyominos can
actually tile rectangular areas without leaving voids in the
surface, and it seems that with the exception of rectangular
shapes one would need to use a multiplicity of higher-order
polyominos to properly tile a rectangular surface. The array
elements themselves are on a fully periodic grid and so the
aperture is unchanged from conventional apertures. Only
the feed matrix is constrained to introduce the aperiodicity
needed to eliminate quantization lobes.

Figures 5, 6, and 7 show the power dividers and
feed points (black rectangles) and a section of the filled
arrays corresponding to the shapes noted in Figure 2 and
investigated in this paper. Notice that all power dividers
in any figure are identical, but because of the rotation the
excitation points form an irregular pattern.

5. Peak Sidelobe Behavior of Tetrominos
and Octominos

Peak sidelobes are not readily predicted analytically for arrays
of irregular subarrays and so numerical results have been
used to relate them to the rectangular subarray case. The peak



International Journal of Antennas and Propagation 5

y

x

v

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

−1 −0.6 −0.2 0.2 0.6 1
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(a) Array of rectangular subarrays
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(b) Array of omnidirectional elements at rectangular subarray phase centers
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(c) Array of octomino subarrays. Subarray phase centers are indicated by red dots
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(d) Array of omnidirectional elements at octomino subarray phase centers

Figure 4: Sidelobe structure for 18× 24 element array of 54 subarrays of rectangular or L-octomino subarrays.
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Figure 5: L-tetromino power divider and array section.

Figure 6: L-octomino power divider and array section.

Figure 7: Point-up power divider and array section.

sidelobes depend upon scan angle and, for the wideband
case, frequency offset ratio “r”, but once these parameters are
chosen, the peak sidelobes decrease monotonically with array
size and very nearly like a constant times 1/N for a large N-
element planar array. The array gain increases with array area
modified by the phase error introduced within each subarray.

The bandwidth of polyomino subarrays is primarily
determined by gain falloff with scan, since there are no
quantization lobes, and the peak sidelobes continue to
decrease monotonically with array size. At the highest-
frequency the element spacing is chosen to be spaced a half
wavelength apart to avoid the element level grating lobes.

Figure 8 shows five sets of gain curves for square arrays
as the array size is varied. These, and all other gain curves
shown in this paper, were computed by integrating the array
pattern using an assumed cos θ element pattern. The figure
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compares the gain of arrays with time delay at the subarray
level for rectangular or octomino subarrays. The gain of
arrays with time delay at the element level is given as the solid
curve. This represents the ideal array gain and is higher than
any subarrayed case because there is no phase error.

The several time-delayed subarray cases plotted include
one with about 2:1 bandwidth (r= f / f0 = 1.3) for the upper-
band limit, and one with about 10:1 bandwidth (r = 1.82
upper-frequency) and the design low-frequency of r = 0.182
(lower-frequency band not shown). We have not shown the
lower-frequency results for this ultra wideband case because
at this lower limit the subarray spacing is so small that
there are no quantization lobes in real space. Unlike the
narrower band situations where there are quantization lobes
at both high and low-frequency extremes, here the subarray
imposes no low-frequency limit; only the element spacing
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and impedance considerations provide any low-frequency
limitation. In the cases discussed, the low-frequency could
be chosen as low as the element design would allow, with no
limitation imposed by the subarraying technique.

The curves shown in Figure 8 include the solid curve with
full element level time delay and four curves with time delay
at the input port to each subarray. The dashed curves are
for rectangular subarrays (2 × 4 elements), one with high-
frequency r = 1.3 (bandwidths r = f / f0 = 0.7 to 1.3) and one
with much higher bandwidth (r = f / f0 = 0.182 to 1.82, a 10:1
bandwidth).

The solid curve at the top of the figure is the gain using
time delay at each element. These integrated data are almost
exactly equal to the usual large array approximation for an
aperture with aperture efficiency εa:

G = 4π
A

λ2
εa cos θ. (4)

Notice that this single curve is the array gain for both
frequency offsets; r = 1.3 and 1.82, because the element
spacing is set to 0.5 λ at each frequency, so the array size
is the same in normalized terms and the gain is also the
same. The curves for time delay at the subarray input
ports are shown dashed for rectangular subarrays and are
approximately 0.27 dB below the time delayed array data at
r = 1.3 and 1.45 dB below the curve at r = 1.82. The added
loss is caused by the incremental phase error across the 8-
element subarrays. The two dotted curves of Figure 8 give
the corresponding gain for the L-octomino subarray based
arrays, and lie approximately 0.2 dB below the curves for
the rectangular subarrays, owing to the slightly greater phase
error in the polyomino subarrays.

Figure 9 shows the corresponding peak sidelobe levels for
the subarrayed cases of Figure 8. The peak sidelobe level for
the element level time delayed array is not shown because it is
just the idealized Taylor pattern with –40 dB peak sidelobes.

Tetromino gain data
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In this Figure the dashed patterns give the peak sidelobe
level of arrays of rectangular (2 × 4) subarrays and show
constant levels of 11.4 dB for r = 1.3, and −5.75 dB below
the broadside gain (or only 4.23 dB below the projected area
gain at u0 = v0 = 0.50) for r = 1.82. The quantization lobe
level is independent of array size because the lobe samples
the subarray pattern at the same point for any size array.
The two solid curves in Figure 9 are the peak sidelobes
for arrays of L-octomino subarrays for the two frequencies
noted. Note that the improvement in comparison with the
rectangular subarray results is nearly the same at both
frequencies. Figure 10 shows this added sidelobe reduction to
vary from about 10.5 dB for arrays 32 elements on a side to
about 15.5 dB for 64 element arrays, but more interestingly
this sidelobe reduction is almost the same whether the
rectangular subarray peak sidelobes are−11.4 dB (for r = 1.3)
or −5.75 (for the r = 1.82). This indicates that these limited
results can be expected to be useful for estimating behavior
of the arrays at other frequencies. The rectangular subarray
data of Figure 9 are very simple to compute, but using the
result of Figure 10, one can obtain a good estimate of peak
sidelobe level for nearly any frequency range that one would
want to estimate. In addition, we have found it a general rule
for all the cases we have tested, that quadrupling the array size
results in at least a 5 dB increase in this sidelobe reduction
factor, so one can extrapolate these data to get results for
various sizes as well as various frequencies.

Figures 11–13 show similar results for L-tetrominos
when these are operated over about twice the bandwidth.
The normalized upper frequency ranged from r = 1.6 to
2.64. Figure 11 shows the gain of an array of the 4 element
subarrays, comparing rectangular (square) 2 × 2 subarrays
with the L-tetromino subarrays. The difference in gain
between the four element rectangular subarrays and the L-
tetromino subarrays is about 0.2 dB maximum at the r =

1.6 frequency limit, and about 0.8 dB at the higher r = 2.64
frequency limit. Figure 12 shows the sidelobe behavior of
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Figure 13: Sidelobe reduction factor (max rectangular subarray
quantization lobe level—largest octomino sidelobe level) dB for
moderate and wide band signals.

the arrays at both frequencies, and Figure 13 compares the
sidelobe reduction for these cases. Here the reduction varies
over a wider range than the octomino case but the slope of
the curve is approximately the same for larger arrays. Even for
the wideband r = 2.64 case the sidelobe reduction is within
2 dB of the lower bandwidth cases, again indicating the utility
of these curves in generalizing to other frequencies and array
sizes.

6. Conclusion

This paper has presented new results showing the application
of polyomino-shaped subarrays to large space-based arrays
that scan over a limited field of view with modest bandwidth,
or over wider bandwidth and wide scan angles. In both cases,

subarray technology may be necessary to reduce cost by
decreasing the number of phase shifters or time delay devices.

The paper compares the use of irregular polyominos
versus the corresponding rectangular subarrays and shows
that with only few tenths of a dB gain reduction the 8-
element polyomino subarrays can reduce the peak sidelobes
by more than 15 dB for 64 × 64 element arrays. Potentially
much lower sidelobes can be obtained for larger arrays since
sidelobe reduction improves by 5-6 dB for each quadrupling
of array size. Results for smaller (tetromino) subarrays are in
accord and provide even wider bandwidth.

Finally, it is shown that this sidelobe reduction is primar-
ily a function of array size, not the frequency of operation.
This leads to the useful conclusion that by focusing attention
on the sidelobe reduction itself, it is possible to estimate peak
sidelobe levels for tetromino and octomino arrays directly
from the available rectangular subarray data.
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