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IRREGULAR SETS ARE RESIDUAL
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Abstract. For shifts with weak specification, we show that the set of points for which
the Birkhoff averages of a continuous function diverge is residual. This includes topologically
transitive topological Markov chains, sofic shifts and more generally shifts with specification.
In addition, we show that the set of points for which the Birkhoff averages of a continuous
function have a prescribed set of accumulation points is also residual. The proof consists of
bridging together strings of sufficiently large length corresponding to a dense set of limits of
Birkhoff averages. Finally, we consider intersections of finitely many irregular sets and show
that they are again residual. As an application, we show that the set of points for which the
Lyapunov exponents on a conformal repeller are not limits is residual.

1. Introduction. Our main aim is to show that the irregular set of points for which
the Birkhoff averages of a given continuous function diverge can be very large from the topo-
logical point of view. Namely, for shifts with weak specification we show that the irregular
set is either empty or residual, even though in the context of ergodic theory it has zero mea-
sure with respect to any invariant measure. This includes topologically transitive topological
Markov chains, sofic shifts and more generally shifts with specification, which means that
any two strings can be bridged by a string of fixed length. As an application, we obtain a
corresponding result for the Lyapunov exponents on a conformal repeller for a C1 expanding
map. Namely, we show that the set of points for which the Lyapunov exponents are not limits
is a residual subset.

More precisely, let f : X → X be a continuous map on a compact metric space and let
ϕ : X → R be a continuous function. The irregular set for ϕ is defined by

Xϕ =
{
x ∈ X; lim inf

n→∞
1

n

n−1∑
i=0

ϕ(f i(x)) < lim sup
n→∞

1

n

n−1∑
i=0

ϕ(f i(x))

}
.

As a consequence of Birkhoff’s ergodic theorem, the irregular set has zero measure with
respect to any finite f -invariant measure on X. Therefore, at least from the point of view of
ergodic theory, the set Xϕ can be discarded.

Remarkably, from the point of view of dimension theory the setXϕ can be as large as the
whole space. In particular, it was shown by Barreira and Schmeling in [6] that for a repeller
X of a C1+ε map f that is topologically mixing and conformal on X (the derivative of f is a
multiple of an isometry at each point ofX), if ϕ is Hölder continuous and is not cohomologous
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to a constant then Xϕ is as large as the whole space from the points of view of topological
entropy and Hausdorff dimension, that is,

(1) h(f |Xϕ) = h(f |X) and dimHXϕ = dimHX ,

where h(f |Z) is the topological entropy of f on the set Z ⊂ X and dimHZ is the Hausdorff
dimension of Z. We recall that ϕ is said to be cohomologous to a constant if there exist a
bounded function ψ and a constant c such that

ϕ = ψ − ψ ◦ f + c on X .

Clearly, if ϕ is cohomologous to a constant, then Xϕ is the empty set.
Now let Y = ⋃

ϕ Xϕ be the union over all Hölder continuous functions. Under the
former hypotheses, for a repeller X we have

(2) h(f |Y ) = h(f |X) and dimHY = dimHX .

The first identity in (2) was first established by Pesin and Pitskel in [13] for the full shift on
two symbols. In a related direction, Shereshevsky [14] proved that for a generic C2 surface
diffeomorphism with a locally maximal hyperbolic set X and an equilibrium measure μ of a
Hölder continuous C0-generic function, the set of points for which the pointwise dimension
does not exist has positive Hausdorff dimension, that is,

dimH

{
x ∈ X; lim inf

r→0

logμ(B(x, r))

log r
< lim sup

r→0

logμ(B(x, r))

log r

}
> 0 .

The identities in (1) also hold for topologically mixing topological Markov chains, al-
though in this case the two are equivalent since up to a multiplicative constant the topological
entropy and the Hausdorff dimension coincide. Again for topological Markov chains, the first
identity in (1) was extended by Fan, Feng and Wu in [10] to arbitrary continuous functions.
For repellers of C1+ε conformal maps, the second identity was extended by Feng, Lau and
Wu in [11] to arbitrary continuous functions. We refer the reader to the book [2] for a de-
tailed discussion of some of these results and to [4, 8, 12, 15] for further related work also
for multifractal flows and maps with specification. In addition to showing that the irregular is
large from the points of view of topological entropy and Hausdorff dimension, the topological
pressure is also considered.

In another direction, it was noted in [6] that, under the former assumptions, the irregular
set Xϕ is dense (this follows easily from the definitions). In the present paper we show, for
shifts with specification and for an arbitrary continuous function ϕ, that the set Xϕ is residual
(that is, Xϕ contains a dense Gδ set). This shows once more, in strong contrast to what
happens in the context of ergodic theory, that the irregular set may be as large as the whole
space from various points of view. Roughly speaking, the proof consists of bridging together
strings of sufficiently large length corresponding to limits of Birkhoff averages. Some special
irregular sets related to number theoretical properties of integer base representations were
earlier shown to be residual in [1, 5].
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In fact, we study also a refined version of the irregular set. Namely, given an interval
I ⊂ R, let

(3) XI = {
x ∈ X;Aϕ(x) = I

}
,

where Aϕ(x) is the set of accumulation points of the sequence

(4) Sϕ(x, n) = 1

n

n−1∑
i=0

ϕ(f i(x)) .

When I is not a singleton we show, for shifts with specification and for an arbitrary continuous
function ϕ, that the set XI is also residual. We note that it is a subset of the irregular set Xϕ
(when I is not a singleton). Incidentally, Li and Wu studied in [12] the topological entropy of
XI for a map f with the specification property.

As an application of these results, we obtain corresponding statements for the averages
Sϕ(x, n) when X is a repeller for a C1 expanding map f . More precisely, we show that when
ϕ : X → R is a continuous function and I is not a singleton, then the set XI in (3) is residual
(see Theorem 5.1). In particular, when f is conformal on X (which means that dxf is a
multiple of an isometry for every x ∈ X) this implies that the Lyapunov exponent

λ(x) = lim sup
n→∞

1

n
log ‖dxf n‖

is not a limit on a residual subset. In other words, the set{
x ∈ X; lim inf

n→∞
1

n
log ‖dxf n‖ < lim sup

n→∞
1

n
log ‖dxf n‖

}

is either empty or residual. This follows readily from the fact that since f is conformal on X,
we have

λ(x) = lim sup
n→∞

Sϕ(x, n)

taking ϕ = log ‖dxf ‖ (since f is of class C1, the function ϕ is continuous). A related result
can be obtained for the local entropy hμ(x) of a Gibbs measure. We recall that if μ is a
Gibbs measure of a continuous function ψ , assumed without loss of generality to have zero
topological pressure, then

hμ(x) = lim
n→∞ − 1

n
logμ(Bn(x, ε)) = lim

n→∞ S−ψ(x, n) ,

where

Bn(x, ε) =
n−1⋂
k=0

f−kB(f k(x), ε)

(whenever both limits exist, in which case they are equal, where ε is any sufficiently small
constant). Certainly, Gibbs measures may not exist for an arbitrary function ψ but they exist
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for a large class of continuous functions (for details, see for example [2]). It follows from our
results that the set{

x ∈ X; lim inf
n→∞ − 1

n
logμ(Bn(x, ε)) < lim sup

n→∞
− 1

n
logμ(Bn(x, ε))

}
,

on which the local entropy is not defined, is either empty or residual (we emphasize that the
map f need not be conformal).
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2. Preliminaries. Let σ : �+ → �+ be the shift map on the space of one-sided
sequences �+ = {1, . . . , k}N , where k ≥ 2 is an integer. We equip �+ with the distance

d(ω,ω′) = 2−n , ω = (ωi)i∈N , ω′ = (ω′
i )i∈N ,

where n is the smallest integer such that ωn 
= ω′
n.

Given a compact and positively σ -invariant set X ⊂ �+ (this means that σ(X) ⊂ X) we
consider the subshift σ |X : X → X. For each n ∈ N , let

Xn = {
(ω1 · · ·ωn); (ω1ω2 · · · ) ∈ X}

and X∗ =
⋃
n∈N

Xn

be, respectively, the family of all X-admissible strings of length n and the family of all X-
admissible finite strings. When ω = (ω1ω2 · · · ) ∈ X and m ∈ N or when ω = (ω1 · · ·ωn) ∈
Xn and m ∈ N with m ≤ n, we write

ω|m = ω1 · · ·ωm .
Moreover, for each ω ∈ Xn, we write |ω| = n and we define the cylinder set generated by ω
by

[ω] = {ρ ∈ X; ρ|n = ω} .
Now we introduce the notion of weak specification. Given strings ω = (ω1 · · ·ωn) ∈ Xn

and ω′ = (ω′
1 · · ·ω′

m) ∈ Xm, let

ωω′ = (ω1 · · ·ωnω′
1 · · ·ω′

m)

be the concatenation of ω and ω′. We note that, in general, ωω′ need not belong to Xn+m. We
say that the subshift σ |X has the weak specification property if there exists τ ∈ N ∪ {0} such
that for any two admissible strings ω,ω′ ∈ X∗ there exists

ρ = ρ(ω,ω′) ∈
τ⋃
k=0

Xk

such that ωρω′ ∈ X∗. The string ρ(ω,ω′) is called a bridge between ω and ω′. To simplify
the notation, we write ωρω′ = ω �� ω′ (although we emphasize that ρ need not be unique).
Moreover, given subsets W,W1, . . . ,Wn of X∗ and a string ω ∈ X∗, we write

W1 �� · · · �� Wn = {
ω1 �� ω2 �� · · · �� ωn;ωi ∈ Wi, 1 ≤ i ≤ n

}
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and

ω �� W = {ω �� η; η ∈ W } ,
where each symbol �� runs over all admissible bridges. Finally, we write

W��n = W1 �� · · · �� Wn

when W1 = · · · = Wn = W .

EXAMPLE 2.1. A particular class of subshifts with the weak specification property are
those with the specification property, that is, those for which all bridges have the same length.

EXAMPLE 2.2. Given a k × k matrix A = (aij ) with entries in {0, 1}, let

�+
A = {

(ω1ω2 · · · ) ∈ �; aωnωn+1 = 1 for n ∈ N
}
.

Clearly, σ(�+
A ) ⊂ �+

A . The restriction σ |�+
A : �+

A → �+
A is called the (one-sided) topologi-

cal Markov chain or subshift of finite type with transition matrixA. One can easily verify that
if the matrix A is irreducible (that is, if for each pair (i, j) there exists a power of A whose
(i, j)th-entry is positive), then σ |�+

A has the weak specification property (since there are only
finitely many entries). We note that A is irreducible if and only if σ |�+

A is topologically
transitive.

EXAMPLE 2.3. In the particular case when A is transitive (that is, when some power
Aτ+1 ofA, with τ ≥ 0, has only positive entries) or, equivalently, when σ |�+

A is topologically
mixing, the topological Markov chain σ |�+

A has the specification property and all bridges
(can) have length τ .

EXAMPLE 2.4. A sofic shift is a continuous factor of a topological Markov chain. All
sofic shifts have the specification property and are topologically mixing. We note that even
though there are only countably many sofic shifts, there are uncountably many shifts with the
specification property.

3. Results for one-sided shifts.
3.1. Main result. Let σ : X → X be a subshift. Given a continuous function ϕ : X →

R, we consider the level sets

(5) Bϕ(α) =
{
ω ∈ X; lim

n→∞ Sϕ(ω, n) = α
}
,

where

(6) Sϕ(ω, n) = 1

n

n−1∑
i=0

ϕ(σ i(ω)) .

We consider also the set

Lϕ = {
α ∈ R;Bϕ(α) 
= ∅}

.

When σ |X = σ |�+
A is a topologically mixing topological Markov chain, the set Lϕ is a

nonempty closed interval (see [9]). Moreover, one can easily verify that for each α ∈ Aϕ(ω)
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(setting f = σ ) there exists ω′ ∈ �+
A such that

lim
n→∞ Sϕ(ω

′, n) = α

(see, for example, Lemma 6.5 in [11]), that is, α ∈ Lϕ . Therefore,

Lϕ =
⋃
ω∈�+

A

Aϕ(ω) .

The following is our main result. In fact, all other statements in the paper are its conse-
quences.

THEOREM 3.1. Let σ |X be a subshift with the weak specification property and let
ϕ : X → R be a continuous function. Given a closed interval I ⊂ Lϕ that is not a singleton,
if the set

(7) Xϕ,I := {
ω ∈ X;Aϕ(ω) = I

}
is nonempty, then it is residual.

The proof of Theorem 3.1 is given in Section 6.
We note that if (an)n is a bounded sequence such that an+1 − an → 0 when n → ∞,

then its set of accumulation points A is a bounded closed interval, that is,

(8) A =
[

lim inf
n→∞ an, lim sup

n→∞
an

]
.

In particular, since

∣∣Sϕ(ω, n + 1)− Sϕ(ω, n)
∣∣ =

∣∣∣∣− 1

n+ 1
Sϕ(ω, n) + 1

n+ 1
ϕ(σn(ω))

∣∣∣∣
≤ 2 max |ϕ|

n+ 1
→ 0

when n → ∞, it is sufficient to consider closed intervals I in Theorem 3.1. Moreover, by (8),
we have

Aϕ(ω) =
[

lim inf
n→∞ Sϕ(ω, n), lim sup

n→∞
Sϕ(ω, n)

]
.

3.2. Applications. Now we give several applications of Theorem 3.1. The first one
concerns the (irregular) set of points for which the Birkhoff averages do not converge.

THEOREM 3.2. Let σ |X be a subshift with the weak specification property and let
ϕ : X → R be a continuous function. If the irregular set

Xϕ :=
{
ω ∈ X; lim inf

n→∞ Sϕ(ω, n) < lim sup
n→∞

Sϕ(ω, n)
}

is nonempty, then it is residual.

PROOF. If the set Xϕ is nonempty, then there exists a closed interval I ⊂ Lϕ for which
Xϕ,I 
= ∅ is not a singleton. Indeed, if Xϕ,I = ∅ for any closed interval, then, in view of the
remark after Theorem 3.1, Xϕ would be empty. Moreover, if for any closed interval I such



IRREGULAR SETS ARE RESIDUAL 477

that Xϕ,I 
= ∅ this last set was a singleton, then again Xϕ would be empty. Since Xϕ,I ⊂ Xϕ ,
the desired result follows readily from Theorem 3.1. �

The former results can be extended to the case of irregular sets obtained from finitely
many functions. Namely, we consider irregular sets obtained from the intersection of finitely
many irregular sets as in (7).

THEOREM 3.3. Let σ |X be a subshift with the weak specification property and let
ϕ1, . . . , ϕk : X → R be continuous functions. Given closed intervals Ii ⊂ Lϕi , for i =
1, . . . , k, that are not singletons, if the set

R := Xϕ1,I1 ∩ · · · ∩Xϕk,Ik
is nonempty, then it is residual.

PROOF. By Theorem 3.1, for each i = 1, . . . , k there exists aGδ set Ei ⊂ Xϕi,Ii that is
dense in X. Now let

F =
k⋂
i=1

Ei .

Clearly, the Gδ set F is dense in X and F ⊂ R. Therefore,R is residual. �

An argument similar to that in the proof of Theorem 3.2 yields the following result.

THEOREM 3.4. Let σ |X be a subshift with the weak specification property and let
ϕ1, . . . , ϕk : X → R be continuous functions. If the irregular set

S := Xϕ1 ∩ · · · ∩Xϕk
is nonempty, then it is residual.

It was observed by Barreira and Schmeling in [6] that S is a proper dense set whenever
it is nonempty.

4. Results for two-sided shifts. In this section we consider the shift map σ : � → �

on the space of two-sided sequences� = {1, . . . , k}Z . We equip � with the distance

d(ω,ω′) = 2− inf{|n|;ωn 
=ω′
n} , ω = (ωi)i∈Z , ω′ = (ω′

i )i∈Z .

Let σ : X → X be a subshift, where X ⊂ � is compact and σ -invariant. Given a continuous
function ϕ : X → R, we consider the level sets Bϕ(α) in (5) with Sϕ(ω, n) as in (6). We
emphasize that now each set Bϕ(α) is composed of two-sided sequences.

The following result is a version of Theorem 3.1 for two-sided sequences.

THEOREM 4.1. Let σ |X be a (two-sided) subshift with the weak specification property
and let ϕ : X → R be a continuous function. Given a closed interval I ⊂ Lϕ that is not a
singleton, if the set Xϕ,I is nonempty, then it is residual.

PROOF. Let π : X → �+, be the projection defined by

(9) π(· · ·ω−1ω0ω1 · · · ) = (ω0ω1 · · · ) .
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By a result of Bowen in [7] (see also Section 4.2.3 in [2]), there exists a continuous function
ψ : X+ → R, where X+ = π(X), such that ϕ and ψ ◦ π are cohomologous on X. This
means that there exists a bounded function h : X → R such that

ϕ − ψ ◦ π = h− h ◦ σ on X .

This implies that ϕ and ψ ◦ π have the same irregular sets, that is,

(10) Xϕ,I = Xψ◦π,I .

Now we show that

(11) Xψ◦π,I ⊃ π−1Xψ,I .

Let

ω = (· · ·ω−1ω0ω1 · · · ) ∈ π−1Xψ,I

with η = (ω0ω1 · · · ) ∈ Xψ,I . Then

1

n

n−1∑
k=0

(ψ ◦ π)(σ k(ω)) = 1

n

n−1∑
k=0

ψ(σk(η)) ,

which implies that ω ∈ Xψ◦π,I . This establishes (11).
On the other hand, it follows from Theorem 3.1 that Xψ,I is residual, which implies that

π−1Xψ,I is also residual. Indeed, since π is continuous, its preimage of a Gδ set is still a Gδ
set. Moreover, it follows from the explicit form of π in (9) that the preimage of a dense set is
dense. The theorem follows now readily from (10) and (11). �

The statements in Theorems 3.3 and 3.4 also hold in the context of two-sided shifts.
The proofs are identical to those for one-sided shifts but now using Theorem 4.1 instead of
Theorem 3.1.

5. Results for repellers. In this section we obtain corresponding results for the
Birkhoff averages of a continuous function on a repeller.

Let f : M → M be a C1 map on a smooth manifold and let J ⊂ M be a compact
f -invariant set (this means that f−1J = J ). We say that f is expanding on J and that J is a
repeller for f if there exist c > 0 and τ > 1 such that∥∥dxf nv∥∥ ≥ cτn ‖v‖
for x ∈ J , v ∈ TxM and n ∈ N . We shall always assume that there exists an open neigh-
borhood U of J such that J = ⋂∞

n=0 f
−nU . Given a continuous function ϕ : J → R, we

consider the irregular set

Jϕ =
{
x ∈ J ; lim inf

n→∞ Sϕ(x, n) < lim sup
n→∞

Sϕ(x, n)

}
,

with Sϕ(x, n) as in (4).
The following is a version of Theorem 3.2 for the Birkhoff averages of a continuous

function on a repeller.
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THEOREM 5.1. Let J be a repeller for a topologically transitive C1 map f and let
ϕ : J → R be a continuous function. Then the irregular set Jϕ is either empty or residual.

In a manner similar to that in Section 3 we also present a more general result from which
Theorem 5.1 can be deduced. Given a set I ⊂ R, let

Jϕ,I = {
x ∈ X;Aϕ(x) = I

}
,

where Aϕ(x) is the set of accumulation points of the sequence n �→ Sϕ(x, n). Moreover, let

Rϕ = {
α ∈ R; Jϕ(α) 
= ∅}

,

where
Jϕ(α) =

{
x ∈ J ; lim

n→∞ Sϕ(x, n) = α
}
.

THEOREM 5.2. Let J be a repeller for a topologically transitive C1 map and let
ϕ : J → R be a continuous function. Given a closed interval I ⊂ Rϕ that is not a singleton,
if the set Jϕ,I is nonempty, then it is residual on J .

PROOF. Recall that a collection of closed sets R1, . . . , Rk ⊂ J is called a Markov
partition of J (with respect to f ) if:

(1) J = ⋃k
i=1 Ri and Ri = intRi for each i;

(2) intRi ∩ intRj = ∅ whenever i 
= j ;
(3) if int f (Ri) ∩ intRj 
= ∅, then f (Ri) ⊃ Rj .

We note that the interiors are computed with respect to the induced topology on J . Any
repeller J for a C1 map f has Markov partitions of arbitrary small diameter (see for exam-
ple [3]). Let A = (aij ) be a k × k matrix with entries aij = 1 if intf (Ri) ∩ intRj 
= ∅ and
aij = 0 otherwise. Writing X = �+

A , we obtain a coding map π : X → J for the repeller J
letting

π(ω) =
⋂
n∈N

f−n+1Rωn , ω = (ω1ω2 · · · ) .

One can easily verify that π is continuous, onto and that π ◦σ = f ◦π onX. The last identity
implies that Rϕ = Lϕ◦π .

Now let

B =
⋃
n≥0

f−n
k⋃
i=1

∂Ri ,

where ∂Ri is the boundary of Ri . This is the set of points in J for which the coding is not
unique. Since f (C) ⊂ C, where C = ⋃k

i=1 ∂Ri , the sequence f−nC is increasing and hence
the set B is invariant, that is, (f |J )−1B = B. We define

S = X \ π−1B and J ∗ = J \ B .
Clearly, the map π : S → J ∗ is bijective. Moreover,B is an Fσ set and since π is continuous,
S is a Gδ set. In addition, it follows from the f -invariance of B that (f |J )−1J ∗ = J ∗ and
hence (σ |X)−1S = S. Since any nonempty invariant set (not forward invariant set) of a one-
sided topologically transitive topological Markov chain σ |X is dense, S is a dense Gδ set.
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We note that ψ = ϕ ◦ π is a continuous function on X. Let I ⊂ Rϕ = Lψ be a closed
interval. It follows from Theorem 3.1 that there exists a denseGδ set E ⊂ Xψ,I . To complete
the proof, it suffices to show that the set F = π(E∩S) ⊂ J ∗ satisfies the following properties:

(1) F ⊂ Jϕ,I ;
(2) F is dense in J ;
(3) F is a Gδ set.

It follows from the identity π ◦ σ = f ◦ π that

F ⊂ π(E) ⊂ π(Xψ,I ) = Jϕ,I .

Moreover,E ∩ S is a dense Gδ set since both E and S are dense Gδ sets. In particular,

J = π(X) = π(E ∩ S) ⊂ π(E ∩ S) = F

and F is dense in J . For the last property, we observe that

J \ F = (B ∪ J ∗) \ F = B ∪ (J ∗ \ F) (since B ∩ F = ∅)
= B ∪ (

π(S) \ π(E ∩ S))
= B ∪ π(

S \ (E ∩ S)) (since π is bijective on S)

= π(X \ S) ∪ π(
S \ (E ∩ S))

= π
(
(X \ S) ∪ (S \ (E ∩ S)))

= π
(
X \ (E ∩ S)) .

Finally, X \ (E ∩ S) is an Fσ set (since E ∩ S is a Gδ set) and writing X \ (E ∩ S) = ⋃
i Fi

as a countable union of closed sets Fi ⊂ X, we obtain

J \ F = π
(
X \ (E ∩ S)) =

⋃
i

π(Fi) ,

where π(Fi) is a closed set (since π is continuous and X is compact). This shows that F is a
Gδ set and the proof of the theorem is complete. �

6. Proof of Theorem 3.1. In order to prove Theorem 3.1 we construct a denseGδ set
E ⊂ X such that E ⊂ Xϕ,I .

For each α ∈ R, n ∈ N and ε > 0, let

F(α, n, ε) = {
ω|n;ω ∈ X and |Sϕ(ω, n) − α| < ε

}
,

with Sϕ(ω, n) as in (6). Given ε > 0, we have F(α, n, ε) 
= ∅ for each α ∈ Lϕ and any
sufficiently large n (depending on α and ε).

Now choose numbers αk,1, . . . , αk,qk ∈ I for each k ∈ N such that

(12) I ⊂
qk⋃
i=1

B
(
αk,i, 1/k

)

and

(13) |αk,i+1 − αk,i | < 1

k
for i = 0, . . . , qk − 1 , |αk,qk − αk+1,1| < 1

k
.
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Moreover, let ε1 > ε2 > · · · be a sequence of positive numbers decreasing to zero and let

n1,1 < n1,2 < · · · < n1,q1 < n2,1 < n2,2 < · · · < n2,q2 < · · ·
be positive integers such that

F(αk,i, nk,i , εk) 
= ∅ for k ∈ N , 1 ≤ i ≤ qk .

Let Ω0 = X∗. For each ω ∈ Ω0, we take integers {Nk,i(ω)}k∈N,i=1,...,qk such that the
following conditions are satisfied:

(i) N1,i(ω) ≥ 2n1,i+1+τ for 2 ≤ i ≤ q1 − 1,
Nk,i(ω) ≥ 2nk,i+1+τ for k ≥ 2 and 1 ≤ i ≤ qk − 1,
Nk,qk (ω) ≥ 2nk+1,1+τ for k ≥ 1;

(ii) Nk,i+1(ω) ≥ 2|ω|+τ+N1,1(ω)(n1,1+τ )+N1,2(ω)(n1,2+τ )+···+Nk,i (ω)(nk,i+τ ),
Nk+1,1(ω) ≥ 2|ω|+τ+N1,1(ω)(n1,1+τ )+N1,2(ω)(n1,2+τ )+···+Nk,qk (ω)(nk,qk+τ )
for k ∈ N and i = 1, . . . , qk − 1.

We recall that τ is the integer in the notion of weak specification (see Section 2). Now we
define recursively sets Ωk,i ⊂ X∗ for k ∈ N and i = 1, . . . , qk by

Ω1,1 =
⋃
ω∈Ω0

ω �� F(α1,1, n1,1, ε1)
��N1,1(ω) ,

Ω1,2 =
⋃

η∈Ω1,1

η �� F(α1,2, n1,2, ε1)
��N1,2(ω) ,

· · ·
Ω1,q1 =

⋃
η∈Ω1,q1−1

η �� F(α1,q1, n1,q1, ε1)
��N1,q1 (ω) ,

Ω2,1 =
⋃

η∈Ω1,q1

η �� F(α2,1, n2,1, ε2)
��N2,1(ω) ,

and so on (taking some bridge at each concatenation). Finally, let

Ek,i =
⋃

ω∈Ωk,i
[ω]

and

E =
∞⋂
k=1

qk⋂
i=1

Ek,i .

Clearly, E is a Gδ set since each cylinder set [ω] is open.
Now we show that E has the desired properties.

LEMMA 6.1. E is dense in X.

PROOF. It suffices to show that E ∩ B(ω, r) 
= ∅ for every ω ∈ X and r > 0, where
B(ω, r) is the ball of radius r centered at ω. We first observe that Xϕ is dense on X. Indeed,
since Lϕ is not a singleton, the set Xϕ is nonempty. Moreover, σ−nXϕ ⊂ Xϕ for n ∈ N and
σ−nXϕ intersects all cylinder sets of length n− τ for each n > τ (with τ as in the definition
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of weak specification). Therefore, given ω ∈ X and r > 0, there exist ω′ ∈ Xϕ and n ∈ N

such that [ω′|n] ⊂ B(ω, r). Write η = ω′|n. Clearly, η ∈ Ω0. We take

η1,1 ∈ η �� F(α1,1, n1,1, ε1)
��N1,1(η) ,

η1,2 ∈ η1,1 �� F(α1,2, n1,2, ε1)
��N1,2(η) ,

· · ·
η1,q1 ∈ η1,q1−1 �� F(α1,q1, n1,q1, ε1)

��N1,q1 (η) ,

η2,1 ∈ η1,q1 �� F(α2,1, n2,1, ε2)
��N2,1(η) ,

and so on (taking some bridge at each concatenation).
It is easy to check that ([ηk,i])k∈N,i=1,...,qk is a decreasing sequence of nonempty com-

pact subsets of X and thus,
S :=

⋂
k,i

[ηk,i] ∩ [η] 
= ∅ .

Let ρ ∈ S. We claim that ρ ∈ E∩B(ω, r). Indeed, it follows from the inclusion S ⊂ ⋂
k,i Ek,i

that ρ ∈ E. On the other hand,
S ⊂ [η] ⊂ B(ω, r)

and hence ρ ∈ B(ω, r). �

Alternatively, one can observe that by construction each setEk,i is dense and so it follows
from Baire’s theorem that E is dense (since it is a countable intersection of open dense sets in
a complete metric space).

LEMMA 6.2. E ⊂ Xϕ,I .

PROOF. In order to prove that E ⊂ Xϕ,I , we must show that Aϕ(ω) = I for ω ∈ E.
We recall that for each ω ∈ E, there exists ω0 ∈ Ω0 such that

(14) ω ∈ ω0 �� F(α1,1, n1,1, ε1)
��N1,1(ω

0) �� · · · .
We first show that

(15) I ⊂ Aϕ(ω) .

Given

α ∈ I ⊂
qk⋃
i=1

B
(
αk,i, 1/k

)
,

take an integer ik ∈ {1, . . . , qk} such that α ∈ B
(
αk,ik , 1/k

)
. In order to avoid a tedious

notation we assume that ik 
∈ {1, qk} although the argument is identical when ik ∈ {1, qk}. Let
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(16) sk,ik = |ω0| + λ0 +
q1∑
j=1

N1,j∑
l=1

(n1,j + λ1,j,l)+ · · · +
ik∑
j=1

Nk,j∑
l=1

(nk,j + λk,j,l) ,

where λ0 is the length of the first bridge,Nk,j = Nk,j (ω
0) and

λi,j,l =
{
τi,j if l 
= Ni,j ,

τ ′
i,j if l = Ni,j

is the length of each successive bridge between strings of ω0. It follows from weak specifica-
tion that the numbers λ0 and λi,j,l are bounded by τ .

We will prove that

(17)
∣∣Sϕ(ω, sk,ik )− αk,ik

∣∣ → 0 when k → ∞ .

We first show that (17) implies (15). Indeed, it follows from (17) that

∣∣Sϕ(ω, sk,ik )− α
∣∣ ≤ ∣∣Sϕ(ω, sk,ik )− αk,ik

∣∣ + |αk,ik − α|
<

∣∣Sϕ(ω, sk,ik )− αk,ik
∣∣ + 1

k
→ 0

when k → ∞. Therefore, α ∈ Aϕ(ω) and (15) holds.
In order to prove (17), write

(18) sk,ik = s̃k,ik + tk,ik ,

where

tk,ik =
Nk,ik∑
l=1

(nk,ik + λk,ik ,l) .

Since

αk,ik ∈ [− ‖ϕ‖ , ‖ϕ‖], where ‖ϕ‖ = max
ω∈X |ϕ(ω)| ,
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we obtain

∣∣∣∣
sk,ik−1∑
i=0

ϕ(σ i(ω))− sk,ik αk,ik

∣∣∣∣

≤
∣∣∣∣
s̃k,ik−1∑
i=0

ϕ(σ i(ω))− s̃k,ik αk,ik

∣∣∣∣ +
∣∣∣∣
sk,ik−1∑
i=̃sk,ik

ϕ(σ i(ω))− tk,ik αk,ik

∣∣∣∣

≤ 2̃sk,ik ‖ϕ‖ +
∣∣∣∣
tk,ik−1∑
i=0

ϕ(σ i(σ s̃k,ik (ω)))− tk,ikαk,ik

∣∣∣∣

≤ 2̃sk,ik ‖ϕ‖ +
Nk,ik∑
l=1

∣∣∣∣
nk,ik−1∑
j=0

ϕ(σ j (σ s̃k,ik+(l−1)(nk,ik+λk,ik ,l )(ω)))− nk,ikαk,ik

∣∣∣∣

+
Nk,ik∑
l=1

∣∣∣∣
nk,ik+λi,ik ,l−1∑

j=nk,ik
ϕ(σ j (σ s̃k,ik+(l−1)(nk,ik+λk,ik ,l )(ω)))

∣∣∣∣ + ∣∣Nk,ik ταk,ik ∣∣

≤ 2̃sk,ik ‖ϕ‖ +
Nk,ik∑
l=1

∣∣∣∣
nk,ik−1∑
j=0

ϕ(σ j (σ s̃k,ik+(l−1)(nk,ik+λk,ik ,l )(ω)))− nk,ikαk,ik

∣∣∣∣
+ 2τNk,ik ‖ϕ‖ .

(19)

In order to estimate the second term in the right-hand side of the former inequality, we intro-
duce the numbers

vn(ϕ) = sup
{|ϕ(ω)− ϕ(ω′)|;ω,ω′ ∈ X, ω|n = ω′|n}

and

Vn(ϕ) =
n∑
j=1

vj (ϕ) .

By (14) and the definition of the set F(αk,ik , nk,ik , εk), one can choose ω1, . . . , ωNk,ik ∈ X

such that

(20) σ s̃k,ik+(l−1)(nk,ik+λk,ik ,l )(ω)|nk,ik = ωl |nk,ik

and

(21)
∣∣Sϕ(ωl, nk,ik )− αk,ik

∣∣ < εk
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for l = 1, . . . , Nk,ik . It follows from (20) and (21) that

∣∣∣∣
nk,ik−1∑
j=0

ϕ(σ j (σ s̃k,ik+(l−1)(nk,ik+λk,ik ,l )(ω)))− nk,ik αk,ik

∣∣∣∣

≤
∣∣∣∣
nk,ik−1∑
j=0

ϕ(σ j (σ s̃k,ik+(l−1)(nk,ik+λk,ik ,l )(ω)))−
nk,ik−1∑
j=0

ϕ(σ j (ωl))

∣∣∣∣

+
∣∣∣∣
nk,ik−1∑
j=0

ϕ(σ j (ωl))− nk,ik αk,ik

∣∣∣∣
≤ Vnk,ik (ϕ)+ nk,ik εk

for l = 1, . . . , Nk,ik . Together with (19) this implies that

∣∣∣∣
sk,ik−1∑
i=0

ϕ(σ i(ω))− sk,ikαk,ik

∣∣∣∣
≤ 2̃sk,ik ‖ϕ‖ + Nk,ik (Vnk,ik (ϕ)+ 1)+ 2τNk,ik ‖ϕ‖
= 2̃sk,ik ‖ϕ‖ +Nk,ikVnk,ik

(ϕ)+ Nk,ik (nk,ik εk + 2τ ‖ϕ‖) .
Now we observe that it follows from condition (ii) that s̃k,ik /sk,ik tends to zero when k → ∞.
Indeed, using (16), (18) and condition (ii), we have

sk,ik

s̃k,ik
− 1 = tk,ik

s̃k,ik
≥ Nk,ik

s̃k,ik
nk,ik ≥ 2̃sk,ik

s̃k,ik
nk,ik

and thus,
sk,ik

s̃k,ik
→ +∞ when k → ∞ .

Moreover, it follows readily from the uniform continuity of ϕ on the compact set X that
vn(ϕ) → 0 when n → ∞. Hence, Vn(ϕ)/n → 0 when n → ∞ and

Nk,ikVnk,ik
(ϕ)

sk,ik
≤ Vnk,ik

(ϕ)

nk,ik
→ 0 when k → ∞ .

Finally, by the definition of sk,ik (see (18)), we have sk,ik > tk,ik and

Nk,ik nk,ik εk

sk,ik
<
Nk,iknk,ik εk

tk,ik
≤ εk .

Therefore,

∣∣Sϕ(ω, sk,ik )− αk,ik

∣∣ < 2̃sk,ik ‖ϕ‖
sk,ik

+ Vnk,ik
(ϕ)

nk,ik
+ nk,ik εk + 2τ ‖ϕ‖

nk,ik
→ 0

when k → ∞, which completes the proof of (17).
Now we show that

(22) Aϕ(ω) ⊂ I .
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For each positive integer n > |ω0| + τ there exist k ∈ N , ik ∈ {1, 2, . . . , qk} and 1 ≤ p ≤
Nk,ik+1 such that

(23) sk,ik + ρp < n ≤ sk,ik + ρp+1 ,

where

ρs =
s−1∑
l=1

(nk,ik+1 + λk,ik+1,l)

for each s ∈ N . Notice that k → ∞ when n → ∞. We claim that

(24) |Sϕ(ω, n)− αk,ik | → 0 when n → ∞ .

For simplicity of the notation, in a similar manner to that in the former inclusion we assume
that ik 
= qk. If (24) holds, then it follows from (12) that

dist
(
Sϕ(ω, n), I

) ≤ |Sϕ(ω, n)− αk,ik | + dist(αk,ik , I ) → 0

when k → ∞. Since I is closed, we conclude that (22) holds.
Now we establish property (24). We have

∣∣∣∣
n−1∑
i=0

ϕ(σ i(ω))− nαk,ik

∣∣∣∣ ≤
∣∣∣∣
sk,ik−1∑
i=0

ϕ(σ i(ω))− sk,ik αk,ik

∣∣∣∣

+
∣∣∣∣
sk,ik+ρp−1∑
i=sk,ik

ϕ(σ i(ω))− ρpαk,ik

∣∣∣∣

+
∣∣∣∣

n−1∑
i=sk,ik+ρp

ϕ(σ i(ω))− (n− sk,ik − ρp)αk,ik

∣∣∣∣ .

We shall estimate each of these terms. In a similar manner to that in (20) and (21), one can
choose ω1, . . . , ωp−1 ∈ X such that

(25) σ sk,ik+(l−1)(nk,ik+1+λk,ik+1,l )(ω)|nk,ik+1 = ωl |nk,ik+1

and

(26)
∣∣Sϕ(ωl, nk,ik+1)− αk,ik+1

∣∣ < εk
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for l = 1, . . . , p − 1. It follows from (13), (25) and (26) that

∣∣∣∣
nk,ik+1−1∑
j=0

ϕ(σ j (σ sk,ik+(l−1)(nk,ik+1+λk,ik+1,l )(ω)))− nk,ik+1αk,ik

∣∣∣∣

≤
∣∣∣∣
nk,ik+1−1∑
j=0

ϕ(σ j (σ sk,ik+(l−1)(nk,ik+1+λk,ik+1,l )(ω)))− nk,ik+1αk,ik+1

∣∣∣∣
+ ∣∣nk,ik+1αk,ik+1 − nk,ik+1αk,ik

∣∣

≤
∣∣∣∣
nk,ik+1−1∑
j=0

ϕ(σ j (σ sk,ik+(l−1)(nk,ik+1+λk,ik+1,l )(ω)))−
nk,ik+1−1∑
j=0

ϕ(σ j (ωl))

∣∣∣∣

+
∣∣∣∣
nk,ik+1−1∑
j=0

ϕ(σ j (ωl))− nk,ik+1αk,ik+1

∣∣∣∣ + nk,ik+1

k

≤ Vnk,ik+1(ϕ)+ nk,ik+1εk + nk,ik+1

k

for l = 1, . . . , p − 1. Therefore,

∣∣∣∣
sk,ik+ρp−1∑
i=sk,ik

ϕ(σ i(ω))− ρpαk,ik

∣∣∣∣

≤
∣∣∣∣
p−1∑
l=1

( nk,ik+1−1∑
j=0

ϕ(σ j (σ sk,ik+(l−1)(nk,ik+1+λk,ik+1,l )(ω)))− nk,ik+1αk,ik

)∣∣∣∣
+ 2(p − 1)τ ‖ϕ‖

≤ p

(
Vnk,ik+1(ϕ)+ nk,ik+1εk + nk,ik+1

k

)
+ 2pτ ‖ϕ‖ .

(27)

Moreover, by (23), we have

∣∣∣∣
n−1∑

i=sk,ik+ρp
ϕ(σ i(ω))− (n− sk,ik − ρp)αk,ik

∣∣∣∣ ≤ 2(n− sk,ik − ρp) ‖ϕ‖

≤ 2(nk,ik+1 + τ ) ‖ϕ‖ .
(28)

Collecting the estimates (27) and (28), we obtain

∣∣Sϕ(ω, n)− αk,ik

∣∣ ≤ ∣∣Sϕ(ω, sk,ik )− αk,ik

∣∣ sk,ik
n

+ 2(nk,ik+1 + τ ) ‖ϕ‖
n

+ pVnk,ik+1(ϕ)

n
+ pnk,ik+1

kn
+ p(nk,ik+1εk + 2τ ‖ϕ‖)

n
.

(29)
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In a manner similar to that in the proof of (17), one can show that the first term in (29) tends to
zero when n → ∞ (notice that sk,ik ≤ n). Moreover, using (23) and condition (i), we obtain

(30)
2(nk,ik+1 + τ ) ‖ϕ‖

n
≤ 2(nk,ik+1 + τ ) ‖ϕ‖

sk,ik
≤ 2(nk,ik+1 + τ ) ‖ϕ‖

Nk,ik
→ 0

when n → ∞. On the other hand, it follows from (23) that

(31)
pnk,ik+1

kn
≤ 1

k
→ 0 when n → ∞ ,

(32)
pVnk,ik+1(ϕ)

n
≤ Vnk,ik+1(ϕ)

nk,ik+1
→ 0 when n → ∞ ,

and

(33)
p(nk,ik+1εk + 2τ ‖ϕ‖)

n
≤ nk,ik+1εk + 2τ ‖ϕ‖

nk,ik+1
→ 0 when n → ∞

(since k → ∞ when n → ∞).
Hence, property (24) follows readily from (29), (30), (32), (31) and (33). This completes

the proof of the lemma. �

Theorem 3.1 follows immediately from Lemmas 6.1 and 6.2.
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