
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 364, Number 10, October 2012, Pages 5395–5414
S 0002-9947(2012)05540-1
Article electronically published on May 8, 2012

IRREGULAR SETS, THE β-TRANSFORMATION

AND THE ALMOST SPECIFICATION PROPERTY

DANIEL J. THOMPSON

Abstract. Let (X, d) be a compact metric space, f : X �→ X be a continuous
map satisfying a property we call almost specification (which is slightly weaker
than the g-almost product property of Pfister and Sullivan), and ϕ : X �→ R be
a continuous function. We show that the set of points for which the Birkhoff
average of ϕ does not exist (which we call the irregular set) is either empty or
has full topological entropy. Every β-shift satisfies almost specification and we
show that the irregular set for any β-shift or β-transformation is either empty
or has full topological entropy and Hausdorff dimension.

1. Introduction

For a compact metric space (X, d), a continuous map f : X �→ X and a contin-
uous function ϕ : X �→ R, we define the irregular set for ϕ to be

X̂(ϕ, f) :=

{
x ∈ X : lim

n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) does not exist

}
.

The irregular set arises naturally in the context of multifractal analysis. As a
consequence of Birkhoff’s ergodic theorem, the irregular set is not detectable from
the point of view of an invariant measure. However, it is an increasingly well
known phenomenon that the irregular set can be large from the point of view
of dimension theory [2]. Symbolic dynamics methods have confirmed this in the
uniformly hyperbolic setting [3], for certain non-uniformly hyperbolic examples [23]
and for a large class of multimodal maps [31]. The irregular set has also been the
focus of a great deal of work by Olsen and collaborators, for example in [1] and [16].
The papers [30, 11] studied the irregular set for maps with the specification property
using a non-symbolic method inspired by the work of Takens and Verbitskiy [28].

Ruelle uses the terminology ‘set of points with historic behaviour’ to describe
the irregular set [25]. The idea is that points for which the Birkhoff average does
not exist are capturing the ‘history’ of the system, whereas points whose Birkhoff
average converge only see average behaviour. For example, in the dynamics of
the weather, the irregular points are the ones that have observed epochs of climate
change. In [27], in contrast to the dimension-theoretic point of view, Takens asks for
which smooth dynamical systems the irregular set has positive Lebesgue measure.

Our current work, which takes the dimension-theoretic viewpoint, is inspired by
a recent innovation of Pfister and Sullivan [22], who have introduced a weak spec-
ification property called the g-almost product property, which we take the liberty
of renaming as the almost specification property. They extended the variational
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5396 DANIEL J. THOMPSON

principle of Takens and Verbitskiy [28] to the class of maps which satisfy this prop-
erty. This variational principle is a key tool in multifractal analysis and has been
extended by the author in a different direction in [29].

A striking application of the almost specification property is that it applies to
every β-shift. In sharp contrast, the set of β for which the β-shift has the specifica-
tion property has zero Lebesgue measure [6, 26]. The β-shift is the natural symbolic
space associated to the β-transformation fβ(x) = βx mod 1, β ∈ (1,∞), x ∈ [0, 1).
The β-transformation has been widely studied since its introduction in 1957 by
Renyi [24]. The sustained interest in the study of the β-tranformation arises from
its connection with number theory and its special role as a model example of a
one-dimensional expanding dynamical system which admits discontinuities.

Main Result 1. When f satisfies the almost specification property, the irregular
set is either empty or has full topological entropy.

Main Result 2. The irregular set for an arbitrary β-transformation (or β-shift)
is either empty or has full entropy log β and Hausdorff dimension 1.

Our second main result (stated formally as Theorem 5.1 and Theorem 5.4) is a
corollary of our first main result (stated formally as Theorem 4.1). We work through
the application to the β-shift carefully. We emphasise that our first main result
applies to many systems other than β-transformations. For example, every ergodic
toral automorphism has almost specification. This is a special case of the result
that every automorphism of a compact metric abelian group that is ergodic (with
respect to Haar measure) and has finite topological entropy has almost specification
[15, 9, 33]. This provides another important class of examples where our first main
theorem yields new results.

To undertake the proof of our first main result, we develop notions of almost
spanning sets, strongly separated sets and a generalised version of the Katok for-
mula for entropy. These should be of independent interest. We also include an
alternative proof of our second main result based on approximating the β-shift
from inside by shifts of finite type. We discuss the merits of the two different
approaches in §5.4.

In [30], we showed that when f has the specification property, the irregular set
is either empty or has full topological pressure. The method of this paper can be
used to show that this more general result holds true in the almost specification
setting. We restrict ourselves to the special case of entropy for clarity and brevity.

In §2, we give definitions. In §3, we establish our general version of the Katok
formula for entropy. In §4, we prove our first main result. In §5, we consider
arbitrary β-shifts and β-transformations and establish our second main result.

Remark. The author is grateful to a referee of this paper who informed him of the
work of Durner, of which he was not aware when this work was completed. Our
result on β-shifts, although not stated explicitly in Durner’s work, can be obtained
as a corollary of [10, Theorem 4]. Durner’s work does not apply in a general setting
but contains some very interesting theorems concerning β-shifts. Durner’s proof
implicitly uses the almost specification property of the β-shift and may be the first
work in which this property was exploited.
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2. Definitions and preliminaries

Let (X, d) be a compact metric space and f : X �→ X a continuous map. Let
C(X) denote the space of continuous functions from X to R, and let ϕ ∈ C(X). Let

Snϕ(x) :=
∑n−1

i=0 ϕ(f i(x)). Let Mf (X) denote the space of f -invariant probability
measures and Me

f (X) denote those which are ergodic.

2.1. The irregular set. We define the irregular set for ϕ to be

(2.1) X̂(ϕ, f) :=

{
x ∈ X : lim

n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) does not exist

}
.

For a constant c, let Cob(X, f, c) denote the space of functions cohomologous to c

and Cob(X, f, c) be the closure of Cob(X, f, c) in the sup norm. In [30], we proved
the following lemma.

Lemma 2.1. The following are equivalent for ϕ ∈ C(X):
(a) 1

nSnϕ does not converge pointwise to a constant;
(b) infμ∈Mf (X)

∫
ϕdμ < supμ∈Mf (X)

∫
ϕdμ;

(c) infμ∈Me
f (X)

∫
ϕdμ < supμ∈Me

f (X)

∫
ϕdμ;

(d) ϕ /∈
⋃

c∈R
Cob(X, f, c);

(e) 1
nSnϕ does not converge uniformly to a constant.

We also proved that if X̂(ϕ, f) is non-empty, then the properties of Lemma 2.1
hold. It is a corollary of our main result (Theorem 4.1) that when f has the almost

specification property, (b) implies that X̂(ϕ, f) is non-empty.

2.2. The almost specification property. Pfister and Sullivan have introduced a
property called the g-almost product property. We take the liberty of renaming this
property as the almost specification property. The almost specification property
can be verified for every β-shift (see §5.1). The version we use here is a priori
weaker than that in [22] and is slightly weaker than the almost product property
of [33]. First we need an auxiliary definition.

Definition 2.2. Let ε0 > 0. A function g : N × (0, ε0) �→ N is called a mistake
function if for all ε ∈ (0, ε0) and all n ∈ N, g(n, ε) ≤ g(n+ 1, ε) and

lim
n→∞

g(n, ε)

n
= 0.

Given a mistake function g, if ε > ε0, we define g(n, ε) := g(n, ε0).

We note that for fixed k ∈ N and λ > 0, if g is a mistake function, then so is h
defined by h(n, ε) = kg(n, λε).

Definition 2.3. For n,m ∈ N,m < n, we define the set of (n,−m) index sets to
be

I(n,−m) := {Λ ⊆ {0, . . . , n− 1},#Λ ≥ n−m}.
Let g be a mistake function and ε > 0. For n sufficiently large so that g(n, ε) < n, we
define the set of (g, n, ε) index sets to be I(g;n, ε) := I(n,−g(n, ε)). Equivalently,

I(g;n, ε) := {Λ ⊆ {0, . . . , n− 1},#Λ ≥ n− g(n, ε)}.
For a finite set of indices Λ, we define

dΛ(x, y) = max{d(f jx, f jy) : j ∈ Λ} and BΛ(x, ε) = {y ∈ X : dΛ(x, y) < ε}.
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Definition 2.4. When g(n, ε) < n, we define a ‘dynamical ball of radius ε and
length n with g(n, ε) mistakes’. Let

Bn(g;x, ε) := {y ∈ X : y ∈ BΛ(x, ε) for some Λ ∈ I(g;n, ε)}
=

⋃
Λ∈I(g;n,ε)

BΛ(x, ε).

Definition 2.5. A continuous map f : X �→ X satisfies the almost specification
property if there exists a mistake function g such that for any ε1, . . . , εk > 0, there
exist integers N(g, ε1), . . . , N(g, εk) such that for any x1, . . . , xk in X and integers
ni ≥ N(g, εi),

k⋂
j=1

f−
∑j−1

i=0 niBnj
(g;xj , εj) 	= ∅,

where n0 = 0.

Remark 2.6. The function g can be interpreted as follows. The integer g(n, ε) tells
us how many mistakes we are allowed to make when we use the almost specification
property to ε shadow an orbit of length n. Henceforth, we assume for convenience
and without loss of generality that N(g, ε) is chosen so that g(n, ε)/n < 0.1 for all
n ≥ N(g, ε).

Remark 2.7. Pfister and Sullivan use a slightly different definition of mistake func-
tion (which they call a blow-up function). They do not allow g to depend on ε. An
example of a function which is a mistake function under our definition but is not
considered by Pfister and Sullivan is g(n, ε) = ε−1 log n. Since we allow a larger
class of mistake functions, the almost specification property defined here is slightly
more general than the g-almost product property of Pfister and Sullivan.

Definition 2.8. A continuous map f : X �→ X satisfies the specification property
if for all ε > 0, there exists an integer m = m(ε) such that for any collection
{Ij = [aj , bj ] ⊂ N : j = 1, . . . , k} of finite intervals with aj+1 − bj ≥ m(ε) for j =
1, . . . , k − 1 and any x1, . . . , xk in X, there exists a point x ∈ X such that

(2.2) d(fp+ajx, fpxj) < ε for all p = 0, . . . , bj − aj and every j = 1, . . . , k.

Pfister and Sullivan showed that the specification property implies the almost
specification property [22] using ANY blow-up function g. To see the relation
between the two concepts, we note that if f has specification and we set g(n, ε) =
m(ε) for all n larger than m(ε) and set N(g, ε) = m(ε) + 1, then for any x1, . . . , xk

in X and integers ni ≥ N(g, ε), we have

k⋂
j=1

f−
∑j−1

i=0 niBnj
(g;xj , ε) 	= ∅.

The trick required to replace ε by ε1, . . . , εk can be found in [22].

Remark 2.9. In [33], Yamamoto studies the relationship between a number of weak
forms of the specification property, including the Pfister and Sullivan definition. We
note that our definition of almost specification is different from all the properties
defined in [33], and the almost specification property of [33, Definition 2.1] is a
special case of ours.
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3. A modified Katok entropy formula

The following definitions of ‘strongly separated’ and ‘almost spanning’ sets are
inspired by Pfister and Sullivan and designed for use in the setting of maps with
the almost specification property.

Definition 3.1. Let Z ⊆ X. For m < n, a set S is (n,−m, ε) separated for Z if
S ⊂ Z and for every Λ ∈ I(n,−m), we have dΛ(x, y) > ε for every x, y ∈ S. We
define a set S to be (g;n, ε) separated if it is (n,−g(n, ε), ε) separated. Equivalently,
S is (g;n, ε) separated if for every x, y ∈ S

#{j ∈ {0, . . . , n− 1} : d(f jx, f jy) > ε} > g(n, ε).

We think of an (n,−m, ε) separated set to be ‘a set which remains (n, ε) separated
when you permit m mistakes’. In particular, a set S which is (g;n, ε) separated is
(n, ε) separated in the usual sense. We define the natural dual notion of a (g;n, ε)
spanning set.

Definition 3.2. For m < n, a set S ⊂ Z is (n,−m, ε) spanning for Z if for all
x ∈ Z, there exists y ∈ S and Λ ∈ I(n,−m) such that dΛ(x, y) ≤ ε. Note that Λ
depends on x and an (n, ε) spanning set is always (n,−m, ε) spanning. We define
a set S to be (g;n, ε) spanning if it is (n,−g(n, ε), ε) spanning.

We think of an (n,−m, ε) spanning set to be ‘a set which requires up to m
mistakes to be (n, ε) spanning’. Let

sn(g;Z, ε) = sup{#S : S is (g;n, ε) separated for Z},
rn(g;Z, ε) = inf{#S : S is (g;n, ε) spanning for Z},
sn(Z, ε) = sup{#S : S is (n, ε) separated for Z},
rn(Z, ε) = inf{#S : S is (n, ε) spanning for Z}.

Lemma 3.3. Let g be any mistake function and let h(n, ε) = 2g(n, ε/2). We have
(1) rn(g;Z, ε) ≤ sn(g;Z, ε) ≤ sn(Z, ε),
(2) sn(h;Z, 2ε) ≤ rn(g;Z, ε) ≤ rn(Z, ε) ≤ sn(Z, ε).

Proof. Suppose that S is a (g;n, ε) separated set for Z of maximum cardinality
such that S is not (g;n, ε) spanning. We can find

z ∈ Z \
⋃

Λ∈I(g;n,ε)

⋃
x∈S

BΛ(x, ε) =
⋂

Λ∈I(g;n,ε)

(
Z \

⋃
x∈S

BΛ(x, ε)

)
.

Since dΛ(x, z) > ε for all x ∈ S and Λ ∈ I(g;n, ε), then S∪{z} is a (g;n, ε) separated
set, which contradicts the maximality of S. Thus, every (g;n, ε) separated set of
maximal cardinality is (g;n, ε) spanning.

For (2), suppose E is (h;n, 2ε) separated and F is (g;n, ε) spanning for Z. Define
φ : E �→ F by choosing for each x ∈ E some φ(x) ∈ F and some Λx ∈ I(g;n, ε) such
that dΛx

(x, φ(x)) ≤ ε. Suppose x 	= y. Let Λ = Λx ∩ Λy. Since #Λ ≥ n− 2g(n, ε),
then Λ ∈ I(h;n, 2ε). We have dΛ(φ(x), φ(y)) > 0 and thus φ(x) 	= φ(y) . Thus φ is
injective and hence |E| ≤ |F |. �

Theorem 3.4 (Modified Katok entropy formula). Let (X, d) be a compact metric
space, f : X �→ X be a continuous map and μ be an ergodic invariant measure. For
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γ ∈ (0, 1) and any mistake function g, we have

hμ = lim
ε→0

lim inf
n→∞

1

n
log(inf{rn(g;Z, ε) : Z ⊂ X,μ(Z) ≥ 1− γ}).

The formula remains true if we replace the lim inf by lim sup and/or rn(g;Z, ε) by
sn(g;Z, ε). The value taken by the lim inf can be bounded below independent of the
choice of mistake function g.

Proof. Since rn(Z, ε) ≥ rn(g;Z, ε), it follows from the original Katok entropy for-
mula that the expression on the right hand side is less than or equal to hμ (this is
the easier inequality to prove directly any way). To prove the opposite inequality,
we give a method inspired by the proof of theorem A2.1 of [18].

For any η > 0, there exists δ, 0 < δ ≤ η, a finite Borel partition ξ = {C1, . . . , Cm}
and a finite open cover U = {U1, . . . , Uk} of X where k ≥ m with the following
properties:

(1) Diam(Ui) ≤ η, Diam(Cj) ≤ η for all i = 1, . . . ,m, j = 1, . . . , k,

(2) U i ⊂ Ci for all i = 1, . . . ,m,

(3) μ(Ci \ Ui) ≤ δ for all i = 1, . . . ,m and μ(
⋃k

i=m+1 Ui) ≤ δ,
(4) 2δ logm ≤ η.
This is a consequence of the regularity of the measure μ. Fix η so 1− γ > η > 0

and take the corresponding number δ, covering U and partition ξ. Fix Z ⊂ X
with μ(Z) > 1 − γ. Let tn(x) denote the number of l, 0 ≤ l ≤ n − 1 for which

f l(x) ∈
⋃k

i=m+1 Ui. Let ξn =
∨n−1

i=0 f−iξ and Cξn(x) denote the member of the
partition ξn to which x belongs.

Lemma 3.5. There exists a set A ⊂ Z and N > 0 with μ(A) ≥ μ(Z)− δ such that
for every x ∈ A and n ≥ N

(1) tn(x) ≤ 2δn,
(2) μ(Cξn(x)) ≤ exp(−(hμ(f, ξ)− δ)n).

Proof. Let χ be the characteristic function of
⋃k

i=m+1 Ui. We can write tn(x) =∑n−1
i=0 χ(f ix). By Birkhoff’s ergodic theorem and Egorov’s theorem, we can find

a set A1 ⊂ X with μ(A1) ≥ μ(Z) − δ
2 such that for x ∈ A1, we have uniform

convergence

n−1tn(x) =
1

n

n−1∑
i=0

χ(f ix) →
∫

χdμ = μ(

k⋃
i=m+1

Ui) ≤ δ.

Choose N1 such that if n ≥ N1 and x ∈ A1, then tn(x) ≤ 2δn.
By the Shannon-McMillan-Breiman theorem and Egorov’s theorem, we can find

a set A2 ⊂ X with μ(A2) ≥ μ(Z) − δ
2 such that for x ∈ A1, we have uniform

convergence

− 1

n
log μ(Cξn(x)) → hμ(f, ξ).

There exists N2 such that if n ≥ N2 and x ∈ A2, then − 1
n log μ(Cξn(x)) ≤ h(f, ξ)+

δ. Set A = A1 ∩ A2 and N = max{N1, N2} and the lemma is proved. �
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Let ξ∗n be the collection of elements Cξn of the partition ξn for which Cξn∩A 	= ∅.
Then for n ≥ N , using property (2) of A,

#ξ∗n ≥
∑
C∈ξ∗n

μ(C) exp{n(hμ(f, ξ)− δ)}

≥ μ(A) exp{n(hμ(f, ξ)− δ)}}.

Let 2ε be a Lebesgue number for U and let S be (g;n, ε) spanning for Z. We
have Z ⊆

⋃
x∈S

⋃
Λ∈I(g;n,ε) BΛ(x, ε). Let us fix B = BΛ(x, ε) for some x ∈ S and

Λ ∈ I(g;n, ε). Let ξΛ be the partition
∨

i∈Λ f−iξ. We estimate the number p(B, ξΛ)
of elements of the partition ξΛ which have non-empty intersection with A ∩B.

Since 2ε is a Lebesgue number for U , then B(f jx, ε) ⊂ Uij for some Uij ∈ U . If
ij ∈ {1, . . . ,m}, then f−j(Uij ) ⊂ f−j(Cij ). If ij ∈ {m + 1, . . . , k}, then anything

up to m sets of the form f−j(Cij ) may have non-empty intersection with f−j(Uij ).
It follows, using property (1) of A, that

p(B, ξΛ) ≤ m2δn = exp(2δn logm).

The number p(B, ξn) of elements of the partition ξn which have non-empty inter-
section with both A and B satisfies

p(B, ξn) ≤ p(B, ξΛ)m
g(n,ε) ≤ exp{(2δn+ g(n, ε)) logm}.

It follows that

#ξ∗n ≤
∑
x∈S

∑
Λ∈I(g;n,ε)

p(BΛ(x, ε), ξn) ≤ Gn,ε#S exp{(2δn+ g(n, ε)) logm},

where Gn,ε =
∑

i≤g(n,ε)

(
n
i

)
. Rearranging, we have

1

n
log#S ≥ hμ(f, ξ)− δ −

(
2δ +

g(n, ε)

n

)
logm− 1

n
logGn,ε.

A short combinatorial argument (see [21, Lemma 2.1]) shows that 1
n logGn,ε → 0.

Since 2δ logm < η, Diam(ξ) < η, δ < η, g(n,ε)
n → 0, and η was arbitrary, we are

done. �

As a corollary, we have a version of Theorem 3.4 for topological entropy (which
we do not use).

Theorem 3.6. Let (X, d) be a compact metric space and f : X �→ X be a contin-
uous map. We have

htop(f) = lim
ε→0

lim inf
n→∞

1

n
log rn(g;X, ε).

The formula remains true if we replace the lim inf by lim sup and/or rn(g;X, ε) by
sn(g;X, ε). The value taken by the lim inf (or lim sup) is independent of the choice
of mistake function g.

3.1. Topological entropy for non-compact sets. We consider the Bowen def-
inition of topological entropy for non-compact sets. Following Pesin and Pitskel
[19], we give a definition which is suitable for maps which have discontinuities.
Suppose X is a compact metric space, Y is a (generally non-compact) subset of X
and f : Y �→ Y is continuous. When f : X �→ X is continuous (which is the setting
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of our main theorem), we set Y = X. In our final section, when we consider the
β-transformation fβ , we set

Y = X \ {β−i : i ∈ N} = X \
⋃
i

f−i
β (0).

Let Z ⊂ Y be an arbitrary Borel set, not necessarily compact or invariant. We
consider finite and countable collections of the form Γ = {Bni

(xi, ε)}i. For α ∈ R,
we define the following quantities:

Q(Z, α,Γ) =
∑

Bni
(xi,ε)∈Γ

exp−αni,

M(Z, α, ε,N) = inf
Γ

Q(Z, α,Γ),

where the infimum is taken over all finite or countable collections of the form
Γ = {Bni

(xi, ε)}i with xi ∈ X such that Γ covers Z and ni ≥ N for all i = 1, 2, . . ..
Define

m(Z, α, ε) = lim
N→∞

M(Z, α, ε,N).

The existence of the limit is guaranteed since the function M(Z, α, ε,N) does not
decrease with N. By standard techniques, we can show the existence of

htop(Z, ε) := inf{α : m(Z, α, ε) = 0} = sup{α : m(Z, α, ε) = ∞}.
Definition 3.7. The topological entropy of Z is given by

htop(Z) = lim
ε→0

htop(Z, ε).

See [18] for verification that the quantities htop(Z, ε) and htop(Z) are well defined.
When X = Y , we denote the topological entropy of the dynamical system (X, f)
by htop(f) and we note that htop(X) = htop(f). We sometimes write htop(Z, f) in
place of htop(Z) when we wish to emphasise the dependence on f .

3.2. Topological entropy for shift spaces. Let Σ be a one-sided shift space (i.e.,
a closed, σ-invariant subset of a full one-sided shift on finitely many symbols). For
shift spaces, the definition of topological entropy can be simplified and we introduce
notation that reflects this. For x = (xi)

∞
i=1, let Cn(x) = {y ∈ Σ : xi = yi for i =

1, . . . , n}. Let Z ⊂ Σ be an arbitrary Borel set, not necessarily compact or invariant.
We consider finite and countable collections of the form Γ = {Cni

(xi)}i. For s ∈ R,
we define the quantities

Q(Z, s,Γ) =
∑

Cni
(xi)∈Γ

exp−sni,

M(Z, s,N) = inf
Γ

Q(Z, s,Γ),

where the infimum is taken over all finite or countable collections of the form
Γ = {Cni

(xi)}i with xi ∈ Σ such that Γ covers Z and ni ≥ N for all i = 1, 2, . . ..
Define

m(Z, s) = lim
N→∞

M(Z, s,N).

The existence of the limit is guaranteed since the function M(Z, s,N) does not
decrease with N .

Lemma 3.8. The topological entropy of Z ⊂ Σ is given by

htop(Z) := inf{s : m(Z, s) = 0} = sup{s : m(Z, s) = ∞}.
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The proof, which we omit, follows from the fact that every open ball B(x, ε) in
Σ is a set of the form Cn(x).

4. Main result

Theorem 4.1. Let (X, d) be a compact metric space and f : X �→ X be a contin-
uous map with the almost specification property. Assume that ϕ ∈ C(X) satisfies

infμ∈Mf (X)

∫
ϕdμ < supμ∈Mf (X)

∫
ϕdμ. Let X̂(ϕ, f) be the irregular set for ϕ

defined as in (2.1), then htop(X̂(ϕ, f)) = htop(f).

We remark that X̂(ϕ, f) 	= ∅ is a sufficient condition on ϕ for the theorem to
apply.

Proof. Let us fix a small γ > 0, and take ergodic measures μ1 and μ2 such that
(1) hμi

> htop(f)− γ for i = 1, 2,
(2)

∫
ϕdμ1 	=

∫
ϕdμ2.

That we are able to choose μi to be ergodic is a slightly subtle point. Let μ1 be
ergodic and satisfy hμ1

> htop(f)− γ/3. Let ν ∈ Mf (X) satisfy
∫
ϕdμ1 	=

∫
ϕdν.

Let ν′ = tμ1 + (1 − t)ν where t ∈ (0, 1) is chosen sufficiently close to 1 so that
hν′ > htop(f)−2γ/3. By [21], when f has the almost specification property, we can
find a sequence of ergodic measures νn ∈ Mf (X) such that hνn

→ hν′ and νn → ν′

in the weak-∗ topology. Therefore, we can choose a measure belonging to this
sequence which we call μ2 which satisfies hμ2

> htop(f)− γ and
∫
ϕdμ1 	=

∫
ϕdμ2.

(We could avoid the use of the result from [21] by giving a self-contained proof along
the lines of the ‘modified construction’ in [30]. We do not do so in the interest of
brevity.) Choose δ > 0 sufficiently small so∣∣∣∣∫ ϕdμ1 −

∫
ϕdμ2

∣∣∣∣ > 4δ.

Let ρ : N �→ {1, 2} be given by ρ(k) = (k + 1)(mod 2) + 1. Choose a strictly
decreasing sequence δk → 0 with δ1 < δ and a strictly increasing sequence lk → ∞
so the set

(4.1) Yk :=

{
x ∈ X ′ :

∣∣∣∣ 1nSnϕ(x)−
∫

ϕdμρ(k)

∣∣∣∣ < δk for all n ≥ lk

}
satisfies μρ(k)(Yk) > 1− γ for every k.

The following lemma follows readily from Theorem 3.4.

Lemma 4.2. Define mistake functions hk(n, ε) := 2g(n, ε/2k). For any sufficiently
small ε > 0, we can find a sequence nk → ∞ and a countable collection of finite
sets Sk so that each Sk is an (hk;nk, 4ε) separated set for Yk and satisfies

#Sk ≥ exp(nk(htop(f)− 4γ)).

Furthermore, the sequence nk can be chosen so that nk ≥ lk, nk > N(hk, ε) and
hk(nk, ε)/nk → 0.

We choose ε sufficiently small and fix all the ingredients provided by Lemma 4.2.

Our strategy is to construct a certain fractal F ⊂ X̂(ϕ, f), on which we can define
a sequence of measures suitable for an application of the following result of Takens
and Verbitskiy [28].
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Theorem 4.3 (Entropy Distribution Principle). Let f : X �→ X be a continuous
transformation. Let Z ⊆ X be an arbitrary Borel set. Suppose there exists ε > 0
and s ≥ 0 such that one can find a sequence of Borel probability measures μk, a
constant K > 0 and an integer N satisfying

lim sup
k→∞

μk(Bn(x, ε)) ≤ Ke−ns

for every ball Bn(x, ε) such that Bn(x, ε)∩Z 	= ∅ and n ≥ N . Furthermore, assume
that at least one limit measure ν of the sequence μk satisfies ν(Z) > 0. Then
htop(Z, ε) ≥ s.

4.1. Construction of the fractal F . Let us choose a sequence with N0 = 0 and
Nk increasing to ∞ sufficiently quickly so that

(4.2) lim
k→∞

nk+1

Nk
= 0, lim

k→∞

N1n1 + · · ·+Nknk

Nk+1
= 0.

Let xi = (xi
1, . . . , x

i
Ni
) ∈ SNi

i . For any (x1, . . . , xk) ∈ SN1
1 ×· · ·×SNk

k , by the almost
specification property, we have

B(x1, . . . , xk) :=
k⋂

i=1

Ni⋂
j=1

f−
∑i−1

l=0 Nlnl−(j−1)niBni
(g;xi

j ,
ε

2i
) 	= ∅.

We define Fk by

Fk = {B(x1, . . . , xk) : (x1, . . . , xk) ∈ SN1
1 × · · · × SNk

k }.
Note that Fk is compact and Fk+1 ⊆ Fk. Define F =

⋂∞
k=1 Fk.

Lemma 4.4. For any p ∈ F , the sequence 1
tk

∑tk−1
i=0 ϕ(f i(p)) diverges, where tk =∑k

i=0 Nini.

Proof. Choose p ∈ F and let pk := f tk−1p. Then there exists (xk
1 , . . . , x

k
Nk

) ∈ SNk

k

such that

pk ∈
Nk⋂
j=1

f−(j−1)nkBnk
(g;xk

j , ε/2k).

For c > 0, let Var(ϕ, c) := sup{|ϕ(x)− ϕ(y)| : d(x, y) < c}. We have

SnkNk
ϕ(pk) ≤

Nk∑
j=1

Snk
ϕ(xk

j ) + nkNkVar(ϕ, ε/2
k) +Nkg(nk, ε/2

k)‖ϕ‖

and hence

1

nkNk
SnkNk

ϕ(pk) ≤
∫

ϕdμρ(k) + δk +Var(ϕ, ε/2k) +
1

nk
g(nk, ε/2

k).

It follows that ∣∣∣∣ 1

nkNk
SnkNk

ϕ(pk)−
∫

ϕdμρ(k)

∣∣∣∣ → 0.

We can use the fact that nkNk

tk
→ 1 to prove that∣∣∣∣ 1

nkNk
SnkNk

ϕ(pk)−
1

tk
Stkϕ(p)

∣∣∣∣ → 0,

and the result follows. �
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4.2. Construction of a special sequence of measures μk. We must first un-
dertake an intermediate construction. For each x = (x1, . . . , xk) ∈ SN1

1 ×· · ·×SNk

k ,
we choose one point z = z(x) such that

z ∈ B(x1, . . . , xk).

Let Tk be the set of all points constructed in this way. We show that points
constructed in this way are distinct and thus #Tk = #SN1

1 · · ·#SNk

k .

Lemma 4.5. Let x and y be distinct members of SN1
1 ×· · ·×SNk

k . Then z1 := z(x)

and z2 := z(y) are distinct points. Thus #Tk = #SN1
1 · · ·#SNk

k .

Proof. Since x 	= y, there exists i, j so xi
j 	= yij . We have Λ1,Λ2 ∈ I(g;ni, ε/2

i) such
that

dΛ1
(xi

j , f
az1) <

ε

2i
and dΛ2

(yij , f
az2) <

ε

2i
,

where a =
∑i−1

l=0 Nlnl + (j − 1)ni. Let Λ = Λ1 ∩ Λ2. Since Λ ∈ I(2g;ni, ε/2
i), we

have dΛ(x
i
j , y

i
j) > 4ε. Using these inequalities, we have dΛ(f

az1, f
az2) > 3ε. �

We now define the measures on F which yield the required estimates for the
Entropy Distribution Principle. We define, for each k, an atomic measure centred
on Tk. Precisely, let

νk :=
∑
z∈Tk

δz.

We normalise νk to obtain a sequence of probability measures μk, i.e., we let μk :=
1

#Tk
νk.

Lemma 4.6. Suppose μ is a limit measure of the sequence of probability measures
μk. Then μ(F ) = 1.

Proof. For any fixed l and all p ≥ 0, μl+p(Fl) = 1 since μl+p(Fl+p) = 1 and Fl+p ⊆
Fl. Suppose μ = limk→∞ μlk for some lk → ∞, then μ(Fl) ≥ lim supk→∞ μlk(Fl) =
1. It follows that μ(F ) = liml→∞ μ(Fl) = 1. �

In fact, the measures μk converge. However, by using our version of the Entropy
Distribution Principle, we do not need to use this fact and so we omit the proof
(which goes like lemma 5.4 of [28]).

Let B := Bn(q, ε) be an arbitrary ball which intersects F . Let k be the unique
number which satisfies tk ≤ n < tk+1. Let j ∈ {0, . . . , Nk+1 − 1} be the unique
number so

tk + nk+1j ≤ n < tk + nk+1(j + 1).

We assume that j ≥ 1 and leave the details of the simpler case j = 0 to the reader.
The following lemma reflects the restriction on the number of points that can be in
B ∩ Tk+p.

Lemma 4.7. For p ≥ 1, μk+p(B) ≤ (#Tk)−1(#Sk+1)
−j.

Proof. First we show that μk+1(B) ≤ (#Tk)−1(#Sk+1)
−j . We require an upper

bound for the number of points in Tk+1 ∩ B. If μk+1(B) > 0, then Tk+1 ∩ B 	= ∅.
Let z = z(x, xk+1) ∈ Tk+1 ∩ B where x ∈ SN1

1 × · · · × SNk

k and xk+1 ∈ S
Nk+1

k+1 . Let

Ax;x1,...,xj
= {z(x, y1, . . . , yNk+1

) ∈ Tk+1 : x1 = y1, . . . , xj = yj}.
We suppose that z′ = z(y, y

k+1
) ∈ Tk+1 ∩ B and show that z′ ∈ Ax;x1,...,xj

. We

have dn(z, z
′) < 2ε and we show that this implies xl = yl for l ∈ {1, 2, . . . , j} (the
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proof that x = y is similar). Suppose that yl 	= xl and let al = tk + (l − 1)(nk+1).

There exists Λ1,Λ2 ∈ I(g;nk+1, ε/2
k+1) such that

dΛ1
(falz, xl) <

ε

2k+1
and dΛ2

(falz′, yl) <
ε

2k+1
.

Let Λ = Λ1 ∩ Λ2. Since Λ ∈ I(2g;nk+1, ε/2
k+1), we have dΛ(xl, yl) > 4ε. We have

dn(z, z
′) ≥ dΛ(f

alz, falz′)

≥ dΛ(xl, yl)− dΛ(f
alz, xl)− dΛ(f

alz′, yl) ≥ 3ε,

which is a contradiction. Thus, we have

νk+1(B) ≤ #Ax;x1,...,xj
= (#Sk+1)

Nk+1−j ,

μk+1(B) ≤ (#Tk+1)
−1(#Sk+1)

Nk+1−j = (#Tk)−1(#Sk+1)
−j .

Now consider μk+p(B). Arguing similarly to above, we have

νk+p(B) ≤ #Ax;x1,...,xj
(#Sk+2)

Nk+1 · · · (#Sk+p)
Nk+p .

The desired result follows from this inequality by dividing by #Tk+p. �

By Lemma 4.2, we have

#Tk(#Sk+1)
j ≥ exp{(htop(f)− 4γ)(N1n1 +N2n2 + · · ·+Nknk + jnk+1)}

≥ exp{(htop(f)− 4γ)n}.

Combining this with the previous lemma gives us

lim sup
l→∞

μl(Bn(q, ε)) ≤ exp{−n(htop(f)− 4γ)}.

Applying the Entropy Distribution Principle, we have

htop(F, ε) ≥ htop(f)− 4γ.

Since γ and ε were arbitrary and F ⊂ X̂(ϕ, f), we have htop(X̂(ϕ, f)) = htop(f). �

5. The β-transformation

In this section, let X = [0, 1). For any fixed β > 1, we consider the β-
transformation fβ : X �→ X given by

fβ(x) = βx (mod 1).

As reference for the basic properties of the β-transformation, we recommend the
introduction of the thesis of Maia [14]. For β /∈ N, let b = [β] and for β ∈ N, let
b = β − 1. We consider the partition into b+ 1 intervals

J0 =

[
0,

1

β

)
, J1 =

[
1

β
,
2

β

)
, . . . , Jb =

[
b

β
, 1

)
.

For x ∈ [0, 1), let w(x) = (wj(x))
∞
j=1 be the sequence given by wj(x) = i when

f j−1x ∈ Ji. We call w(x) the greedy β-expansion of x and we have

x =
∞∑
j=1

wj(x)β
−j.
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The β-shift (Σβ, σβ) is the subshift defined by the closure of all such sequences in∏∞
i=1{0, . . . , b}. Let w(β) = (wj(β))

∞
j=1 denote the sequence which is the lexico-

graphic supremum of all β-expansions. The sequence w(β) satisfies
∞∑
j=1

wj(β)β
−j = 1,

so we call w(β) the β-expansion of 1. Parry showed that the set of sequences which
belong to Σβ can be characterised as

w ∈ Σβ ⇐⇒ σk(w) ≤ w(β) for all k ≥ 1,

where ≤ is taken in the lexicographic ordering [17]. Parry also showed that any
sequence w which satisfies σk(w) ≤ w is the β-expansion of 1 for some β > 1.
The β-shift contains every sequence which arises as a greedy β-expansion and an
additional point for every x whose β-expansion is finite (i.e., when there exists j so
wi(x) = 0 for all i ≥ j). Thus the map π : Σβ �→ [0, 1] defined by

π(w) =

∞∑
j=1

wjβ
−j

is one-to-one except at the countably many points for which the β-expansion is
finite.

Σβ is typically not a shift of finite type (nor even a shift with specification) and
the set of all β-shifts gives a natural and interesting class of subshifts. In the next
section, we decribe in detail the known results on specification properties for the β-
shift. The key fact for our analysis is that every β-shift has the almost specification
property [21]. We have (p. 179 of [32]) that htop(σβ) = log β.

Theorem 5.1. For β > 1, let fβ : X �→ X be the β-transformation, fβ(x) =
βx(mod 1). Let ϕ ∈ C([0, 1]) and assume that the irregular set for ϕ is non-empty

(i.e., X̂(ϕ, fβ) 	= ∅), then htop(X̂(ϕ, fβ)) = log β.

Proof. Let Σ′
β denote the set of sequences which arise as β-expansions. Recall that

Σβ \ Σ′
β is a countable set and the restriction of π to Σ′

β is a homeomorphism

satisfying π ◦ σβ = fβ ◦ π. Thus, if Z ∈ Σβ and Z ′ := Z ∩ Σ′
β , we have

htop(Z, σβ) = htop(Z
′, σβ) = htop(π(Z

′), fβ).

Suppose ϕ : [0, 1] �→ R satisfies X̂(ϕ, fβ) 	= ∅. Let x ∈ X̂(ϕ, fβ) and let w(x) be its
β-expansion. We let ϕ ∈ C(Σβ) be the unique continuous function which satisfies
ϕ = ϕ ◦ π on Σ′

β (this exists because we assumed ϕ to be continuous on [0, 1]). It

is clear that w(x) ∈ Σ̂β(ϕ, σβ). Since the dynamical system (Σβ, σβ) satisfies the

almost specification property, it follows from Theorem 5.1 that htop(Σ̂β(ϕ, σβ)) =

log β. Since π(Σ̂β(ϕ, σβ) ∩ Σ′
β) = X̂(ϕ, fβ), it follows that htop(X̂(ϕ), fβ) = log β.

�

5.1. β-transformations and specification properties. There is a simple pre-
sentation of Σβ by a labelled graph Gβ due to Blanchard and Hansel [5]. We describe
the construction of Gβ when the β-expansion of 1 is not eventually periodic. We
refer the reader to [21] for the slightly different construction required when the β-
expansion of 1 is eventually periodic (in this case, Σβ is a sofic shift [4] and therefore
has specification).
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Let v1, v2, . . . be a countable set of vertices. We draw a directed edge from vi
to vi+1 and label it with the value wi(β) for all i ≥ 1. If wi(β) ≥ 1, we draw a
directed edge from vi to v1 labelled with the value 0. If b = 1, the construction is
complete. If b > 1, then for all j ∈ {2, . . . , b} and all wi(β) ≥ j, we draw a directed
edge from vi to v1 labelled with the value j − 1. Note that if wi(β) = 0, the only
edge which starts at vi is the edge from vi to vi+1 labelled by 0, and if wi(β) 	= 0
there is always an edge from vi to v1. We have w ∈ Σβ iff w labels an infinite path
of directed edges of Gβ which starts at the vertex v1. The following figure depicts
part of the graph Gβ for a value of β satisfying (wj(β))

6
j=1 = (2, 0, 1, 0, 0, 1).

v1 v2 v3 v4 v5 v6 v7
2 0 1 0 0 1

0

0

1

0

An arbitrary subshift Σ on b + 1 symbols is a closed shift-invariant subset of∏∞
i=1{0, . . . , b}. We define v to be admissible word of length n ≥ 1 for Σ if there

exists x ∈ Σ such that v = (x1, . . . , xn). The specification property of Definition 2.8
can easily be seen to be equivalent to the following property in the case of an
arbitrary subshift.

Definition 5.2. A subshift Σ has the specification property if there exists M > 0
such that for any two admissible words w1 and w2, there exists a word w of length
less than M such that w1ww2 is an admissible word.

We now return to the β-shift Σβ . Define

zn(β) = min{i ≥ 0 : wn+i(β) 	= 0}.
Equivalently, zn(β)+ 1 is the minimum number of edges required to travel from vn
to v1. The β-shift fails to have the specification property iff ‘blocks of consecutive
zeroes in the β expansion of 1 have unbounded length’, i.e., if zn(β) is unbounded
[4]. Consider concatenations of the word cn := (w1(β), . . . , wn(β)) with some other
admissible word v. We can see from the graph Gβ that the length of the shortest
word w such that cnwv is an admissible word is zn(β) (the word w is a block of
zeroes of length zn(β)). Now for x ∈ Σβ, we define zn(x) ≥ 0 to be the length of
the shortest word w required so that for any admissible word v, (x1, . . . , xn)wv is
an admissible word. Note that for all x ∈ Σβ, zn(x) ≤ max{zi(β) : 1 ≤ i ≤ n}.
Thus Σβ has specification iff zn(β) is bounded. Buzzi shows that the set of β for
which this situation occurs has Lebesgue measure 0.

Pfister and Sullivan [21] used the graph Gβ to observe that every β-shift has
the almost specification property. Their strategy is to ‘jump ship’ on the last non-
zero entry of an admissible word. More precisely, every β-shift has the following
property. Given any admissible word w, there is a word w′ which differs from w
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only by one symbol, such that w′v is admissible for every admissible word v. The
modified word w′ is given by replacing the last non-zero entry of the word w by a
0. This property is best seen from inspection of the graph Gβ and is the content of
proposition 5.1 of [21]. It can easily be seen that this property implies the almost
specification property.

5.2. Hausdorff dimension of the irregular set for the β-shift. We equip Σβ

with the metric dβ(x, y) =
1
βn where n is the smallest integer such that xn+1 	= yn+1.

Let Cn(x) = {y ∈ Σβ : xi = yi for i = 0, . . . , n − 1}. For Z ⊂ Σβ, we define the
diameter of the set to be Diam(Z) = |Z| = sup{dβ(x, y) : x, y ∈ Z}. We have

Diam(Cn(w(β))) =
1

βn+zn+1(β)
,

1

βn
≥ Diam(Cn(x)) ≥

1

βn+zn+1(x)
.

Because there is no uniform lower bound on the diameter of a cylinder when zn(β)
is unbounded, it is plausible that the relation between Hausdorff dimension and
topological entropy could not be straightforward. Indeed, because of this potential
difficulty, in [21, 22], it seems that Pfister and Sullivan establish a relationship
between topological entropy and Hausdorff dimension only for β-shifts which satisfy
an additional hypothesis on w(β) (which holds for Lebesgue almost every β). In
fact, the following lemma tells us that the relationship between Hausdorff dimension
and topological entropy is straightforward for every β-shift. While this lemma is
surely known to some experts as a folklore theorem and is a corollary of more
general results of Climenhaga [8, Theorem 2.4], we include an elementary direct
proof to clarify the situation. For Hausdorff dimension, we fix the notation

H(Z, α, δ) = inf{
∑

|B(xi, δi)|α : Z ⊆
⋃
i

B(xi, δi), δi ≤ δ}.

H(Z, α) = limδ→0 H(Z, α, δ) and DimH(Z) = sup{α : H(Z, α) = ∞}. We some-
times write DimH(Z, d) in place of DimH(Z) when we wish to emphasise the de-
pendence on the metric d. We note that the map x �→ w(x) is bi-Lipshitz with
respect to the metric dβ and thus for Z ⊂ [0, 1), DimH(Z) = DimH(π−1(Z), dβ).

Lemma 5.3. For arbitrary Z ⊂ Σβ, we have log βDimH(Z) = htop(Z).

Proof. That log βDimH(Z) ≤ htop(Z) is a standard argument which follows from
the fact that Diam(Cn(x)) ≤ 1

βn . For the other inequality, let γN = β−N , and

consider a cover of Z by metric balls B(xi, δi) with δi < γN . We modify the radii of
the balls to create a ‘better’ cover. For each δi, let ni be the unique natural number
so that β−(ni+1) < δi ≤ βni . Then ni ≥ N for all i and |B(xi, δi)| ≤ β−(ni+1).
If |B(xi, δi)| = β−(ni+1), let ρi = δi and mi = 1. If not, |B(xi, δi)| = β−(ni+mi)

for some mi ≥ 2. In this case, let ρi = β−(ni+mi−1). We have ρi ≤ δi and
B(xi, δi) = B(xi, ρi) = Cni+mi

(x). The collection Γ = {Cni+mi
(xi)} covers Z, and

thus∑
|B(xi, δi)|α =

∑
|B(xi, ρi)|α =

∑
β−(ni+mi)α =

∑
exp(−α(ni +mi) log β)

= Q(Z, α log β,Γ).
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Taking infimums, we have H(Z, α, γN ) ≥ M(Z, α log β,N). Taking the limit as
N → ∞, it follows that if m(Z, α log β) = ∞, then H(Z, α) = ∞ and the inequality
follows. �

We obtain the following theorem as an immediate corollary of Lemma 5.3 and
Theorems 4.1 and 5.1.

Theorem 5.4. For every β > 1,

(1) If ϕ ∈ C(Σβ) and Σ̂β(ϕ, σβ) 	= ∅, then DimH(Σ̂β(ϕ, σβ)) = 1,

(2) If ϕ ∈ C([0, 1]) and X̂(ϕ, fβ) 	= ∅, then DimH(X̂(ϕ, fβ)) = 1.

Remark 5.5. We may also consider the Billingsley dimension Dimν of the irregular
set (with respect to a reference measure ν) [21, 7]. We remark that when ν is
equivalent to Lebesgue measure, then Dimν = DimH . Every β-transformation has
an invariant measure νβ which is equivalent to Lebesgue (and is the measure of

maximal entropy). Therefore, it is a corollary of Theorem 5.4 that if ϕ ∈ C(X)

and X̂(ϕ, fβ) 	= ∅, then Dimνβ
(X̂(ϕ, fβ)) = 1.

5.3. An alternative approach for β-shifts. We describe an alternative proof
of Theorem 5.4 based on approximating β-shifts from inside by n-step shifts of
finite type. We discuss the relative merits of the two approaches in §5.4. The key
quoted result in this method is a version of Theorem 5.1 in the special case of n-
step Markov shifts. We note that the ‘almost specification’ method of proof applies
in far greater generality and a self-contained version of the proof described below
would be comparable in length.

Proof. Recall that any sequence (an) on a finite number of symbols which satisfies
σk(an) ≤ (an) for all k ≥ 0 arises as w(β) for some β > 1. Fix β > 1 and write
wi := wi(β). Let β(n) be the simple β-number corresponding to the sequence
(w1, w2, . . . , wn, 0, 0, 0, . . .). An elementary argument [17] shows that β(n) → β. It
is clear that Σβ(n) can be considered to be a subsystem of Σβ (the subshift Σβ(n)

corresponds to the set of labels of edges of infinite paths that only visit the first n
vertices of Gβ).

Now suppose ϕ ∈ C(Σβ) is a function for which the irregular set is non-empty.
Then there exists x, y ∈ Σβ such that

lim
n→∞

1

n
Snϕ(x) 	= lim

n→∞

1

n
Snϕ(y).

Let δ > 0 and N1 ∈ N be such that for n ≥ N1,∣∣∣∣ 1nSnϕ(x)−
1

n
Snϕ(y)

∣∣∣∣ > 4δ.

Pick N2 sufficiently large that

sup{|ϕ(w)− ϕ(v)| : w, v ∈ Σβ , wi = vi for i = 1, . . . , N2} < δ.

For any n ≥ N = max{N1, N2}, let us choose x′ ∈ CN (x) ∩ Σβ(n) and y′ ∈
CN (y) ∩ Σβ(n). We have for all m ≥ N ,∣∣∣∣ 1mSmϕ(x′)− 1

m
Smϕ(y′)

∣∣∣∣ > 2δ.
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Thus the restriction of ϕ to Σβ(n) does not have trivial spectrum of Birkhoff averages
and by Lemma 2.1, our main theorem gives us

(5.1) htop(Σ̂β(n)(ϕ, σβ(n))) = htop(σβ(n)) = log β(n).

We remark that Σβ(n) is an n-step Markov shift (and thus has specification), so
formula (5.1) also follows for Hölder continuous ϕ from theorem 9.3.2 of [2]. Note

that Σ̂β(n)(ϕ, σβ(n)) ⊂ Σ̂β(ϕ, σβ).
By Lemma 5.3, any subset Z ⊂ Σβ(n) satisfies DimH(Z, dβ) = htop(Z)/ log β. In

particular, DimH(Σβ(n), dβ) = log(β(n))/ logβ. Thus

DimH(Σ̂β(ϕ, σβ), dβ) ≥ sup
{
DimH(Σ̂β(n)(ϕ, σβ(n)), dβ)

}
= sup

{
log β(n)

log β

}
= 1.

�
5.4. Some final comments. We give some closing remarks, comparing the ‘almost
specification’ method of Theorem 4.1 with the ‘approximation from inside’ method
of §5.3.
Remark 5.6. An almost sofic shift [13] is defined to be a shift space Σ for which
one can find a sequence of subshifts of finite type Σn such that Σn ⊂ Σ and
limn→∞ htop(Σn, σ) = htop(Σ, σ). By our previous reasoning, every β-shift is almost
sofic. We remark that the proof of Theorem 5.3 shows that if (Σ, σ) is an almost

sofic shift, ϕ ∈ C(Σ) and Σ̂(ϕ, σ) 	= ∅, then htop(Σ̂(ϕ, σ)) = htop(σ).

Remark 5.7. We point out that Theorem 4.1 applies to systems where the approach
of §5.3 cannot apply, even in the setting of shift spaces. It is not too difficult to
construct a shift space (Σ, σ) such that

(1) (Σ, σ) has positive topological entropy but no periodic points;
(2) (Σ, σ) satisfies almost specification but not specification.
We give an idea of the construction. We define Σ :=

⋂
n≥1 Σn, where Σn ⊂∏∞

i=1{0, 1} are suitably chosen topologically mixing shifts of finite type satisfying
Σn+1 ⊂ Σn for all n ≥ 1. For i ≥ 1, let εi = 1

2i+1 log 2 and Ni be an increasing
sequence of integers to be chosen later.

Recall that a finite collection of forbidden words defines a shift of finite type. For
a word u and an integer N , we use the notation uN to denote the concatenation of
N copies of u. Let F1 denote the set of words

F1 = {(1)N1 , (0)N1}
and define Σ1 as the shift defined by the forbidden words F1. It follows easily from
theorem 7.13 of [32] that if we choose N1 to be large enough, then htop(Σ1, σ) >
log 2− ε1. It is clear that Σ1 contains no fixed points.

We define Σk inductively as the shift defined by the collection of forbidden words⋃k
i=1 Fi, where

Fk = {vNk : v is an admissible word of length k in Σk−1},
with Nk chosen large enough so that htop(Σk, σ) > htop(Σk−1, σ) − εi. It is clear
that Σk contains no periodic points of period less than or equal to k.

It is easily verified that htop(Σ, σ) = limk→∞ htop(Σk, σ) > 0. Since Σ contains
no periodic points, it contains no shifts of finite type. We claim that (Σ, σ) satisfies
almost specification but not specification and briefly explain why. The key fact is
that if a word w belongs to Fk, we can change it to a word not in Fk by changing
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any one of its entries (from a 0 to a 1 or vice versa). Furthermore, one can modify w
by changing a single entry in at least |w|(1− 2/N1) positions so that the new word

is not in
⋃k

i=1 Fi. This abundance of choice when we wish to adjust an inadmissible
word to make it admissible gives rise to the almost specification property.

It is not hard to find Σ-admissible words u and wk such that uvwk is Σ-
inadmissible for any word v of length less than or equal to k. Hence, (Σ, σ) does
not have specification. However, by changing u and wk at a small number of entries
(relative to the length of u and wk), we can easily find new words u∗ and w∗

k such
that u∗w∗

k is Σ-admissible. This leads to the almost specification property.

Remark 5.8. We could study the class of systems (X, f) such that for every ε > 0,
there exists n ∈ N and a compact fn-invariant subset Y ⊂ X satisfying

(1) (Y, fn) is a topological factor of a shift of finite type;
(2) htop(Y, f

n) > n(htop(X, f)− ε).
We call (Y, fn) a horseshoe for (X, f). To study irregular sets for (X, f), it

should suffice to study the intersection of the irregular set with the horseshoe.
As demonstrated by our previous remark, systems with almost specification do
not necessarily contain any horseshoes, so we could not prove Theorem 4.1 using
this approach. Also, theorems on the existence of horseshoes typically require
smoothness of the system (see, for example, theorem S.5.9 of [12]), whereas our
‘almost specification’ approach is a topological approach to a topological question.
However, we do note that examples exist that do not have specification but where an
‘approximation from inside’ approach could yield results. For example, a continuous
interval map which is not mixing contains horseshoes but does not have specification
(see corollary 15.2.10 of [12]). Thus, the ‘almost specification’ approach and the
‘approximation from inside’ approach both have their own merits.

Remark 5.9. In [20], Petersen studies some interesting families of shift spaces which
first arose in an applied setting. He shows that some of these are almost sofic and
some are not. It would be interesting to investigate the almost specification property
in this setting.
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