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IRREGULARITIES OF CONTINUOUS DISTRIBUTIONS

by Michael DRMOTA

1. INTRODUCTION

Let x : [0,1] —>• R^ /7l
K be a continuous function with finite arc

length

i

(1) s(x) = f'\dx(t)\.

0

(R^/Z^ denotes the J^-dimensional unit torus. As usual it can be iden-

tified with the J^-dimensioani unit cube [0,1)^.) Such a function can be
interpreted as a particle's movement on 'R,

K
 / Z

K
. It is of some interest to

consider a measure for the irregularity of the distribution behaviour of this

particle, the discrepancy

i

DW(x)=sup [xR(x(t))dt-\KW
R J

(2) D^(x)=sup \ XR{X
R \J

J O

where the supremum is taken over all rectangles R C R/^/Z^ of the form

R = [ai,&i] x • • • x [aK,bK\ with maxi<fc<K(^ - ak) < 1. (XM denotes
the characteristic function of a set M and \K the Jf-dimensional Lebesgue
measure. For details see Section 2.1.) In other words, D^(x) measures the

maximal difference between the time of the particles stay in a rectangle R
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and the volume of R. R. J. Taschner [10] was the first who noticed that the
discrepancy cannot be too small. He proved that for K > 2

(3) D^\x)>CKs(x)-{w/{K~l))

provided that s(x) > 1. (Another more general proof can be found in [5].)

It is interesting to see that the discrepancy must be essentially larger
if the supremum in (2) is taken over all rectangles in arbitrary position.
Here we have

(4) D^I\x)>CKs{x)-^l^K-^.

The same lower bound holds if we use balls instead of rectangles in arbitrary
position or if we consider a particle's movement on the J^-dimensional unit

sphere and the discrepancy with respect to spherical caps. It should be
stated that the problem to find bounds for the discrepancy for continuous
functions on the sphere was proposed by R.F. Tichy [11].

In the first part of this paper (4) is proved by an application of J.
Beck's Fourier transform method [2] and it is shown that the lower bounds
(3) and (4) are optimal despite of logarithmic factors of s(x). The next
part deals with convex bodies and gives a continuous analogon to J. Beck's
solution of a problem of K. F. Roth [1]. In the last section some problems
and results concerning the behaviour of the discrepancy are discussed if
one consideres a function x : [0, oo) —> R^/Z^.

It should be noted that the discrepancy of a continuous function,
introduced by E. Hiawka [7], is an analogon to the discrepancy of sequences
which measures the irregularity of a point distribution. An excellent survey
of this subject including recent results with complete proofs can be found
in J. Beck and W. Chen's book Irregularities of Distribution [2].

2. TORUS & SPHERE

2.1 Definitions and results.

Let 7Z^ = {n^i[^ bi}\0 < bi-ai < l,i = 1,...,K} be the set

of all J^-dimensional rectangles and 7^ = 7^/Z^ the set of rectangles
contained in the unit torus R^/Z^. If x : [0,1] —»• R^/Z^ is a continuous



IRREGULARITIES OF CONTINUOUS DISTRIBUTIONS 503

function with finite arclegth s(x) = f^ \dx(t)\ the discrepancy of x{t) with

respect of K is defined by

(5) D^\x)= sup \[xR(x(t))dt-\KW
Tr- | /

Tft-'V" •/Ron

where Aj< is the Lebesgue measure on R^/Z^ (i. e. the Haar measure on
R^/Z^).

Set

(6) ^\s)=^DW(x),

where C^ is the set of all continuous functions x : [0,1] -> R^/Z^ with
s(x) = s. Then we can formulate

THEOREM 1. — J f s > l , then we have for K >2

(7) A^)^-^1/^-1))

and on the other hand

(8) AW«.-2

and for K > 3

(9) A^(.) « ,-(i+i/(^-D) (iog(, + 1)^-1 ,

where ^Ae constants implied by < or > are only depending on the

dimension K.

Remark 1. — If K = 1 it is easy to see that ^[^(s) = 0 for 5 > 1

(cf. [3]).

Now let Q^ denote the set of all cubes Q E R^ in arbitrary position

such that the length of the sides are < K~
112 and ̂  the set of balls

B E R^ with diameter < 1. Again we can define discrepancies
i

D^(x) = sup [xQ(x(t))dt-\K(Q)
Q^Q/ZK J

(10) \

D^\x) = sup [xB(x(t))dt-\K(B)
BeB/z1^ J

and

A^(.)= mfDW(x)

(11) X6CK

^\s)=^DW(x).
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In comparison to Theorem 1 there is a significant difference.

THEOREM 2. — Ifs > 1, then we have for K > 2

A(Q) /^ 1
(12) AK ( s ) ».-(^/(^-D)

A^(.) J

and 021 the other hand

/\W(.} )

(13) , ; )< 5 - ( '+ 1 / ( 2 < - 1 ) )(1 0^+ 1))1 / 2-
A^ (5) J

where the constants implied by < or > are only depending on the

dimension K.

Remark 2. — Since every cube is also a rectangle (12) implies (4).

Remark 3. — Since the torus R^/Z^ can be identified with the unit
cube U^ = [0,1)^ it is also possible to consider the set of cubes Q^ in

arbitrary position contained in U^ and the set of balls BQ contained in Uf.

Then it can be shown by a trunctation technique that the corresponding
^°\s) and ^°\s) satisfy

A(Qo) / x >)

(14) ^ >>^ -(^l^-l)+£),
^°\s) }

where e > 0 is arbitrary but fixed and the constants implied by > are also
depending on e. (For details see section 3.)

Let S^ = {x C R/^1 | \x\ = 1} denote the J^-dimensional unit sphere

and (TK the normalized surface measure on SK
\ i. e. cr^S^) = 1. Here we

consider the set C^ of all spherical caps C = {x C S^ | \x •- m\ < r} (m e
S^, r > 0) and the discrepancy of a continuous function x : [0,1] —> S

K

i

(15) D^\x)= sup [ x c ( x ( t ) ) d t - a K ( C )
c^ J

0

If C^ denotes the set of all continuous functions x : [0,1] —> S^ with
arclength s(x) = s and

(16) A^(5)= inf D^\x)
xCC^

then we have similarly to Theorem 2.

THEOREM 3. — I t s > 1, then we have for K >2

(17) A^(5)».-(^1/^-1))
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and on the other hand

(18) A^(.) « ,-(i+i/(^-D) (iog(, + l))1/2 ,

where the constants implied by <C or ^> are only depending on the

dimension K.

Remark 4. — The lower bounds of Theorem 2 and 3 sharpen the
results of [4]:

A^Ml for K=2^ 3

(19) ^\s) ^ » ̂ +1/(J<-1)+£) forK>2

^\s) J foiK>2

(e > 0 arbitrary but fixed.) The technique used in [4] is an application of
W. Schmidt's integral equation method [9].

2.2. Lower bounds.

The lower bound (7) of Theorem 1 is due to R. J. Taschner [10] (see
also [5]).

For the proof of the lower bounds (12) and (17) of Theorem 2 and 3
we will use J. Beck's Fourier transform technique. If / € L^R^) then the
Fourier transform / o f / i s defined by

(20) ^-(^FTi fe-^f(x)dx,

R^

where {x, t} denotes the usual inner produkt in R^. Let x : [0,1] —> R/^/Z^
be a continuous function with s (x) = s, then we can introduce a measure
z on R^ by defining it on measurable subsets A e R^ that are contained
in some translated unit cube y + U^ by

i

(21) z(A)= f x A / z ^ { x { t ) ) d t .

o

Let T denote a proper orthogonal transformation (i. e. a rotation) then \r,r

shall denote the characteristic function of the rotated cube ^—r^r^ =

{rx\x C [-^r]^} (r < ^-^/s). (For simplicity we will write Q(x) for

the cube [-x.x^ in the sequel.) Let M > 0 be a parameter to be fixed
later , and set

(22) ^M{A)=\K(AHQ(M)) and ^(A) = z(An Q(M)) .
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Now consider the function

(23) ^r,r=Xr,T*(^M-d/AM) ,

where * denotes the convolution operation. More precisely we have
'(24)

^r^) = / Xr,r(x - y){dzM(y) - dp,M(y))
R^

1

= j X(rQ{r^x)nQ(M)/z^(x(t))dt - \K((rQ(r) + x) n Q(M)) .

0

Let T be the group of proper orthogonal transformations in R^
and let dr be the volume element of the normalized Haar measure on T.
Introducing the notation

2q

(25) $(9) = ̂  t I I ^(x^dxdrdr

q T HK

we derive by using the Parseval—Plancherel identity and the convolution
relation / * g = f • g that

(
2(7 \

(26) ^(q) = ( 1 ( f \x^r{t)\2 drdr (dzM^d^M)(t) 2
 dt .

«/ i j j i
R^ q T /

For brevity set

2q

(27) ^W=
l
^\^rW\

2
 drdr

q T

and

(28) ^(t) = (dzM^d^M)(t) = . — — , f e-^\dzM - d^){x) .
(2^T)

K
/
2

R^

We will need two Lemmata.

LEMMA 1 ([2] P. 134). — JfO <q <p, then

^)^"-1

^(*) U(29) ^»(P-}K~1

^qW \Q}

uniformly in all t e R^.
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LEMMA 2. — Ifs(x) = s > 1, then

(30) ^ iTT -̂iy) »^/(fc-l)M^
where c/s- is a proper constant only depending on the dimension K.

Proof. — Identify the unit torus R^/Z^ with the unit cube U^ =
[0,1)^. Now subdivide U^ into A^ cubes Q(^) = n,^iKW(^ +
1)/AQ (0 <, im < N, i = 1,...,K). Furthermore subdivide the interval

[0,1] into [s(N + 1)] intervals [tj,tj+i] (j = 0 , . . . , [s(N + 1)] - 1), 0 =
to < ti < • • • < t[s(N+i)] = 1, such that the arclength J^"1"1

 \dx{t)\ < 1/N

(j =0,..., [s(N + 1)] - 1). Trivially, the number of cubes Q(^) such that

^([^j+i]) H Q(mi) is non-void is less or equal 2K
. Therefore there are

at most 2K
[s(N + 1)] cubes Q(^) such that a;([0,1]) n Q(^) is non void.

Now choose the minimal N such that 2K
s(N + 1) < N

K
 /2. Hence there

are at least TV^ cubes Q(^) such that x([tj,tj+i]) n Q(^) is void. Now

consider the subcube C^) = n^i [(m, + 1/4) / N , (m, + 3/4)/AQ of such
a cube Q(^). If r < (4NK

1
/
2
)-

1 and x 6 C(m.) we have

(31) F^(x) = -(2r)^

and therefore

(32) $(g) » M^?2^ ,

if q < (SNK
1
/
2
)-

1
. Since ^ »< s1^^-!), (32) implies (30). Thus

Lemma 2 is proved.

Now set q = c^'s-1/^-1) and p = (5K
1
/
2
)-

1
, then we can use (29)

and (28) to conclude

^(P)= ! VpW^dt^s^q)
(33)

R^

^ 5l-27?/(J<-l) ^K ^ g-(l+2/(K-l)) ̂ K _

Since Fr,r(x) = 0 for x i Q(M + 1), (33) implies that either

2p

(34) ^ [ f [ \F^{x)\'ldxdTdr^>s-(wl(K-^MK

'n T' ^ f n / r \ i \ \ / ^ \ f n / r i\P T Q(M+1)\Q(M-1)

or
2p

(35) 1
 ! f f ^{x^dxdrdr^s-^l^-^M

1
^ .

'n 'T
1 r\t \f i \P T Q(M-l)
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Since Fr,r(x) is absolutely bounded by 1, (34) cannot be true if M

is large enough, e. g. M = c^1'^2/^"1) for some proper chosen constant

CK. Therefore (35) implies that there is an r C [p,2p], a r C T, and an
x € Q(M - 1) with

(36)

i

l^,r(^)| = X{rQ{r^x)/Z^{x(t))dt-\K(rQ(r)+x)

^-(^+1/(K-1)) ^

Thus

(37) A^OO^+V^-D).

The second part of (12), ^\s) > 5-(i/2+i/(^-i))^ can be proved
similarly. Instead of (22) set

(38) Fr = Xr * (dzM - d^M) ,

where \^ denotes the characteristic function of the ball B(r) = {x €
R^ | \x\ < r}. Now consider

' 2 q

~^(q) = 1 f f [Frix^dxdr

q R^

2q

(39) = f ^ f ^rWdr^dzM - d^m^t

R^ q

= f ^(WW|2 dt .

R^

Again we have

LEMMA 3. — JfO < q <p, then

(40) w
 » (

p
)

VyW \q/

w^(pY~1

W
 >> \q)

uniformly in all t € R^.

Proof. — (40) is an immediate consequence of formula (201)

(41) i / |f,(t)|2 dr »< ^——— for y\t\ > CK
y j m
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and formula (203)

23/

(42) ^/itWP^X^ for y\t\<CK
y «/

y

of[2],p. 228.

LEMMA 4. — Ifs(x) = s > 1, then

(43) ?(,T7^Ty)»5-2'/(fc-l)M^
where CK is a proper constant only depending on the dimension K.

The proof of Lemma 4 is verbally the same as the proof of Lemma 2.
Hence we can deduce the bound ^\s) > 5-(i/2+i/(^-i)) ^g before.

Therefore the proof of (12) in Theorem 2 is finished.

Now let x : [0,1] —> S^ be a continuous function with s(a-) = s > 1.
Define two measures on R/^1, one by <7o(A) = (TK(A H S^) and a second
by

i

(44) zo(A)= [xAns^x(t))dt.

o

Set

(4^) Gr = Xr * (^0 - ̂ o)

and

2<?

w=l
/ f ^rW^dxdr

(46) 9 R^

= / ^PqWW (dzo^dao)(t)
 2 ^ .

HK+1

Then we can prove

LEMMA 5. — Ifs(x) == s > 1, then

<47' ^b^^'-^.
wAere c^ is a proper chosen constant only depending on the dimension K.
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Proof. — It is well known that S^ can be represented by Y :

(0,oo) x [O,^-1 x [0,27r) -^ B^+1:

2/1 = p sin^i,siny?2---siny?K-2,sin^^-i,sin^j<

2/2 = p, sin y)i, sin y?2 •••siny?j<_2,siny?^_i,cosy?j<

2/3 =p,sin^i,sin^2'--sin^_2,cos(^<-i
(48)

^ == p, sin (^i, cos y?2

2/K+i =pcosy?i,

where p is set equal to 1. Now consider the images R^rm)
 = ̂ ({1} x ^(m,))

of the 47^ cubes

(49)
Tf__ 1

T-, TT r71 ' / - . ^mi\ 7r f. ^^i+l\\ r ^K ^K+l\B(-) = n [4 (1+2^) 'i (l+2-^-})x l̂ -̂iN-)
0 < mi,..., mK-i < N, 0 < mj< < 4A7' .

As in Lemma 2 it is possible to choose N »< ^A^-1) such that for

at least 2N
K sets .R^i) tne intersection .r([0,1]) D P^rm)

 ls void. For these

R^rm) consider the images R(rm)
 = ̂ (C'(mi)) ̂  the rectangles

(50)

^-[•.-^-n1^-^),^-^))
r7r(mj< + 1/4) 7r(mj<+3/4)\

x [ 27V 5 27V ) '

l { p e [iGTV5 8^] and y e c(mi) ^for such ̂ ^^ we have similarlv to (31)
(51) \Gr(x)\ » N^ .

This implies (47).

Now it is easy to verify the lower bound (17) in Theorem 3. By
Lemma 3 we have

(52) ^-w » ̂ /(i<-l) >
VqW

where q = c^s"1/^"1). (Note that we are working in 'R.
K+1

.) Thus

(53) ^(1) » sx/(J<-l) ̂ (q) » 5-(i+i/(^-D) .
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2.3. Upper bounds.

511

The essential ideas of this section can be stated in two simple
Lemmata. (We postpone the proofs at the end of this section.)

LEMMA 6. — Let X be a convex body in R^ and rc i , . . . ,XN N

points in X. Then there is a permutation TT of {1 , . . . , N} such that

(54) El^+i)-^)!^1"1^.
i=l

I f x ^ , . . . , x N are on the boundary QX ofX, then there is a permutation p
of {! , . . . , N} such that

(55) E^^+D^^X^1-1^-1^
1=1

where 6 ( ' , •) denotes the geodesic distance on QX. The constants implied

by < 112 (54) and (55) are only depending on the diameter diam(X) ofX.

Remark 5. — It should be noted that the estimates (54) and (55)
are best possible. For every N > 1 there are N points a:i,... ,XN in X such
that for every permutation TT of { 1 , . . . , N}

(56) Ei^+i)-^^1-1^.1=1
(For example take an orthogonal lattice in X.) Similarly it can be shown
that (55) is optimal, too.

LEMMA 7. — Let X be a convex body in R^ with \K(X) = 1 and

let a denote the normalized surface measure on QX.

If r r i , . . . ,XN are N points in X, then for every e > 0 there is a

continuous function x : [0,1] -^ X with s(x) < N
1
-

1
/
1
^ such that

} 1
 N

(57) j XA(x(t))dt-\K{A) < ^E^n)-A^(A) +.

0 "=1 •

holds uniformly in all measurable subsets A C X.

If x i , . . . , XN are on QX, then for every e > 0 there is a continuous
function x : [0,1] -> 9X with s(x) < Ni--i/(K-i) g^ ̂

} 1
 N

(58) j xc(x(t)) dt - a(C) ^ ̂  Xc(^n) - <r(C) + e

n=l



512 MICHAEL DRMOTA

holds uniformly in all measurable subsets C C 9X .

COROLLARY. — Let V be a system of measurable subsets of a

convex body X C R^ with \K(X) = 1. If we set

(59) ^\N) = inf sup - ̂ >D^n) - >K(D)
{X^...,XN}CX DeV\

N

71=1

(60) A^)(5)= inf sup \[xD{x(t))dt-\K{D)
xeC, D€V\J

where Cs is the set of all continuous functions x : [0,1] —^ X with s{x) = s,

then there is a constant c > 0 such that

(61) A^(5)<n^(AO

for s == cN
1
'
1
^. A similar statement is true for the boundary 9X of X.

Remark 6. — This Corollary has two interesting consequences. The
first one, that will be used here, is that an upper bound for fl{N), the
smallest discrepancy of sequences, yields an upper bound for A(^), the
smallest discrepancy of continuous functions. On the other hand, a lower

bound for functions in terms of the arc length s gives a lower bound for
sequences in terms of the number N. For example, consider N points on
rci,... ,^ on the sphere S^. Then Theorem 3 and the above Corollary

imply that there is a sherical cap C C S^ such that

(62) ^ ̂  xcW - OK(C) » ̂ -(^A2^) .

n=l

(Compare with [2], Theorem 24C.) Therefore the lower bounds for the
discrepancy of functions proved here are in some sense more general than
the corresponding results for sequences [2].

Now consider the .Rr-dimensional torus R^/Z^ which can be identi-
fied with [0,1)^. Every subset of R^ / Z

K can be considered as a subset of
[0,1)^, and a continuous function x : [0,1] —> [0,1)^ can be interpreted as
a continuous function x : [0,1] —> R/^/Z^. Hence we can use Lemma 7 to

construct well distributed continuous functions x : [0,1] —^ R^/Z^, too.

It is well known (cf.[2]) that

n<«>w<0°l̂
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^\N) \

(63) ^W(N) \ < ̂ -(^/^(logAO1/2

^(N) J

Thus the above Corollary implies the upper bounds (9), (13), and (18)
for the discrete values 5 == cTV1"1/^. But A^^) is a decreasing function
in s, since C^ C C^ for 5i < 52. Therefore (9), (13), and (18) are satisfied
for all s > 1 for proper chosen constants. A proof for the upper bound (8)
can be found in [3] (or cf. Remark 7 in section 4).

Proof of Lemma 6. — First assume that X is a ball which center is
the origin of R^. For K = 1 (54) is trivial. Now suppose that K > 2 and

let X\ == X n {x\ = 0} be the intersection with the hyperplane {a-i = 0}.
Set M = [7V1/x] and let Z C Xi be the set of all points z e X^ such that
M • z is an integer point. Trivially \Z\ <: M^"! < JV1"1/^. For every

i = 1 , . . . ,A^ let z(xi) be a point z C Z such that the distance between

Xi and the line l(z) = [y € X \ (y - z,x} = 0 for all x € [x^ = 0}} is
minimal and let x^ € l(z(xi)) be the corresponding point. (This means
that |.Ti,^| is minimal on l{z(xi)).) Let ^i,... ,2^| be a numeration of
Z, kj be the number of points x^ on l(zj), and Jj the set of indices

i C {! , . . . , N} with re0 € ^j). If Ij is non-void, consider the points
rc^,... ,^ € ^j) in a way that the first coordinates x^-^ = a^i are

ordered, i. e. x^ j < a:̂  ̂  < • • • < x^ ^. Now define a permutation TT by

TT (^f=i1 A;/ + m\ = im (m = 1,. . . , fcj). Thus we have

N-i \z\ ELiki

^ |^7T(Z+1) - ^7T(Z)1 = ̂  ^ |^7T(Z+1) - ̂ (z) |

1=1 j=li=^^k^l

(64) lzl ^^^T

< 2|Z|diam(X) + ̂ ^———
j=i

< AT1-1/^ .

Now consider N points on the surface 9X. Since the case K = 2 is
trivial we can assume K > 2. It is well known that for every positive integer
L there are L points ^ i , . . . , ZL on X^ n9X such that the maximal geodesic
distance to the next point 6 = maxi<i<L mmj^i6(xi,Xj) <e L-

1
/^-

2
), If

L = [7yi-i/(^-i)] then S < A^/^-^The set QX(~\{x^ = • • • = XK = 0}
consists of two points ^ and ~z which can be considered as the poles of the

sphere 9X. Let l{zj) (j = 1,... ,L) be the meridian joining z_ and ~z and
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containing zj. Now the construction of a permutation p can be managed
as before to get the estimate

N-l

E ̂ +D^)) < ̂  + AT. AT1/^-1)
1=1(65)

^ ^i-i/(x-i) ^

It should be noted that the constants implied by <C in (64) and (65) only
depend on the diameter diam(X).

If X is a general convex body let Y denote the smallest closed ball
containing X. Trivially diam(X) X diam(Y). Therefore (64) implies
(54). For the proof of (55) we need a surjective non-expansive function
p : QY —> QX. Then, if .TI, ... ,XN are points on <9X, we can choose points

2/ i , . . • ,VN on 9Y with p(^) = Xi. Therefore 6(xi,Xj) < S(yi,yj) and (65)
imply (55). Such a function p can be constructed in the following way. Let
B(r) = {x e R^ | \x\ < r} be the closed ball with radius r. Then the
boundary of Xr = -

JL
^ • (X 4- B(r)) (R = diam(V)/2) converges uniformly

to 9Y as r —^ oo. Furthermore there is a canonical surjective non-expansive
function pr : 9Xr —^ 9X for every r > 0. Now let p(y) = x if for every
e > 0 there is a r > 0 and a point yr C 9Xr H (y -\- B(e)) with pr(yr) = x.

This completes the proof of Lemma 6.

Proof of Lemma 7. — It is no loss of generality to assume that e < 1
and (by Lemma 6) that

s^^i-x^^N1-1^ .(66)

71=1

Now set
(67)

for
N

i — e
<t< l ^ i < N

N

x(t) = < x, + (^+1 - ̂ )
+ z—et- ~w

e / N
for

t — e

~N~ <t<^
1 < i < N

XN for 1 - ^ < ^ 1

Trivially

(68)
N

^Y,XA(Xn)- j\A(x(t))dt

71=1 r.

<e .

Thus (68) implies (57). The construction for (58) can be managed similarly.
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3. CONVEX BODIES

515

3.1. Definitions and results.

Let X C R^ (K > 2) be a convex body with \K(X) = 1 and
let x : [0,1] -^ X be a continuous function with arclength s(x) = s.

Furthermore let Q denote the set of all cubes Q C R^ in arbitrary position

and Qo the cubes contained in X, respectively let B denote the set of all
balls and Bo the set of all balls contained in X. Now set

i

(69) A^)(.)= inf sup [xQ(x(t))dt-\K(Q^X)
x^sQ^Q J

0

and
i

(70) A^)(.) = ̂  ̂  y ̂ (t)) dt - \K(Q)

0

where Cs denotes the set of all continuous functions x : [0,1] -> X with
s{x) = s. AW(5) and A^\s) can be defined similarly. Here we can
formulate

THEOREM 4. — Let X C R^ (K > 2) be a convex body with
\p(X) = 1. Ifs > 1, then we have

(71)

and

(72)

:;%}-<—'
A(C)f^ 1

AW^P^4"1^"1^10^^1))172'

wAere tAe constants implied by « and » are only depending: on the convex
bodyXC^.

For Qo and Bo we must use a trunctation method to get

THEOREM 5. — Let X C R^ (K ^ 2) be a convex body wrtA

^/c(^) =l.Ifs>l, tAen we iave for arbitrary e > 0

(73)
A(Co)/s\ 1

, ( ) > > s - ( ^ l / ^ - ^ )
A^^s) J
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and

(74) ^s}<<:
 s-(i+l/(x-l))

 (10^ + l)) l /2 '

where the constants implied by <C and » are only depending on the convex

body X C R^ and on e > 0 in (73).

It is also interesting to consider segments instead of cubes or balls.

Let S denote the set of all half-spaces {y = (y i , . . . , ̂ j<) € R^ [ ai2/i + • • • +

0'KVK > b} ( a i , . . . , a j < , & e R) and
i

(75) A^) = inf sup [ Xs(x(t)) dt - \K(S H X) ,
^^^ ses J• 5'€<S

0

then on gets

THEOREM 6. — Let X C R^ (K > 2) be a convex body with

Aj^(X) = 1. Ifs > 1, then we have

(76) A^) » ,-(4+i/^-D) (log(. + l))^-^)/4
 —— ,

0(5)

where (f)(s) is an arbitrary positive monotonic function with lim (f)(s)= oo.
S-—>00

Furthermore

(77) A^M « ,-(^V(^-D) (log(5 + I))172 .

The constants implied by ^C and ^> are only depending on the convex body

X C R^ and on (f)(s) in (76).

Theorem 6 is a continuous analogon to J. Beck's [1] solution of a

problem of K. F. Roth.

3.2. Lower bounds.

The proof of (71) is quite similar to the proofs of (12) and (17). Let

x : [0,1] —> X be a continuous function with s{x) = s > 1. Define two

measures
i

(78) ^A)=\K(AHX) and z(A) = [ XA(x(t))dt

o

and set

(79) Fr,r = Xr,r * (dz - d^)
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as in (22). Again we can conclude for

2q

9(q)=
1

 ( ( hFr^x^dxdrdr

q T B,K

(
2q \

(80) = / 1
- t I \Xr.rW\

2
 drdr \{dz^d^(t)\

2
 dt

J -1 J J I
R^ q T )

= y^)|^)|2 dt

R^

that there is a constant c with

(81) $ (
 c

 } > s-2^/(^-i)voi; vl51/(J?<- l)> l

Therefore Lemma 1 yields

(82) $(1) > 51-2^/^-1) = ^-(1+2/^-1)) ,

which implies A^^) > 5-( l/2+l/(J<-l)) rp^ second part of (71) can be

shown similarly.

We omit the proof of (73) since the major ideas are also included in
the simpler proof of (76). In addition we generalize [1] to higher dimensions.

Let x(t) be a continuous function as above. Set n = c.s1/^"1^, where
the constant c will be fixed in the sequel. Now y(t) = nx(t/T) with T = ̂

is a continuous function y : [0,T] —> Y with Y = nX. The arclength of
y(t) can be evaluated by s(y) = ns = s ' . Now (76) can be restated in the
following way: There is a halfspace S with

} j^-l/(2J<)

(83) j xs(y(t))dt-x^SnY) » ̂ ^.^^ .
0

Set

T

(84) z(A)= [ x A ( y ( t ) ) d t , / z ( A ) = A ^ ( A n y ) ,

0

(85)

R= [x = ( X I , . . . , X K ) e B^ \\xi\ <m,...,\XK-i\ <m,\XK\ < -^} ,

where m = ^(logn)^2^^)2^"1,

(86) E(x) = e-l-l2/-2 ,
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where r = ̂ (logn)^'"1)/2^?!)2^, and

(87) Fr = E . (xm * (dz - dfji)) ,

where r is the class of all proper orthogonal transformations r1 that create
the same image T ' R of R, i. e. T ' R is independent of the choice r' e r.
Let T denote the homogeneous space consisting of all these classes. Since
R D Y is the set-theoretic difference of two parallel segmets 5'i D V, 62 H V,
we have

j Fr(x)
2
 dx= [ E(x)

2
 dx • ! XrR+xW) dt - ̂ rR + x)

R^ R^ 0K^

+T2

/ - <^Ar

H^m/2

2 \ 2
^^^2^y2^^-(^)

(88)

where

(89)

Thus

(90)

A=sup|^(5')-^(5')| .
5'e<s

f /F^(^)2^dT<rJ?<A2+0(l) ,

T R^

where dr is the volume element of the homogeneous space T induced
by the Haar measure of the compact group of all proper orthogonal
transformations. Therefore (83) follows from

(91)
/ / }FTW} m

\Fr(t)\^dtdT^

T HK

n^K-i^K-i

K-l

As in [1] it can be shown that for a proper constant CQ

(92) / \^dt<\

where

(93)

and

f \^dt<^ f hW|2^,

(co) 0(100)T(co)

^t) = (dz^d^t) = . — ^ [ e-^^dz - d^)(x)

R^

(94)

T(co) = ^t C Q(IOO) ther are indices ^ , . . . , IK with

h > 0, i = 1,..., K, and <i + • • • + IK > 1 such that

Qll^r-^lKQll^r-^lK \

-^——-^^t) >co(2n)^+-^|^)|^
C7^ • • • OTf^ J
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But we need following additional observations for the proof of (92). Set

^^/.n(50^y\

,11 \^\ x, } ) '

(95) G{x) = f g(x - y) (dz - d/z)((y) ,

RA

and

T

v(x)= jxQ+x(y(t))dt,

0

where Q = O(^). Instead of |G(.r)| > v(x) (inequality (19) of [1] is
sufficies to prove

(96) I G(x)'ldx^ Iv^dx.

n^ R^

We will need

LEMMA 8. — Ifs(y) = s ' = ns and n = cs1/^-1), then

(97) f v(x)2dx^cK-lnK .

H"

Proof. — Let t, (i = 0, . . . , [100s']) be denned by

t,

m /""("i-ilo-
0

Therefore s,t € [^,^+1] implies \y(t) - y(s)\ ̂  ̂ . Since

r r

(99) v(x)2 = f f\Q^(y(t))xQ^(y(s))dsdt ,

0 0



520 MICHAEL DRMOTA

Cauchy—Schwarz's inequality yields

r r

j v(x)
2
dx = { ( ( XQ^(y(t))xQ^{y(s))dxdsdt

R^ 0 0 R^

r r

50-
K
 dsdt^ //

(100) o o
\yW-y{s)\<-^

' 1 - 1 0

[100s']

>50-^ S (ti-ti-^+^iT-t^o^)2

t=l

7-'2 7^2

^^mn-TT^—^^17^-100 s ' 4-1 ns

If we set

(101) 1= ( g(x)dx=m
K

R^

we get

/ 9 \ x / i N 2 ^
(102) ^ = i n f ^ ( . r ) = - 100 sin- > 10 J .

- xeQ V71'/ \ z/

Define Ci = J/(10J - 1). Th^n ^ < ci < ^. Let fii, % denote the sets
R^ = {x E R^ | v(.r) > ci} and R^ = R^ \ fii, then we have for x e Ri

T

G(x) = [ g ( x - y(t)) dt - { g{x - y ) dy

0 Y

(103) T

> j g_XQ^(y(t)) dt - I = gv(x) - I

o

> 101 v(x) - I > v(x) + (101 - l)ci - I > v(x) .

Since f v(x)
2
 dx < n^, Lemma 8 implies that c can be chosen in a way

R2

that

(104) f v(x)
2
 dx < ^ ( v(x)

2
 dx .

R2 R^

Thus (100), (104), and (97) imply

(105) / G(x)
2
 dx> [ G{x)

2
 dx> ( v(x)

2
 dx » / v(x)

2
 dx ,

R^ Ri Ri B.K
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if c is chosen in this proper way.

If t e R^ \ {0} let a(t) € T be the class of all proper orthogonal
transformations that can be represented by a proper orthogonal matrix
A with columns ai , . . . ,a j< such that {di^t} = ... = {0^-1, t} = 0.
If r € T, let e^(r) = ±OK be the last column of a corresponding
orthogonal matrix. Set B(x) = (smx)/x and (S(t,r) = £?(^Q^,ej<(T))).
For |Ar| = dist(r,a(^))we have (similarly to [1])

(106) XrR{t + u) = XrR (/3(^ r) + 0(H) 4- 0^ |AT|))

and for t not contained in T(co)

(107) . \^t + u) - ̂ )| < co |̂ )| (e2
^ - l) .

Using

(108) I E(-u)xrR^r)^t)du > |^)|r^-1

ft^
and some elementary estimates we can derive

\F.(t)\ ̂  c' }^t)\ r^-1 (l - 0 (?n^n) - 0 (^lArl))

»|^)|rK-l

(109)
for ( not contained in T(co) and |Ar| ^ n/{mr). Thus we get

[ [ ^{t^dtdT^ [ f {F^dTdt

T B^ 0(100)\T(co) |AT|$^:

(110) ^^-^r2^-2 / |^)|2,^
\ TTl/i

 /
 J

<?(100)\T(co)

/ -n \ K-l ^1K-\^K-\
f l t \

f
) y

f
) v Ti i

> ( — ) r2^-2 n^ = ——jr—,—
\mr/ m""1

since we have by (92), (95), (97), and (105)

f h/^)!2^ y Wt^dt
0(ioo)\r(co) Q(IOO)

(HI) > / I^W W\
2

 dt = ^ G(a;)2 ̂

R^ R^

> / v{x)2
 dx > n^ .

This completes the proof of (76).



522 MICHAEL DRMOTA

3.3 Upper bounds.

A combination of the results for sequences [2] and the Corollary of
Lemma 7 immediately implies the upper bounds (72), (74), and (77).

4. FURTHER PROBLEMS & RESULTS

It is also interestiing to consider continuous functions x : [0, oo) —>

R^/Z^, where we can define the discrepancy

T

(112) D^ = sup - fxR(x(t))dt - \K(R)
p^n T JRen\

• o

as a function of T > 0. (The same can be done with balls, squares, or with
caps on the sphere SK.)

If the arc length

(113) sr(x)= f\dx(t]\

T

(x)= [\dx(t)\

0

is finite for all T > 0, we can alpply Theorem 1 and 2 (for K > 2) to get

(114) liminfP^^rCr)^1/^-^ > CK > 0
T—>oo

and

(115) \lmm{DW(x)sT(x)^l^K~l) > CK > 0 .
r—^oo

It is urprising that the exponents 1+1/(K-1) (K > 2) and 1/2+1/(K-1)

(K = 2,3) are not optimal ifliminf is replaced by limsup.

THEOREM 7([3]). — If (J)(T) is an arbitrary monotonically increa-

sing function with

(116) f

00

1 dT<oow
0

and x : [0,oo) -> R^/Z^ (or -> S
1
^) (K > 1) is a continuous function

with lim'r-.oo sr(x) = oo, then

117) limsupZ^^^rGr)) > 0 ,
r-^oo
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where A is one of the sets 7Z, Q, B, (or C).

For example we have

(118) \lm^D
W

(x)sT(x) {\ogST(x))
1
^ > 0 .

r—^oo
It is worth remarking that Theorem 7 is best possible for K = 1 (cf. [3]).

For every increasing function (f>(T) with

(m) /^-

there exists a function x : [0, oo) -^ R^/Z^ with limy^oo sy(a-) = oo and

(^0) limsupD
W

(x)<f>(sT(x)) = 0 .
T—>oo

It seems that (117) is not optimal for K >: 2. For example, one may
concecture that

(121) lim sup D^ (x) sr(x) (log s^x))
2
-^ > 0 .

r—^oo
For K = 2 this would be best possible, since we can prove

THEOREM 8. — Let 0 < a < 1 be a irrational number of finite

approximation type rf < 2. Then x(t) = (t, at) satisfies

(122) limsupZ^^rCr) = VT^limsupT D^^x) < oo .
r-^oo r^oo

Proof. — We will use the inequality of Erdos—Turan—Koksma for
functions
(123)

D^^at) <

c(^
T

— + ^ — — — 1 f ^i(hit+h2at) j .
H o<.ax(i^()^^>^) Tr

to estimate the discrepancy. (R(hi, h^ = max(|/n|, 1) maxd/^l, 1)) Since
T

f g27ri(hi+aht)t ̂  ^ 1

J ~ TT\hl + /l2Q;| '

(124)

lo
we have to estimate

(125)

2^+2^^+2 E ̂^ ̂  /^ia^ ^ w^ + ah^

+\^w^=sl+s2+s3+s4•
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Trivially 5i = 0(1) and 62 = 0(1). Since h^ +0/13 > 2^ah^, 83 = 0(1),
too. In order to estimate S^ we will split up the sum into three parts

(126) E = E + E + E --Ri+^+^3
/H,/t2=l hi^ahy-^ |/n-afc2|<i hi>,ah2+^

and use the fact that

(127) ———1——— = 1 _ 1

/ii(Ai - ah-i) ah^hi - ah-i) ah^h^

Now it is easy to show that

V^ 1 7T2

2^ ~iJ7h———FX= c-logff+0(l) ,
/^^^i-^) 6a

(128) S ^l^10^^^-
/ii>a/i2+i

and

^^-^^^ + afaj(a^-^i)J = 0(1) •

Thus ^1+^3= 0(1). Now consider R^. For every h^ > l/(2a) there is a
unique /ii satisfying |Ai - 0/121 < 1/2. These numbers satisfy /ii >< ^2
and |Ai -Q;/i2| = ll^ll (||^|| = min^ez \x-n\). a is of approximation type
T) < 2. This means that there is a constant c such that ||a/i2|| > ch^ for all
/fc2 > 1. It is easy to show that | \\ap\\ - \\aq\\ \ > c^r)"77 if 0 < p < q < r.
Thus

f129) EM^ET-O^^)
implies by partial summation that

% ° »,5,^ '^w< wS^"^
-m^^)
= 0(1) .

Therefore we can tend H -r oo in (123) to prove (122), i.e. D^^t^at)

= 0(1/T).
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Remark 7. — Consider x(t) = (pt^qt) (0 < t < 1), where p < q are
distinct prime numbers. Then we can use the inequality ofErdos—Turan—
Koksma to get (H —>• oo)

(131) D^(x)^c(-+2 ^ — — ] = o f l )
I H

 z
-^ pqk

2
 I \m )H ^ pqk

2
 ] \pq,

l<k<H/q^
 1

 ^^\ 1 ^ L.«-' J-T I „ r i I \f± /

In fact it can be shown that D^^pt^qt) = l/(4:pq). By using p = pn and
q = pn^-i {pn is the n-th prime number satisfying pn ~ n \ogn) we can
deduce (10)

(132) ^\s) < Q + 0(1)) s-
2
 \s - oo) .

It is a pity that this method fails to reach the lower bound (9) in higher
dimensions.

-RemarJc 8. — The example x(t) = (t^at) of Theorem 7 seems to
be optimal in another sense, too. The author conjectures that there is no
continuous function x : [0, oo) —> R2/^2 with finite arc length sr(x) (for
all T > 0) such that

(133) lim TD^ =0 .

Only in the one dimensional case it is possible to find functions x(t) sa-
tisfying (133). But this is the only example known. On the other hand it
is easy to construct functions x(t) (for a very general setting of the dis-
crepancy on compact spaces) such that limsupy_,oo T D^ (x) is arbitrarily
small but not 0. (The construction is similar to that of [6].)

The higher dimensional case [K > 3) seems to be more difficult. Until
now the author only knows

THEOREM 9. — If K > 2, then there exist continuous functions

XK '' [0, oo) —^ R^/Z^ with limr-.oo «sr(«^j<) = oo and

(134) limsupD^^x^ST^x) (\ogST{x))l~K < oo .
T-^oo

Proof. — It is well known that there are sequences (rz-n)^, on the
torus R K

/ Z
K

, with

(135) D^n^^^c,^^ ( N > 1 ) .

Set In = [logn]^, LN = Z^=i<n, and Xn = {xi\Ln-i <: i < Ln}.

Thus \Xn\ = In and Lemma 6 imply that there is a sequence (yn)^^
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with Yn = {yi | Ln-i <: i < Ln} = Xn and

Ln-1

(136) ^ |̂ +i - y,\ < C^ogn^-1 + ̂ /K .

z=Ln-i

Since Xn = Yn and l^nl < (logn)^ we have

(137) DW ((yj^) ^ (^ + i) (l0^ .

Therefore the continuous function
(138)

\yn for <6[n-l,ra-2-"]
^k'(u — \

[ 2/n + 2n(t - n + 2-n)(l/^l - yn) for t C [n - 2-71, n]

satisfies

riW D^frc^^ < DW ff^ ^^ U 2- - 0 f^g^^x))^^(L39) DT ^K)^^ ^n^=iJ+y,-U^ ^^^ j ,

since

(140) 5r(^)< ^ (G(logn) J <- l+^/^)=o(——).
Lr^-i^T \ 6 /

Remark 9. — It is apparent from the proof on Theorem 9 that
lim sup-bounds for D^ imply lim sup-bounds for the discrepancy of se-
quences. If one could prove (a < 0)

(141) lim sup Z^^)5^) (log^rCr))0 > CK > 0
T-^oo

for functions x : [0,oo) -> R^/Z^, then (141) would imply

(142) lim sup DW ((^)^Li) AT (log TV)0 A > c^ > 0 .
T-^oo

Maybe one can improve Roth's bound [8] by this method.
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