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Abstract

Shape optimization problems of linear elastic bodies, flow fields, magnetic fields,
etc. for equilibrium types can be generalized as optimization problems of do-
mains in which elliptic boundary value problems are defined. This paper shows
that ordinary domain optimization problems do not have sufficient regularity
and proposes a technique to overcome this irregularity. It briefly describes the
derivation of the shape gradient functions for a self-adjoint shape optimization
problem, and shape identification problems of the Dirichlet type, Neumann type
and subdomain gradient assigned type. Using these shape gradient functions,
the irregularity of ordinary domain optimization problems is shown through a
discussion of the ill-posedness that occurs when the gradient method in Hilbert
space is applied directly. To overcome this irregularity, the idea of a smoothing
gradient method in Hilbert space is proposed. It is conclusively shown that a
numerical method based on this idea coincides with the traction method previ-
ously proposed by one of the authors and this conclusion is verified by numerical
experiments.

1 Introduction

Essential issues in mechanical or structural design include the determina-
tion of layouts and shapes of components. To improve the performance of
machines or structures, techniques for optimizing layouts and shapes are
thus required. Various optimization techniques have been researched and
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310 Computer Aided Optimum Design of Structures V

implemented with an eye toward achieving greater efficiency and economy.
One way of classifying these techniques is according to the procedure for
dealing with the topology of structures or the layout of components:

a) variable with topology
b) invariable with topology
Another way is to classify them according to the types of design vari-

ables:
A) vector (parametric)
B) distributed function (nonparametric)
These classifications can be combined to yield four categories. Zero-one

programming problems of structural components fall under the category
of a)-A) and have been investigated by many researchers. The topology
optimization technique based on the homogenization method is a typical
approach that has achieved great success in the category of a)-B). Another
successful approach falling in the category of a)-B) is to solve the opti-
mum topology related to continuum problems involving distributed gril-
lages. Parametric optimization problems using CAD data are included in
category b)-A) and have been solved with integrated CAE software in re-
cent years using the mathematical programming techniques. Approaches
that limit the degrees of freedom defining geometrical shapes to a finite
number, such as by using the basis vectors or the spline functions, fall un-
der the category of b)-A). However, no effective approaches have been found
in the category b)-B).

The reason why approaches in category b)-B) have failed is related
to the irregularity of shape optimization problems. Shape optimization
problems in category b)-B) are stated as a domain optimization problem
in which the objective functional depends on the geometrical shape of the
domain through the solution of a boundary value problem defined on the
domain. In this paper, for simplicity, we deal with the elliptic type of
boundary value problem that arises in shape optimization problems of linear
elastic bodies, flow fields, magnetic fields and the like.

This domain optimization problem is formulated by selecting a one
parameter family of continuous mapping functions as the design variable
that is defined in an initial domain and yields a variable domain as shown by
Cea* and Zolesiô . The shape sensitivity function, also known as the shape
gradient function, for an objective functional relative to domain variation
can be derived using the Lagrange multiplier method, also known as the
adjoint method^, and the theory related with the material derivative in
continuum mechanics.

Following the gradient method, we can consider a technique for de-
forming the shape of the domain by moving the boundary to the outside in
proportion to the negative value of the shape gradient function. However,
it is known that an iteration in which a shape is varied by moving the nodes
of the finite element model in proportion to the value of the shape gradient
function that is also evaluated using a finite element model in advance often
results in an oscillating shape. Imam* in 1982 pointed out this irregularity
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and proposed methods for limiting the degrees of freedom. Braibant and
Fleury^ in 1984 presented numerical results that indicated an unrealistic
shape was generated by moving the nodes in a finite element mesh. Based
on that observation, they proposed the use of B-spline curves to control
shapes. Kikuchi, Chung, Torigaki and Taylor̂  in 1986 showed that the
optimal shape strongly depends on the shape of finite elements near the
design boundary. As a remedy, they proposed the application of adaptive
finite element methods.

The necessity of regularity concerning a boundary on which an elliptic
boundary value problem is defined is known as Lipschitz continuity of the
boundary. A numerical result showing that optimal shape can not be ob-
tained without the constraint condition of Lipschit continuity is found in a
monograph published by Haslinger and Neittaanmaki^ in 1988. The neces-
sity of this condition in the formulation of ordinary domain optimization
problems in engineering, however, has not been discussed thoroughly.

The objective of this paper is to show that ordinary domain optimiza-
tion problems do not have sufficient regularity and to propose a technique
for overcoming this irregularity. This paper briefly describes the derivation
of the shape gradient function. Based on theoretical results obtained with
the direct gradient method in Hilbert space with support on the boundary,
we use a theorem related to the regularity of elliptic boundary problems to
show that ordinary domain optimization problems lack sufficient regularity.
The basic idea of the gradient method in Hilbert space can be found in
Cea's 1981 work*.

To overcome this irregularity, we introduce the idea of a smoothing
gradient method in Hilbert space. With this method, the domain variation
is determined by using a coercive bilinear form in Hilbert space of the first
order with support in the domain. That the renewed domain has the same
boundary smoothness as the original boundary can be confirmed using the
regularity theorem.

Considering that the bilinear form defined for variational strain energy
in an elastic continuum problem is an explicit form of the coercive bilin-
ear form, we reach the conclusion that the traction method proposed by
Azegami® in 1994 is a concrete form of the smoothing gradient method. The
traction method was proposed as a technique for determining the domain
variation as a displacement of a pseudo-elastic body defined in the design
domain by applying a pseudo-external force in proportion to the negative
value of the shape gradient function under constraints on the displacement
of the invariable boundaries or subdomain^. To conduct a numerical analy-
sis, we can use any technique applicable to linear elastic problems, such as
the finite element method or boundary element method.

The smoothing gradient method will be compared with the direct gra-
dient method in actual problems by numerical experiments using a finite
element model.
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2 Elliptic boundary value problem

For simplicity, we consider an (strong) elliptic boundary value problem of
the second order related to a real-valued scalar state function u defined
in a bounded open domain J? E jR" (closed domain ]?), n = 2, 3, with a
boundary dQ = F:

-V • (A(f)V%(:c)) + o(fXf ) = /(f), VZ E f? (1)

u(x) = ur(x), V£ E A C T (Dirichlet condition) (2)

A(x)Vu(x) - n(x) = g(x), Vx E F \ A (Neumann condition) (3)

where the real-valued symmetric n x n matrix function A(x) = A(x)̂  and
the real-valued scalar function a(x) holds that

3a>0:a>a, z-A?>a|zf, VzE/T. (4)

In this paper, ( • ) is used for n dimensional vectors, ( • ) \ ( ' ) denotes the
subtraction between sets, ( • Y denotes the transpose, V denotes the gradi-
ent vector and n denotes the outer normal vector well defined at almost all
points of F. We term the problems with the complete Dirichlet and Neu-
mann conditions on F the Dirichlet and Neumann problems respectively.
When considering the Neumann problem, the following relation is needed
in addition:

f(f-au)dx= I g dF. (5)
Jn Jr

3 Regularity of the solution

To prepare for the discussion, we review the theorem about the regu-
larity of elliptic boundary value problems. This theorem can be found in
the referenceŝ ' n.
Definitions: Boundary F is of class C''" if

3p > 0 : S = r fl B(x, p) is a connected boundary, Vx E T,, 1

J

and, selecting a local Cartesian coordinate system {j/,-}? with the origin at
x and the %/̂ -axis in the outer normal direction to J?,

3w E C*'"(S) where ̂  = w(yi, 2/2,-", 3/n-i) is the equation of S. D (7)

In particularly, we term C7°»", a > 0, a Lipschitz boundary. The symbol
C'»"(/2,) denotes the set of /-times differentiate functions defined in J?, of
which the /th derivative is Holder continuous with exponent a > 0.

Theorem: If F E C*«« class, A E (Ĉ -̂ (fl))*"*, a, / E Ĉ (/2), g E
C*'"(F) and up E Ĉ (f), then the solution u E C*'"(fi) is obtained where
6 = 1 for the Dirichlet problem and 6 = 0 for the Neumann problem. D
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4 Domain variation

Suppose that the domain J? is
variable in a given bounded do-
main Aimit £ #", n = 2,3. One
approach to describing the varia-
tion is to use the following one pa-
rameter family which is mapped
from the initial closed domain Q
to the varied closed domain J% as
shown in Figure 1:

f.(fl) :

: x €

Figure 1: Domain variation

> 0, fo(/J) =

Keeping the topology of J? and assuming a set Q of restrictions on domain
variation, the admissible set of the mapping function T,(j?) is given by

D = {f.( A) G (C°'"( A))"| 0 : set of
conditions of domain

f kinematic 1
in variation}. J

When a domain functional J#, and a boundary functional Jr. of a
distributed function ^, are considered, their derivatives Jn, and Jr, with
respect to s are given by the formulae of the material derivative assuming
5 as time:

Jn. = I <t>*dx, Ja. = I <t>',dx+ f fan-Vdx, (10)
Jn. Jn, Jr.

Jr. = I 4>, dr, Jr. = / {# + ( V»0, + </>,«) n • V\ dF, (11)
v/r, «/r. i '

where V«( • ) = V( • ) • n and K denotes the mean curvature. The shape
derivative </)', of the distributed function 0, indicates the derivatives under
a spatially fixed condition. The derivative V(fl,) otf,(ft) with respect to
5 defined on i% is given by

v(n,) = ̂  (fr̂.)) (12)

and called velocity function because of the analogy between s and time.

5 Shape optimization problems

Let us formulate some basic shape optimization problems as elliptic bound-
ary value problems paying no attention to the regularity of the shapes.
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5.1 Self-adjoint problem

A natural formulation is to select the following linear form l(u) as an ob-
jective functional:

Given 12, Aimit G #", 0 < M G R and

//— L7"—1 ( O \ m f~ TT^ ( (~}fc •** I J^limit J U P fc ./A \ J*Umit

find fl, = f,(fl) G D that } (13)
minimize l(u), u — UQ G U
subject to a(u - UQ,V) = l(v), Vv G U

meas(j?j) = / dx < M
Jn,

where the elliptic boundary problem is described by the variational form
using the following bilinear form a( •, •) and the linear form /(•),

a(u,v)= ( (Vw AVv + auv)dx (14)
Jn.

l(v) = J fvdx+f_. gvdF. (15)

The set U of the admissible state function u — UQ is given by

u = {u(n.)eH*(n.)\u(r<>) = Q, 1 ^
/^ udx = 0 for the Neumann problem} j ^ '

where UQ G H*(ftg) is a real-valued function satisfying the Dirichlet con-
dition of Eq. (2). The symbols L~(Aimit), ̂ (̂̂ limit) and ~̂̂ (/?iimit)
denote the space of bounded functions, the space of square integrable func-
tions until rath derivatives, i.e. Hilbert (Sobolev) space of order ra, and the
dual space of #™(/2iimit) defined in the invariable domain /̂ umit respectively.
Although the coefficient functions of A, a, / and g are assumed fixed in the
domain during domain variation, for simplicity, we can assume that these
are variable in accordance with certain rules, such as fixed in material or
covariation with the material as shown in the reference**.

Applying the Lagrange multiplier method, the problem given by Eq.
(13) can be rendered into a stationalization problem of the Lagrange func-
tional

L(u, v, A,fs) = l(u) — a(u - UQ, v) + l(v) + yt(meas(/2,) — M) ^ /._\

where v and A are used for the Lagrange multipliers. The derivative L with
respect to s is derived using the formulae of Eqs. (10) and (11):

L=/(«')-a(«',t»)-o(u-tto,»') + /(«') \
,) -M) + (Gn, ^ >
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where the linear form (Gn, V},̂ ^ ,(r)))» ̂ h respect to V is given by

(19)

G = -V(U - UQ) • AVV - a(u - UQ)V + f(u + V) } /gQX
+Vn9(u + v)+gVn(u + v)+g(u + v)K) + A. ) ^ '

The coefficient vector function Gn with respect to the velocity function
V has the meaning of a sensitivity function relative to domain variation
and is the so-called the shape gradient function. The scalar function G is
called the shape gradient density function. In Eq. (20), the term Vng(u 4-
%) + ĝ n(u + v) + g(u 4- V)K) is evaluated only on the Neumann condition
boundary.

From Eq. (18), some of the Kuhn-Tucker conditions for w, v and A are
obtained by

o(%-%o, %') = *(%'), Vt/EC/ (21)
o(%', %) = ((%'), Vw'Ef/ (22)

- M) = 0 and meas(J?,) < M (23)

that indicate the variational form of the original elliptic boundary value
problem for %, the variational form for v, which we call an adjoint equa-
tion and an adjoint state function for v, and the governing equations for
A respectively. Comparing Eqs. (21) and (22), we obtain the following
self- adjoint relation in this problem.

u - UQ = v (24)

By factoring in this relation, Eq. (20) becomes

G = - V(u - %o) • AV(u - *o) - a(u - u*)* + f(2u - %o)

In addition, when we assume that the nonzero Neumann condition boundary
A = {% € F \ /o| g(x) 7^ 0} and nonzero gradient Neumann condition
boundary A = {x G F \ A| V̂ p(f) ̂ 0} are invariable, i.e., T,(/\ U A) =
A U T2, the term {V̂ (2u - tto) + gV*(2% - %o) + gf(2% - UQ)K)} does not
need to be evaluated because V(T,(A U 7̂ )) = 0.

Under the condition satisfying Eqs. (21), (23) and (24), the derivative
of the Lagrange functional agrees with that of the objective functional and
the linear form (Gn, V)(ffO(f,(r)))* with respect to V:

(26)
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5.2 Dirichlet identification problem

A shape determination problem where the state function u is specified with
w on a subboundary Fp C F given at the initial shape can be regarded
as a shape identification problem of the Dirichlet type. This problem is
formulated using a squared error integral

Er,,(u-w,u-w) = / (u-w)*dr (27)

(28)

as an objective functional by

Given ]?, ,%mit, M, A, a, /, UP, g
in Eq(13) and w G ̂ X%mit),

find J?, = f,(J?) G D that
minimize #/%(% — it>, w — w), u — UQ e U
subject to a(-u — UQ,V) = /(v), Vt; G U

meas(i?,) < M.

The shape gradient density function given in the form of Eq. (19) for this
problem is obtained in the manner of the previous subsection as

G = 2(u — w)Vn(u — w} + (u — w)*K - V(U — UQ)
—a(u — UQ)V -f fv + V^gv + fl'Vn'y +

where u is the solution of the original elliptic boundary value problem and
v is determined by the adjoint equation:

a(u',v) = 1Er»(u - w,u'), W G U. (30)

In Eq. (29), the term 2(u — w)Vn(u — w) + (u — W)*K is evaluated
only on the state function specified boundary f#. When we assume that
the boundary FD is invariable, i.e., T,(FD) — FD, evaluation of the terms
2(ii - w)Vn(u -w) + (u- W)*K is not needed because V(T,(fi>)) = 0.

5.3 Neumann identification problem

We can also consider a shape identification problem of the Neumann type
where the gradient of the state function V*% is specified with w on a sub-
boundary FD C F given at the initial shape. Using the objective functional
given by

-w)= f (VnU-wfdF, (31)
JT,(rD)

this problem is formulated by

Given /?, %mit, M, A, a, /, up, g
in Eq(13) and w G #°(%mit),

find ]?, = T,(/2) G D that
minimize £Ĵ (Vnti — w, V^u — w), u — UQ G C/
subject to o(% — %o,v) = Z(%j, Vv G 17

meas(̂ ) < M.

(32)
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The shape gradient density function is obtained as

G = 2(u - w)Vn(VnU -W) + (V*W - U))*K - V(u ~ UQ) - AVv }
A J— a(u — UQ)V -f fv -f VnQV + gVnV •

where the adjoint state function v is determined by

5.4 Subdomain gradient identification problem

Another shape identification problem is considered where the gradient of
the state function Vu is specified with w in subdomain i?# C J?. Using the
objective functional given by

Eno(Vu - w, Vu - w) = f (Vu - w) • (Vu - w) dr, (35)

this problem is formulated by

Given ]?, %mit, M, A, a, /, up, 9

(36)

The linear form (Gn, l̂ )/̂ o(f .(̂ ûr)))̂  corresponding to Eq. (19) is given
as

find ]?, = f,(fi) e D that

minimize Ê (̂Vu — w, Vu — w), u — UQ G U
subject to a(u — %o, v) = /(%), Vv G U

2, < M.

(37)

GD = (Vu - w) - (Vu - w) (38)

Gp = -V(u - UQ) - AVv - a(u - UQ)V + fv 1
+Vngv + gVnV + gvK + A J

where 0% denotes the boundary of ]?£> and %; is determined by

a(u',v) = 2En»(Vu - w,Vu'), Vu' e U (40)

6 Gradient methods

A conventional approach to solving optimization problems where the sensi-
tivity or gradient can be evaluated is to apply the gradient method. How-
ever, in the shape optimization problems formulated in the previous section,
the shape gradient functions were derived as functions distributed on the
boundary. Accordingly, we have to use the gradient method defined in a
function space. In this section, we review the gradient method in Hilbert
space, apply this method directly to the shape optimization problems and
propose the concept of a smoothing gradient method that will play a sig-
nificant role later.
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6.1 Gradient method in Hilbert space

In general optimization problems, the first variation of the objective func-
tion (functional) is obtained as the scalar product of the gradient and the
variation of the design variable. Therefore, a general theory of the gradient
method is given in the space where a scalar product is defined, i.e., Hilbert
space.

Let us consider a minimization problem of an objective functional
I(z(s)) which is given with a design variable of a one parameter family
of functions z(s) G Z C (H™(ft}Y, integer m > 0. The derivative of
I(z(s)) with respect to s (the first variation of I(z(s))) is obtained as the
following scalar product.

where (•, • )(H™(n))"- represents the scalar product in (H™(Q)Y. The gra-
dient method is a general technique for determining the variation of design
function z as follows.

Find 'zeZ such that 1 , .
W.-* ̂  /7 I \ /

where 6( •, • )(H™(n))» is a coercive (elliptic) bilinear form in

3a > 0 : 6(&f)(*-(,,)). > a||̂(fW, WE (#"

and || • ||(#m(/?))n denotes the norm in (H™(f2))™. A concrete example of
&(•, • )(fl-m(̂ ))n is the scalar product (•, - )(H™(n))* on (H™(Q))™. That the
variation of design function z(s) reduces the objective functional / can be
confirmed by

0. (44)

6.2 Direct gradient method

Let (Gn, V)fjjoff (r)))« defined by Eq. (19) be a scalar product in the Hilbert

space (ff°(f,(r))V and (Gn,F)̂ o(f,(̂ +r)))» defined by Eq. (37) be a

scalar product in the Hilbert space (Ĥ (Tg(d̂ D + -O))" when we consider
the subdpmain gradient identification problem. Then, the gradient method
in (tf°(T,(r)))* can be obtained as follows.

Find V G D such that 1 , ,
(45)

where the coercive bilinear form b( -, • )(jjotf/p\\\n is chosen arbitrarily in

(H*(f,(r)))". We call this solution the direct gradient method for the
reason that there is no restriction on the derivation process, and will dis-
cuss the regularity of the shape optimization problems from the standpoint
of whether the solution obtained by this method maintains the Lipschtz
boundary or not.
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6.3 Smoothing gradient method

As a possibility, let us consider a gradient method in (H*(•#,))"• Select-
ing &(•, •)(*!(/?,))" for a coercive bilinear form in (H*(f},))", the gradient
method is written as follows.

Find V G D such that ] , ̂

Based on the trace theorem that

1 . _

^ ^

we can confirm that the solution obtained by this method is smoother than
that obtained by the direct gradient method. From this relation, we call
this solution the smoothing gradient method.

7 Ill-posedness of direct gradient method

This section discusses the regularity of the shape optimization problems in
reference to the smoothness of the boundary renewed by the direct gradient
method.

To avoid a complicated explanation, the discussion excludes the bound-
ary except the boundary of the subboundary assigned the Dirichlet condi-
tion and the boundary of the specified subboundary or subdomain, where
sufficient smoothness, which is assumed in the subsections, can not be as-
sumed respectively.

7.1 Self-adjoint problem

Let us consider the assumption used in the regularity theorem in Section 3,
i.e., r G C*'" class, A G (C*-*>°(f2))"*", £ = 1 for the Dirichlet problem
and 6 = 0 for the Neumann problem, a, / G C°'°(/2), g G C***(r) and
up G C*'"(r)_at the initial shape, i.e., 5 = 0. Then, the solution is obtained
as u G C*'°(ft) by the theorem. In addition, the boundary of the nonzero
Neumann condition A = {x G F \ TQ\ g(x) ̂ 0} belongs to the C*>*
class so that K G C*»"(A)- Then, the shape gradient density function
G given by Eq. (20) belongs to C*'"(f). Applying the direct gradient
method of Eq. (45), the velocity function is obtained as V G C*'°(f).
This result means that the renewed boundary obtained with this velocity
function, i.e., f&,(r) = V(F)As for infinitesimal As > 0, belongs to the
C*'" class that reduces the differentiability by one order from the original
C*>* class on I* \ A and two orders from the original C**° class on A-
Therefore, we can conclude that the iteration of the boundary variation with
the velocity function V obtained by the direct gradient method deteriorates
the smoothness of the boundary progressively.
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In general cases, we can surmise that the relative relation of decreasing
the smoothness step by step of the iteration still remains. Considering
that the direct gradient method was derived without any restriction, this
conclusion shows the irregularity of the shape optimization problem of self-
adjoint type.

7.2 Identification problems

The shape gradient density function for the Dirichlet identification problem
was obtained as Eq. (29). Let us assume the same strict smoothness of
the given functions and the boundary at the initial shape, i.e., 3 = 0, that
was used in the previous subsection. Then, the solution is obtained as
u G C*'"(fl) by the theorem. In addition, let w G Ĉ (Aimit)- Then, the
solution of the adjoint state function obtained by Eq. (30) is given at least as
v G Ĉ '"(/?), because v is the solution of an elliptic boundary value problem
where 2(u - w) G C**°(FD) C C*>"(FD) is assumed instead of g G Ĉ (A)
in the original elliptic boundary value problem. Moreover, let FD belong
to the C*>° class so that /c G C**°(FD). Then, the shape gradient density
function G given by Eq. (29) belongs to C*'"(F). Using this result, we
reach the same conclusion about irregularity as in the previous subsection.

The same conclusion can be derived for the identification problems of
the Neumann type and the subdomain gradient type.

8 Well-posedness of smoothing gradient method

Let us consider the case of applying the smoothing gradient method to the
shape optimization problems.

8.1 Self-adjoint problem

Based on the result in Subsection 7.1, we obtained G G C*'"(F) by assuming
F G C*'" class, FI G C*'" class and sufficient smoothness of the given
functions. When we apply the smoothing gradient method, the solution of
the velocity function V falls into C*'"(f}) by the theorem that is obtained
by expanding the regularity theorem in Section 3 for the elliptic boundary
value problem of a scalar function to that for the elliptic boundary value
problem of a n dimensional vector function. Therefore, V G C*'"(fl) means
that the renewed domain, i.e., i?a, = V(f))As for infinitesimal As > 0, has
the boundary of the Ĉ '* class that agrees with the original smoothness of
the C*>" class on F \ /\. Although the smoothness on the boundary /\ has
been reduced, if we assume the condition K(T,(.Ti)) = «(A) in Z), such as
K(f,(Fi)) = 0 or V(f,(Fi)) - n(f,(Fi)) = 0, we can escape this difficulty.

Therefore, in the case of strict smoothness, we can conclude that the
smoothing gradient method has well-posedness with respect to the self-
adjoint shape optimization problem under the constraint on /\.
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-Gn

Figure 2: Traction method Figure 3: Domain measure control

In general cases, we can surmise that the boundary smoothness is main-
tained in the iteration by the smoothing gradient method. This relation will
be verified through a numerical experiment in Section 10.

8.2 Identification problems

For the identification problem of the Dirichlet type, using the result in Sub-
section 7.2, we can obtain the same conclusion as in the previous subsection
that the renewed domain has the same smoothness by assuming the condi-
tion K(f,(A U FD)) = /c(A U FD) in D.

For the Neumann identification problem, we need to add a strict con-
dition of V(T,(FD)) ' n(f,(FD)) = 0 to the conclusion for the Dirichlet
identification problem because the term 2(u - w)V*(V*% - w) in Eq. (33)
falls into Ĉ "(FD). The same conclusion can be obtained for the subdomain
gradient identification problem as for the self adjoint problem.

9 Traction method

The smoothing gradient method was proposed using the arbitrary coercive
bilinear form b( - , • )(#i(a,))* as shown in Eq. (46). To execute this method,
we have to give the coercive bilinear form in (#*(!?,))" concretely.

One of the most familiar coercive bilinear forms in (.ff*(J2,))* is that
for the variational strain energy a( - , • )(*!(#,))* in an elastic continuum
problem under rigid motion constraint defined by

~ IJ
dx (48)

n,

where djki € L°°(/2,), M, M = {1, 2, • • • ,rc}, denotes the Hooke stiffness
tensor. In the tensor notation, the summation convention and the gradient
notation ( • ),; = d( - )/dx{ are used. The smoothing gradient method using
o(.,- )(#i(/7.))n is expressed as follows.

Find V € D such that
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When a rigid motion is allowed in D, Eq. (49) is applied under rigid motion
constraint after incremental rigid motions of AsV determined by V - y —
— (fftp\ GndFj • y, Vi/ £ D, until ff ,^\ GndF — 0 holds. This expression
agrees with the traction method proposed by one of authors and described
earlier (refer to Figure 2).

To determine the Lagrange multiplier A for the domain measure con-
straint, we can also apply the traction method. Since A contributes to the
pseudo force — Gn as a uniform boundary force, the relation between the
variation of the uniform boundary force A An, the variation of the velocity
AV and the variation of the measure of the domain zAmeas(j?,) is obtained
by an elastic deformation analysis based on the following equation loaded
with the uniform boundary force A An as shown in Figure 3.

Find AV € D such that 1

i(n.))* = -(̂ ŷ)(n̂ (f.(r})̂  W € £ J

4meas(/2,) = / n-AVdF (51)
Jf,(r)

Using the relation between A A and zAmeas(j?,), we can determine A that
satisfies Eq. (23).

The procedure of the traction method can be summarized as follows.

1) Solve the original elliptic boundary value problem and the adjoint
equation, if necessary, depending on problems involved.

2) Calculate the shape gradient function on the design boundary, where
some arbitrary value is substituted for A > 0, such as the average of
G — A at the first step and the value determined in the previous step.

3) Solve V by Eq. (49), deform the domain with AsV using some As > 0
and evaluate the domain measure.

4) Solve AV with AAn by Eq. (50) and calculate Eq. (51). Using the
results, modify AsV by varying A > 0 so that Eq. (23) is satisfied

5) Update the domain with the modified AsV and return to 1).

6) Terminate the procedure based on the results of the state function
analysis.

10 Numerical verification

Sections 7 and 8 described the ill-posedness of the direct gradient method
and the well-posedness of the smoothing gradient method under a condition
of strict smoothness of the given distributed functions and the boundary.
This section will show that these conclusions can be expanded to shape op-
timization problems with less smoothness through numerical analysis using
the finite element method. A static linear elastic problem will be considered
here as an elliptic boundary value problem.
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10.1 Self-adjoint problem

A self-adjoint shape optimization problem involving a static linear elastic
continuum represents a minimization problem of external work in which the
objective is to maximize stiffness. In that sense, it can be called a mean
compliance minimization problem. Assuming no body force and a boundary
restriction on domain variation of a nonzero Neumann condition boundary,
this problem is stated as follows:

Given J?, Aimit, M, in Eq(13) and
Q,w G 6°°(%mh), z, J, &, Z = {1,2, •
fE(̂ (%m:t)r,

find fl, = f,(fl) € D that
minimize /(#), u G U

subject to a(5, v)(#i(fl.))" ~ '(̂)> V# G t/
meas(/2,) < M

(52)

where a( -, • )(#!(#,))* is defined by Eq. (48) and /(•) is defined by

1(3) = f 9-vdF, (53)

U is the set of the admissible displacements satisfying U(FQ) = 0. The shape
gradient density function is derived as

G = -CijkiUkjUij + A (54)

where A is the Lagrange multiplier of the domain measure constraint.
The boundary condition for the original elastic problem and the results

obtained by the direct gradient method and the smoothing gradient method
are shown in Figure 4. Plane stress was assumed. Admissible domain vari-
ation was assumed only in the perpendicular direction on the slope. The
direct gradient method was executed by giving the compulsory displacement
in the perpendicular direction in proportion to the shape gradient density
function at the nodes of the finite elements on the slope. For the smoothing
gradient method, the traction method was applied where the traction force
in proportion to the shape gradient density function was loaded in the per-
pendicular direction at the nodes of the finite elements on the slope. The
general purpose FEM program I-DEAS 6.1 and its four-node elements were
used in this investigation. The result indicate that a smooth boundary was
obtained by the smoothing gradient method, although oscillation occurred
with the direct gradient method.

10.2 Dirichlet identification problem

Assuming no body force and boundary restrictions on domain variation of
a nonzero Neumann condition boundary and the displacement prescribed
boundary, i.e., {f,(A U FD) • n(f,(A U /£>)) = 0} G O in Eq. (9), the
Dirichlet identification problem of the static linear elastic problem is stated
as
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Initial shape and boundary
conditions for original

elastic problem

Result obtained by direct
gradient method

Result obtained by smoothing
gradient method

Figure 4: Computed results for ex-
ternal work minimization problem
of plane stress plate with varying
boundary in perpendicular direction
on slope

Initial shape and boundary
conditions for original

elastic problem

Result obtained by direct
gradient method

Result obtained by smoothing
gradient method

Figure 5: Computed results for dis-
placement norm minimization prob-
lem on right half of the hole of plane
stress connecting rod with varying
outer free boundary

Given ]?, Aimit, M, in Eq(13) and
djki G 6°°(,%mit), t, j, fc, I = {1, 2, - - -, n},
f E (*-XA:m:t))", W E WW)",

find Q, = f,(fi) G D that
minimize Ep^u — w, u — w), u G U
subject to a(2, v)(jyi(/7.))n = /(v), Vv E U

? < M

where

(55)

(u — W, u - w) = I (u — w) • (u - w) dF.
Jf.(rD)

(56)
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The shape gradient density function is derived as

G =-CijkiUkjVij + A (57)

where the adjoint state function v is determined by

o(W(*i(n.))" = 2Era(2- %W), ̂  G [/. (58)

As an example of this problem, we considered a shape optimization problem
of a connecting rod having less displacement around a hole so as to avoid
seizure. The boundary condition for the original elastic problem and the
results obtained by the direct gradient method and the smoothing gradient
method are shown in Figure 5. Plane stress was assumed. The outer shape
where no load was applied was defined as the design boundary. The dis-
placement prescribed boundary FD was given with the right half of the hole
defined as a free. The target displacement was w = 0. The direct gradient
method was executed by giving the compulsory displacement at the nodes
of the finite elements on the design boundary obtained by taking average
of the normal vectors obtained from adjoining elements in proportion to
the shape gradient density function. For the smoothing gradient method,
the traction method was applied where the traction force in proportion to
the shape gradient density function was loaded in the normal direction at
the nodes of the finite elements on the design boundary by calculating the
nodal force using the shape function. The general purpose FEM program
ANSYS 5.1 and its three-node elements were used in the calculations.

The results also indicate that a smooth boundary was obtained by the
smoothing gradient method compared with the oscillating boundary seen
for the direct gradient method.

11 Conclusion

A self-adjoint shape optimization problem and shape identification prob-
lems of the Dirichlet type, Neumann type and subdomain gradient assigned
type were formulated using a one parameter family of functions for mapping
from the initial domain to the varied domain. Their shape gradient functions
were derived using the formulae of the material derivatives. Based on the
notion of the gradient method in Hilbert space, we introduced the concepts
of a direct gradient method and a smoothing gradient method with these
shape gradient functions. The irregularity of shape optimization problems
was discussed by showing the ill-posedness when the direct gradient method
was applied. On the other hand, the regularity of the smoothing gradient
method was discussed by showing the well-posedness when this method is
applied. It was shown conclusively that a numerical method based on the
smoothing gradient method coincides with the traction method previously
proposed by one of the authors. The results of numerical experiments sub-
stantiated these theoretical conclusions.
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