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Irrelevance of Atomic Masses for Debye-Waller B Values in the Limit of High Temperatures 
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An expression that approximates Debye-Waller B values by a sum of three terms is derived from the 
theory of lattice dynamics in the harmonic approximation. For cubic crystals (M~ is the mass of the Kth 
atom in the unit cell): 

B~ = ~ T+ 2n2h2/3k TM,~ + 7rIM 2 T 3 , 

where T> OD/2 and ~ and 7~ are constants, depending on interatomic forces only. It is shown that for 
temperatures above the Debye temperature Oo of the lattice, the second and third terms in the above 
expression can be neglected. From this, it follows that above the Debye temperature Debye-Waller 
B values become independent of the atomic masses. Consequently, the heavier atoms in a lattice do 
not necessarily have the smaller B values. 

Introduction 

In a crystal lattice, heavier atoms do not necessarily 
have the smaller Debye-Waller B values. Examples 
are PbTe (Keffer, Hayes & Bienenstock, 1968), MgO 
(Raccah & Arnott, 1967; Sanger, 1969), and AgC1 
(Korhonen & Linkoaho, 1966). In these cases, room- 
temperature Debye-Waller B values of the heavier 
atoms (Pb, Mg, and Ag) are larger than those of the 
lighter atoms (Te, O, and C1). The phenomenon has 
been appreciated as rather surprising. 

With the aid of the theory of lattice dynamics in the 
harmonic approximation, a theorem will be derived 
which states that Debye-Waller B values of individ- 
ual atoms in a crystal lattice do not depend on the 
atomic masses when the temperature of the crystal is 
above its Debye temperature. 

For temperatures above half the Debye temperature, 
an expression is given that allows calculation of B 
values at any temperature above OD/2 if Debye-Wal- 
ler values at least one temperature in the region are known 
(e.g. from experiment). 

It is hoped that the theorem will contribute to a 
qualitative understanding of Debye-Waller B values. 

Derivation of theorem 

The vibrations of an atom in a crystal lattice, moving 
in a harmonic potential field, can be characterized by a 
symmetric tensor U, with six independent components. 
The mean-square amplitude of vibration in the direc- 
tion of a unit vector !, with components l,, is given by 
(Cruickshank, 1956): 

<u2>= ~ <u~.~>l~l~. (1) 
~t, O 

To evaluate the quantities <u,~ua), we adopt formulae 
and notation of lattice dynamics as presented by Mara- 
dudin, Montroll & Weiss (1963). 

Eigenvectors and eigenfrequencies, of the phonons 
present in a lattice, obey the following set of equations: 

~ D  k ,k ,a(~,)eo(l¢ I j) = e~(xl~)co~(k), (2) 

where ~ and fl are again the Cartesian coordinates 
(x,y,z), tc and x' are indices to number the atoms in the 
unit cell, k is the wave vector, coj (k) is the eigenfre- 
quency of thej th branch, and e(tcl~) is the eigenvector 
of the ~¢th atom, belonging to the j th  branch. The r 
atoms in the unit cell give 3r phonon branches. The quan- 
tities D,a(~,) are the elements of the dynamical matrix" 

D,.(L') =(M~M~') -1/2 Z '~' ~0~.a(~,) exp [ -  2nik. x(ll ')],  
l '  

(3) 

where Mr is the mass of the xth atom, l and l '  are indices 
to number unit cells, x(l l ' )= x ( l ) -x ( l ' ) ,  and x(l) is the 
position of the lth unit cell, while ~0,B (~')  is the negative 
of the force exerted in the e direction on atom (~), 
when atom (~;) is displaced a unit distance in the fl 
direction. The eigenvalue equation (2) can be written 
more compactly in matrix form: 

D(k)E(k) = E(k)A (k). (4) 

From this, it follows that 

D-~(k) =E(k)A -~(k)E~(k). (5) 

The matrix D(k) is Hermitian; hence, E(k) is unitary 
and we obtain from equation (5): 
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= e~(zclj)e~ (zc'lk)co-} 2 (k). (6) (D-1)~ ( k )  ~ k * 

J 
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At  this point, we consider the mean products  of  vibra- 
t ional amplitudes of  the (~)th a tom (Maradudin  et al., 
1963, p. 237): 

h 
(u,,(~)ua(~))= 2NM~ ~" e~(xl~)e] (KI~) 

I¢,1 

× coth [hCOj (k)/2kT] (7) 
COj(k) 

where N is the number  of  unit  cells in the crystal. The 
summat ion  is carried out  over N values of  the wave 
vector k, distributed through the first Brillouin zone, 
and, for each value of the wave vector k, over the 3r 
phonon branches. Following Waller (1925), we expand 
the hyperbolic cotangent:  

hCO 2k T hCO h3 CO 3 hCO 
coth - -  - - -  + 

2kT  hCO 6kT 360k3T 3 . . . .  ' 2kT  

and obtain f rom equation (7): 

h 

k , J  

× [2k T/hcoj(k) + hCOj(k)/6k T 

- h3CO~(k)/360kST3]CO-j~ (k). 

- - < 1  

(8) 

(9) 

The condit ion hcoj(k)/2kT< 1 is roughly equivalent to 
T >  00/2,  0 0  being the Debye temperature  of  the lattice. 
On is connected with the maximum phonon frequency, 
COn, as hCO,,/k "~- 00. The second and third terms of  the 
expression between square brackets of equation (9) 
contribute well below 8 % when T>On.  Neglecting 
these terms, equation (9) can be written as: 

k T  
(u,(~)uo(~))= NM~ ~ e=(~cl~) e~(tcl~)co-) 2 (k) (10) 

k,. i  

and with equation (6): 

k T  
(u~(~)uo(~))- ~ (D-~)~a ( ( ~ ) .  (11) 

NM,, 

In order to proceed we recognize that :  

D(k)=M-~/ZO(k)M -~/z , (12) 

k - -  - 1  D ~ a ( ~ ) -  M ~ O , p ( ~ ) ,  (12a) 

D - ~ ( k ) = M ~ / 2 0 - a ( k ) n  ~/z , (13a) 

(D- x),a~) = M~(O- x),p(~), (13b) 

where M is a diagonal matrix with M n  = M22 = M33 = 
Ms, the mass of  a tom 1, M44 = M55 = M66 = M2, the 
mass of  a tom 2, and so on. The matrix • (k) is defined 
by:  

~0,a(~,) exp [ - 2 r c i k .  x( l l ' ) ] .  (14) 
l '  

crystals for temperatures above hal f  the Debye tem- 
perature if, at least, one Debye-Wal ler  B value is 
known in that  temperature  region, to be calculated. 
It  is emphasized that  the elements of • do not  depend 
on the atomic masses. Substitution of  equation (13b) 
in equation (11) gives: 

k T  
W- (L). T> 0o. (15) 

Before comment ing on equation (15), we turn our at- 
tention to the second and third terms of  the expression 
between square brackets of equation (9). These terms 
become impor tant  when the temperature  of  the crystal 
is below its Debye temperature.  To evaluate the con- 
tr ibutions due to these terms, we use the following 
properties of the eigenvectors (Maradudin  et al., 1963, 
p. 12): 

e=(xl~) e~(xl~) = ~ , ~ ,  (16) 
J 

w~(k)%(xl9 e~(x[~) = D~a(~) .  (17) 

Recalling that  the number  of  k vectors equals N, we 
find from equations (9), (12a), (15), (16) and (17): 

Table 1. Calculated Debye-Waller B values o f K B r  (A2). 
The contribution from the first term, which is independent of atomic masses, is indicated by % in parentheses. 

Temperature (°K) B~* BBr* Bt<1" BBrt 
295 2"2636 2"4584 2"2249 (98"8) 2"4162 (99"5) 
275 2"1000 2"2784 2"0778 (98"6) 2"2540 (99"4) 
255 1"9393 2"1012 1"9308 (98"4) 2"0920 (99"3) 
235 1"7811 1"9267 1 "7842 (98"1) 1 "9301 (99"2) 
215 1"6258 1"7549 1"6379 (97"8) 1"7682 (99"1) 
195 1"4732 1'5859 1"4921 (97"4) 1"6065 (98"9) 
175 1"3236 1"4195 1"3467 (96"8) l"4449 (98"7) 
155 1"1771 1"2560 1"2021 (96"1) 1"2833 (98"4) 
135 1"0342 1"0954 1"0579 (95"1) 1"1214 (98"1) 
115 0"8955 0"9382 0"9142 (93"7) 0"9586 (97"7) 
95 0"7621 0"7849 0"7695 (92"0) 0"7928 (97"6) 
75 0"6362 0"6367 0"6183 (90"4) 0"6172 (99"0) 

* Calculated by Reid & Smith (1970). 
"{" Recalculated with equation (19). The two sums have been evaluated indirectly by least-squares fit of equation (19) to the 
Reid & Smith data for the 12 temperatures indicated in the first column. 
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k T  
(u,,(~)u~,(~))= W y- (a,-%,(#~)+ 2" 

hZO,a 
12kTM~ 

h 4 
¢%~(,,~), T> Oo/2 . (18) 

720k3TN3M~ T 

Equation (18) describes the vibration of an atom in a 
crystal lattice for temperatures above half the Debye 
temperature of the lattice. From the quantities 

l I (u~(~)ua(~)), the anisotropic Debye-Waller B values can 
be obtained by well known methods (Cruickshank, 
1956). At high temperatures, T> Oo, only the first term 
in the right-hand part of equation (18) is of importance, 
and Debye-Waller B values become independent of 
the atomic masses. 

Two restrictions should be made. Equation (18) has 
been derived within the harmonic approximation 
which will certainly be violated at very high tem- 
peratures. The second restriction is in dealing with the 
temperature dependence of the two sums in equation 
(18). The matrix elements (~-1)~ B (k) and ~ a ( ~ )  are 
temperature dependent, via the interatomic forces 
which depend, for example, on the atomic distances. It 
is expected, however, that the sums will vary only very 
little with temperature. 

Example 

For a cubic lattice, the Debye-Waller B value of the 
~:th atom is obtained from equation (18) as: 

k T  ~ h 2 
B~ = 8~ 2 ~ ( ,v-  1)~(L) + 12krM~ 

h 4 
- (191 

In the above expression the first term in the right-hand 
part is independent of the atomic mass. The other two 
terms are inversely proportional to the atomic mass and 
to the square of the atomic mass. In general, it is very 
difficult to evaluate the two sums of equation (19), 
because, for this, a detailed knowledge of the atomic 
forces is required. We have determined the two sums 
by a least-squares fit of equation (19), for 12 tempera- 
tures, to KBr B values calculated by Reid & Smith 
(1970). The Debye temperature of KBr is about 160°K 
(Reid & Smith, 1970) and the 12 temperatures chosen 
range from 75 °K (about half the Debye temperature) 
up to 295 °K. Results are shown in Table 1. 

The results in Table 1 show the various contributions 
to B~ at temperatures above the Debye temperature 
(for KBr 160°K) the main contribution to the Debye- 
Waller B values comes from the mass-independent 
term of equation (19). Table 1 also shows that equa- 
tion (19) describes very well, in a large temperature 
region, the temperature dependence of both the Debye- 
Waller B values of KBr. 
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Supergroup tables are presented whereby a representation of a subgroup can be correlated with those 
representations of the supergroup which are obtained on ascent in symmetry. The method of derivation 
is explained and various orientations of the subgroup with respect to the supergroup considered. The 
tables also include the correlations between the double-valued representations of the corresponding 
double groups. 

Introduction 

The well-known process of descent in symmetry allows 
one to discuss how the representations of a given group 
decompose into representations of a subgroup. Tables 

have been constructed to facilitate many such correla- 
tions and these are very laseful in numerous physical 
problems, e.g. the splitting of atomic energy levels in 
a crystal field. 

The reverse correlation, in which we ascend in 


