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ABSTRACT

Investment is often irreversible, in that installed capital
has little or no value unless used in production. In the
presence of ongeoing uncertainty, an individual firm’'s
irreversible investment policy optimally alternates short bursts
of positive gross investment to periods of inaction, when the
installed capital stock is allowed to depreciate. The behavior
of aggregate investment series is characterized by sluggish,
continuous adjustment instead. We argue in this paper that
aggregate dynamics should be interpreted in terms of
unsynchronized irreversible investment decisions by heterogenous
firms, rather than in terms of ad-hoc adjustment cost functions
in a representative-agent framework. We propose a closed-form
solution for a realistic model of sequential irreversible
investment, characterize the aggregate implications of
microeconomic irreversibility and idiosyncratic uncertainty, and

interpret U.S. data in light of the theoretical results.
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1. Introduction

Capital accumulation has an essential role both in the theory of production and in the study of
macroeconomic fluctuations. If it were possible to rent capital services on a smoothly functioning
spot market, investment could be modeled in terms of the user cost of capital defined by Jorgenson
(1963). In reality, however, firms own rather than rent their capital stock, and investment can only
be studied in an explicitly dynamic framework. Standard investment models assume variations in
capital input to entail convex adjustment costs, either internal to the firm and due to increasing
costs of installing more capital in shorter intervals of time, or external to it and due to decreasing
returns in production of capital goods. Further assumptions are typically necessary to obtain
analytically and empirically tractable investment models: firms may be assumed to be perfectly
. competitive and to operate under constant returns to scale (e.g. Lucas and Prescott, 1971; Hayashi,
1982), or linear-quadratic functional forms may be assumed to obtain certainty equivalence (e.g.
Sargent, 1987).

Models of investment based on these assumptions do not provide a convincing interpretation
of empirical data (Abel and Blanchard, 1986). In fact, the realism of smooth adjustment costs as
the source of investment dynamics is doubtful. From a microeconomic point of view, the cost of
additions to an individual firm's capital stock is often linear in investment; the unit price of capital
may even be decreasing in investment if lump-sum adjustment costs are present. Disinvestment on
the other hand is costly, if at all possible. Many facilities are specific to a particular production
process, conversion of industrial real estate is difficult, and markets for used machinery are thin
and discount it heavily.

Three largely separate strands of literature have focused on the realism and importance of
investment irreversibility at the firm’s level. Arrow (1968), Nickell (1974) and others have studied
irreversible investment decisions in continuous-time dynamic optimization models, assuming that
firms hold point expectations about the cyclical path of exogenous variables, and showing that
the marginal revenue product of capital equals the neoclassical user cost of capital whenever gross
investment is strictly positive. Investment is not necessarily always positive, of course, if it is
irreversible: it ceases before a cyclical peak is reached, and starts again after the cyclical trough.
Irreversibility then drives a wedge (negative during booms, and positive during pronounced troughs)
between the cost of capital and its marginal contribution to profits.

Other authors have noted that investment irreversibility is especially realistic at ghe aggregate
level: even if capital goods retained their full value on second-hand markets, the direct consumption
value of existing productive facilities would clearly be low or nil. This has motivated studies of
irreversible capital accumulation in general-equilibrium stochastic growth models (Sargent 1979,
Olson 1989). The representative agent, single good framework of this literature, however, is too
stylized to allow realistic applications. The dynamics of aggregate production and investment are
not variable enough, at least in industrialized countries, to make aggregate irreversibility constraints
binding under those assumptions. .
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Irreversibie investment under uncertainty has been studied by financial economists (see Mc-
Donald and Siegel 1986 and their references, as well as Ingersoll and Ross, 1987 for the case of
interest rate uncertainty). Option pricing techniques provide elegant solutions in the case of a
single irreversible investment project with uncertain payoffs: such a project will be adopted only
when the expected discounted payoff from investment exceeds the cost by an amount that depends
on the level of uncertainty, and can be impressively large for plausible parameter values. Even risk
neutral firms are, in a sense, reluctant to invest when projects are irreversible and the future is
uncertain, because when the project is adopted the option to wait for some of the uncertainty to be
resolved is forsaken, and options are valuable even to risk-neutral agents. These results are clearly
relevant to the study of the investment process. Bernanke (1983) notes that the level of uncer-
tainty perceived by firms is likely to vary cyclically, and emphasizes that irreversibility effects are
important for understanding the cyclical behavior of aggregate investment. However, most option
valuation models only consider the optimal timing for the adoption of an individual project with
given characteristics, do not provide a proper dynamic investment function, and are not directly
comparable to more familiar dynamic models based on convex adjustment costs. Pindyck (1988)
applies option pricing techniques to marginal irreversible investment choices, and Bertola (1988)
shows that the solution to problems of this type can be derived by dynamic programming as well
as by option evaluation methods; formally similar problems of “singular” stochastic control have
been studied in Operations Research by probabilistic and/or analytical methods (see e.g. Chow et
al., 1985; Karatzas and Shreve 1984, 1988). )

To allow a characterization of aggregate investment series, these microeconomically realistic
models need to be combined with a theory of stochastic aggregation. Idiosyncratic uncertainty
is on the one hand undeniably realistic, on the other necessary for irreversibility constraints to
have empirical relevance in light of the relatively low volatility of aggregate variables. Caballero
and Engel (1990) develop a basic framework for the study of endogenous coordination in mod-
els of infrequent adjustment in the presence of idiosyncratic sources of uncertainty, and Bertola
and Caballero (1990) characterize the aggregate dynamics generated by infrequent microeconomic

adjustment.

This paper solves an individual firm’s optimal irreversible capital accumulation problem under
uncertainty, and characterizes the behavior of aggregate investment when both idiosyncratic and
aggregate sources of uncertainty are present. Section 2 characterizes sequential investment decisions
at the microeconomic level with and without irreversibility constraints. Section 3 stugies aggregate
investment behavior when many units like that considered in Section 2 face common as well as
idiosyncratic shocks. Section 4 applies the model to an interpretation of postwar U.S. investment
series, and Section 5 concludes. Technical derivations are reported in several appendices.



2. Optimal sequential investment under uncertainty

We consider a firm whose cash flows are a constant elasticity function (KA, Z) of K, the

installed capital stock, and Z, an index of business conditions:
N(K(r),Z(r))= K(1)°2(r) 0O<a<]l (1)

This expression may be viewed as loglinear approximation to general functional forms; the ap-
proximation is exact if demand for the firm’s product has constant elasticity and production is
Cobb-Douglas in K(r) and other, perfectly flexible factors of production. The business conditions
process {Z(7)} would then depend positively on the strength of demand for the firm’s product and
on productivity, and negatively on the cost of factors other than capital. '

Let {Z(7)} follow the process
dZ(r) = Z(T)('(,] dr + 0} dW(r)) 2

where {W(7)} is 2 two-dimensional Wiener process, ¥, is a constant scalar, and o, is a 2x 1 constant
vector. Equation (2) can again be viewed as a simple and empirically realistic representation
of uncertainty; the multiplicative disturbance {Z(r)} follows the process in (2) under constant
elasticity demand and Cobb-Douglas production functions if demand, productivity, and the cost of
flexible factors of production grow at some constant mean rate which is perturbed in continuous time
by normally distributed random variables, independent over time and possibly contemporaneously

correlated.

Capital can be purchased and installed at unit price P(7), but installed capital has no resale
value if investment is irreversible. By equations (1) and (2), Z(7) > 0 for all 7 and the marginal
contribution of installed capital to operating profits is always positive; thus, scrapping is never
profitable, and the installed capital stock process { K(7)} decreases only via depreciation, which is
assumed to take place at constant exponential rate §.

Let the purchase price of capital {P(r)} follow

dP(r) = P(r) (192 dr + 03 dW(r)) (3)
where J2 and o, are conformable to #; and ;. The variance-covariance matrix of the proportional
increments in the processes exogenous to the firm is then given by ¢

dZ dP

Va.r(7, ?) = [61 0‘2]'[01 0‘2] =X

The firm's managers choose the investment policy so as to maximize the market value of the
firm, defined as the preseni discounied vaiue ai raie r of expecied fuiure cash flows. We assume
that the sample path of {W(7)} contains all the information relevant to the firm’s problem. By (2)
and (3), the probability distribution of {P(r), Z(7)} as of time t is uniquely determined by P(t)
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and Z(t) for all 7 > t, and the optimal investment policy {G(r)} is to be chosen among the class of
nondecreasing processes which depend, at every time t, on the information contained in the sample
path of {Z;} and {P,} up to time ¢: the investment process cannot predict the future.! We then
define

VKW, 20, P0) = gax B [0 K@ 2 - Py d6en) @
subject to dK(7) = —8K(7)dr 4+ dG(r), dG(r) 2 0 (5)

where {G(r)} is the cumulative gross investment process, restricted to have positive increments,
and E.{.} denotes conditional expectation taken, at time ¢, over the joint distribution of the {Z(7)},
{P(7)}, and {K(r)} processes. While the first two processes are exogenous to the firm’s problem,
the distribution of {K'(7)} is determined endogenously by the optimal investment rule.

Reversible investment

If capital could be purchased or sold at the same price P(t), then dG(t) would be unconstrained
and the first-order condition for choice of capital stock at every point in time would be

III(K (1), Z(t)) = (r+ 6 - 92) P(t) Vi, (6)

the Jorgenson (1963) optimality condition, equating the marginal revenue product of capital to its
rental cost. Intuitively, if the purchase and sale price of capital were equal to each other (though
random over time) it would be possible to rent capital services; if risk-neutral arbitrageurs are
present in the market, the expected opportunity cost of carrying a stock of progressively depreci-
ating capital available for rental should equal the flow operating profits from its use in production.

Under the assumed functional forms, (6) yields an expression for the frictionless capital stock,

Vi (7)

(r+é6-19,) P(t)) E“]:I

K/ (2(0, () = (=2 20

When investment is unconstrained, K(¢) is not a state variable and the value of the firm’s investment

strategy is given by
o0
VI(Z(t), P(t) = E,{/ e~m=9 (Kf(r)"Z(r)d-r - P(7) (dK’(1) + u{f(r)dr)>} (8)
t
By (2), (3), and (7), K/(r)*Z(7) is lognormally distributed, and the integral in (8) converges if

151 0192 1% a .
'>(1-a 224 ISl ) )

! Formally, what is required is that {G(7)} be progressively measurable with respect to the
filtration F¥ = o(W(s);0 < s < 1), the nondecreasing family of sigma-fieids generated on the
space of continuous function ¢ — R? by observation of W(r). By the accumulation constraint (5),
the installed capital stock process {K'(7)} is also adapted to {FV}.
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by Ito’s lemma, the right-hand side is the expected rate of increase of revenues (the determinant of
the variance-covariance matrix, ||Z||, appears because of Jensen’s inequality). Intuitively, for the
firm’s infinite horizon value to be finite the required rate of return must be large relative to the
growth rate of operating profits for given capital (¥,) and (minus) the expected rate of increase of

the capital purchase price (-9,).

Characterization of irreversible investment

The installed capital stock { K(r)} may depend on the whole past history of {Z(r), P(7)} if invest-
ment is irreversible; thus, K (¢) is a state variable at time t. However, history dependence does not
extend past the last time of positive gross investment. It is convenient to define a desired capital
process K< (P(t), Z(t)) such that

K2 K(P(0,20);  dG()>0 = K(t) = K*(P(t), 2(1))

To see that an optimal irreversible investment program can be characterized in terms of the “desired
capital” construct, imagine momentarily lifting the irreversibility constraint at some time f. At £,
the installed capital stock would be unconstrained, thus not a state variable; if an optimal choice of
capital stock at { exists, it must then be a function of Z(f) and P(f). If dG() > 0 in the optimal
irreversible process, the irreversibility constraint is not binding at f and removing it has no effect:
hence dG(t) > 0 implies K(t) = K?(P(t), Z(t)). In general, the firm may choose to decrease its
capital stock when given an opportunity to do so, to imply that K(t) > K¢ (P(1), Z(t)).

- The investment rule which achieves the maximum in (4) can be computed explicitly. In Ap-
pendix A, we derive differential equations which are necessarily satisfied by the value function V/( .)
and by its derivative with respect to K, denoted v(.), along the optimal capital accumulation path.
The investment policy that solves these functional relationships has a simple and intuitive form:
the marginal revenue product of capital should never be allowed to exceed a constant proportion ¢
of the purchase price of capital P,

<ceP(t) Wi

(10)
=cP(t) Vt such that dG(t) > 0

Ok IL(K(t), Z(t), P(1)) {

Using the results reported in the Appendix, the ratio of flow marginal profits to purchase price of
capital which triggers investment can be shown to equal

e=r+6-9; + LZ||A (11)

We show in Appendix A that A > 0 if the condition in (9) is satisfied and the irreversible investment
problem admits a solution. Thus, when ||Z]] > 0 the marginal revenue product of capital that
triggers irreversible investment is larger than the neoclassical user cost of capital.
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The marginal condition in (10) can be inverted to obtain an expression for the firm’s desired
capital stock as a function of the current values of Z(t) and P(t):

.
¢ ﬂ‘l) (12)

K (2(1), P(1) = (;— o

The optimal irreversible investment policy can then be characterized quite simply in terms of
the closed form expression (12). If the currently installed capital stock K'(t) is smaller than K1),
the firm should immediately invest so as to obtain K (t) = K9(t); otherwise, K'() should be allowed
to depreciate. The firm’s managers need to form expectations for the distant future when deciding
when and how much to invest, because irreversible investment decisions, unlike reversibie ones, are
relevant to future cash flows: the firm may find itself stuck with an excessive stock of capital. The
desired capital stock, however, is by definition a function of current observables only and, under
the assumed functional forms, the features of the {Z(t)} and {P(t)} stochastic processes which are
relevant to the firm’s problem can be summarized by the scalar constant c¢. It can be shown that
¢/(r + 6 — ¥;) is decreasing in ¥, increasing in 9, §, and IZ]l. Intuitively, current decisions are
likely to make the irreversibility constraint binding over the relevant planning horizon, determined
by the discount rate r, if the rate of increase of desired capital is expected to be lower (relative to
the depreciation rate of installed capital), or if it is more volatile. ‘

Figure 1 plots the ratio of desired to frictionless capital stocks against ||| for several values of
the other parameters. As long as ||Z|| > 0, the “desired” irreversible capital stock K 4(Z(t), P(t))
is smaller than the frictionless capital stock K7 (Z(t), P(t)) of equation (7). It does not follow,
however, that the installed stock of capital should generally be smaller when investment is irre-
versible than when it is reversible. In fact, the risk-neutral firm under consideration is ez-ante
reluctant to undertake irreversible investment only because adverse realizations in the process it
takes as exogenous may ez-post leave it stuck with excess capital. Thus, although K(t) < KI(t)
at times of positive gross investment, we should observe K(t) > K/(t) when the realizations of
{Z(t)} and {P(t)} are such as to make the firm regret having invested in the past. On average,
the capital intensity of production under investment irreversibility is actually higher than it would
be if equation (7) applied at all times. This can be verified by the long-run average expressions
derived in the next section, and is due to the discounting effects discussed in Bertola (1988) and
Bentolila and Bertola (1990). In this paper, we disregard these effects on the level of capital to
focus on the dynamic implications of irreversibility for the investment series.



3. Aggregate Investment

Our stylized model of homogeneous capital accumulation yields a closed-form solution under
reasonably flexible functional form assumptions. Many real-life investment projects are well ap-
proximated by models similar to that of Section 2, and the simplicity of the solution makes it
possible to explore the empirical implications of the model. However, aggregation issues need to
be addressed before confronting the model with available data. Investment decisions are not taken
in isolation: different firms’ decisions to purchase similar equipment depend on each other through
market interactions; capital equipment is in general heterogeneous even within the same productive
process, with different types of capital being substitutable or complementary to each other; and it
may be possible to reconvert capital on hand to new uses, or to sell it to other users (at a price, of
course, which reflects the equipment’s current profitability and replacement cost).

We deal with these problems by focusing on investment in new capital goods, as is appropriate
from a macroeconomic point of view, and by modeling aggregate investment in terms of stochastic
aggregation of a continuum —approximating a very large number— of individual units indexed
by ¢ € [0,1]. Each “unit” should be understood to correspond to a specific type of homogeneous
capital, owned by a specific economic agent. We assume each unit to provide its owner with cash
flows approximated by the constant-elasticity function of equation (1), disturbed by a unit-specific
stochastic process Z;(t), and we let the capital stock installed in it be (irreversibly) accumulated by
paying the stochastic, unit-specific purchase price P;(t). In this framework, then, all linkages across
investment decisions —both those due to common ownership of heterogeneous types of capital, and
those deriving from market interactions among distinct decision makers— are modeled in terms of
cross sectional correlation of innovations in the unit-specific stochastic processes.

Aggregation of reversible investment
The parameters of the individual unit’s problem could all be indexed by i without substantially
affecting the results. For simplicity, however, let a, r, ¥;, 92, 0; and o; be the same for all
units. Reversible investment policies are then easily aggregated, even allowing for cross-sectional
heterogeneity in the realizations of unit-specific stochastic processes. Consider the logarithm of
unit i’s revenue-maximizing capital stock in the absence of irreversibility constraints,
1 r+6—19;) Pt

Hm;mxﬁa:a_lm((+a ”ZLD (13)
If Zi(t) and Pi(t) follow geometric Brownian motion processes (equations (2) and (3)), then an
application of Itd’s lemma yields

dk!{(t) = O dt + o dW,(¢) (14)

where W;(t) is a univariate Brownian motion process constructed as a combination of the processes
driving Pi(t) and Z,(¢), and

1 — V3 — }ojoy — 0}02) v = Vior — a2) (o) — 02)
)

l-a 1—-a

G=ﬁ




We denote with dk(t) the rate of growth of aggregate capital, and we let unit ¢’s share in k(1)
be a function w;(t) on i € [0,1] at time ¢:

dk(t) = /(;lui(t)dk.-(t)di

We then define the aggregate component of the uncertainty facing an individual unit,
1
o4dW(t) = / wi(t) o dWi(t) di,
0

and rewrite (14) as
dk{(t) = Odt + o4 dW(t) + o1 dWi(t). (15)

Noting that the idiosyncratic component of uncertainty
o1 dWi(t) = o dW;(t) — o dW(t)

averages to zero by definition in aggregate data, we can multiply (15) by wi(?) and integrate over
i on [0, 1] to obtain the dynamics of the aggregate capital stock under reversible investment:

dk!(t) = Odt + o4 dW(2). (16)

Thus, if investment were reversible idiosyncratic uncertainty would be irrelevant to aggregate out-
comes, and microeconomic investment theory could be directly applied to aggregate data. Invest-
ment functions derived from equations like (13), however, perform poorly when confronted with
actual data, at all levels of aggregation. In particular, their error terms are strongly serially corre-
lated, prompting researchers to include lags in their investment equations, rationalized by ad hoc

adjustment cost functions.

Irreversible Investment

We prefer to interpret the empirical shortcomings of equations like (13) in terms of unit-level
irreversibility. Each unit’s irreversible capital accumulation path is determined by unit-specific
Zi(t) and P;(t) processes through its desired capital stock process as defined in equation (12).
Since the desired and reversible capital stocks differ only by a constant of proportionality, the
dynamics of k¢(t) = In K¥(t) coincide with those of k{(t). Aggregating, we obtain

dk4(t) = ©@dt + o, dW(2). (17)

Consider next the logarithm of unit i’s installed capital stock, k;i(t). Roughly speakfng, we have
dki(t) = dk¥(t) at times when unit i is investing, and dk;(t) = —&dt at all other times.3 Let

? As is customary in general equilibrium and macroeconomic models, we approximate a large

number of finitely-sized individuals by a continuum of infinitesimally small units.
3 This statement is formally correct since the processes under consideration have continuous

sample paths. Note, however, that dk, is (infinitesimally) positive only on a measure-zero set of

time points, reflecting the singular character of the optimal investment policy.
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3i(t) = ki(t) — k3(t) denote the log deviation of a unit’s actual capital stock from its desired one.
Clearly,

o = {—6dt—dk;‘(t) when dG;(t) = 0,
' 0 otherwise

Integrating over i and defining 3(t) = fol wi(t)si(t)di, we obtain the dynamics of the aggregate
installed capital stock:
di(t)y = dk°(t) + di(t), (18)

Noting that i i
dG(t) — §K(t)dt

dk(t) = dIn K(t) = 70

?

where dG(t) and K(t) denote aggregate gross investment and aggregate capital, we can rewrite
equation (18) in terms of

_dG(1) o o GBI o dRd)
I(t) = 70 ()= 0 6= T + 4,
to obtain
[(t) = () + di(2). (19)

In our stochastic aggregation framework, the actual and desired gross investment/capital ratios
differ by d3(t), the change in the average difference between installed and desired capital stocks at
the individual units’ level.*

While only the mean of the empirical cross-sectional distribution of k;(t)—k%(t) is directly rele-
vant to aggregate phenomena, its dynamics are determined by all moments of the s;(t) distribution.
To study aggregate investment, it is then necessary to track the whole cross sectional distribution,
whose behavior depends crucially on the idiosyncratic component of unit-level uncertainty.?

The role of idiosyncratic uncertainty

We consider first the simple special case 04 = 0, in which innovations in the {Z;(1)} and {Pi(2)}
processes are independent across units as well as over time. We are then studying a large number
(approximated by a continuum) of units, driven by independent sources of uncertainty with com-
mon probability law. By the Glivenko-Cantelli theorem (see e.g. Billingsley, 1986), the empirical

i
* For most purposes, we might equivalently work with capital stock (log) levels which, by (18),
obey k(t) = l-c‘(t) +3(t). We choose to work with first differences because we feel that the dynamics
to be explained, at business-cycle frequencies, are those of the investment rate. However, we make

use of the (cointegrated) relationship in levels to estimate the k%(t) series (see Section 4 below).
® Since the identity of units at different points in the state space is irrelevant from the aggregate

point of view, it is not necessary to study the joint probability distribution of individual units (a
process of much higher dimensionality). Caballero and Engel (1990) discuss this point further.
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distribution converges to the common probability distribution of the individuals as the number of
units considered becomes larger; in the limit, it is therefore possible to characterize the behavior

of the former by that of the latter.

Appropriate methods for the study of probability distributions generated by continuous time,
continuous state space Markov processes are readily available in the literature. Let {F(s,2)}52,
denote the (nonstochastic) path of the cross sectional distribution for a given initial condition
F(s,0). We study the path of the “empirical density” f(s,t) = 8F(s,t)/8s, which we define as the
density function associated to the limit of the empirical distribution.

The cross sectional distribution f(s,t) must satisfy the same Kolmogorov transition equation
and boundary conditions as the probability density of individual s;(2) deviations, namely those
appropriate for a Brownian motion process with drift ¥ = —(© + §), standard deviation o, and
(since k;(t) < k4(t)) a reflecting barrier at zero.

In Apperdix B, we solve the appropriate functional equations to obtain
x 1
f(s,t) =€e™® +/ A(B)e Pt 2ES (COS(ﬂS) - 2—%5in(58)) dap (20)
Jo+

where § = - 2%, A(8) = (- + £2/4)9/€, and

A 2 [ o lgg o E N
A(B) = W./o f(s,0)e2 (cos(ﬂs)— i-ﬁsm(ﬂs)) ds.

If the initial cross-sectional distribution f(s,0) is different from
lim f(s,t) = €e™%, - (21)
t— 00

then its mean, given by
= _A(B)e 0

() =2 [ AT
S(t)—£ . 32(1+e2/4ﬂ2)‘w (22)

is not constant over time. As t — oo, however, 5(t) converges to %, the mean of the ergodic
distribution in (21), and d3(t) approaches zero from any initial condition. Figure 2 plots the ergodic
distributions for two different values of £ (solid lines), and some of the distributions éncountered
as the empirical densities converges to the flatter one starting from the steeper one (dashed lines).

By equations (18) and (19), actual investment should then track desired investment exactly
in the aggregate if all uncertainty is idiosyncratic. Idiosyncratic uncertainty cancels at all times
in the definition of aggregate desired capital as well, thus it should eventually be the case that
T(t) = I'"(¢t) = (O + 6)dt: the rate of investment should be constant as well as nonstochastic, and
the capital stock should grow exponentially at the deterministic rate 9.

10
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Aggregate uncertainty

In realistic situations, of course, capital accumulation does not follow a steady exponential path,
and aggregate uncertainty is not negligible. In the context of our model, this implies that 3()
should fluctuate over time in equation (19), producing the rich dynamics often captured by ad-hoc
lags in empirical investment equations. Recalling that the theory of Section 2 would apply exactly
only to accumulation of perfectly homogeneous capital, these remarks apply to empirical studies

of data at all levels of aggregation.

When o4 > 0, the empirical distribution over [0,00) of the s;(t) deviations has no steady state,
and its evolution over time is governed by stochastic versions of the functional equations solved
in Appendix B. While solutions to such stochastic partial differential equations can be shown to
exist (see e.g. Krylov and Rozovskii, 1977), explicit analytical solution methods are not available;
and, even if they were, additional steps would be necessary for empirical work on discrete-time
observations. The solution can be characterized quite precisely by heuristic arguments, however,
which also suggest an empirically useful approximation method.

At every point in time, the realizations of idiosyncratic stochastic processes tend to shape
the empirical distribution into the exponential form of equation (21). Thus, the empirical distri-
bution fluctuates around the form that would be stationary if all uncertainty were idiosyncratic,
converging towards it when aggregate developments are dominated by cross sectional ones, but
never coinciding with it. From the empirical point of view, only the mean of the cross sectional
distribution can be observed, at discrete time points. The mean, of course, is consistent with an
infinite variety of shapes for the cross-sectional distribution f(s,t). Each of these shapes has dif-
ferent implications for the mean’s responsiveness to further aggregate shocks, and must in turn be
consistent with the pattern of aggregate shocks observed in the past. The empirical problem is then
one of inferring, from the observed dynamics of endogenous and exogenous variables, the shape of
empirical distributions at every observation point — which depends on the history of aggregate
shocks and, given the assumed probability structure, on the relative importance of aggregate and

idiosyncratic sources of uncertainty.

In Bertola and Caballero (1990), we adopted a discrete approximation to both the state and
time dimensions of the problem. That approximation allows the empirical distribution’s evolution
to be characterized by a vector difference equation, which is straightforward (if cumbersome) to
implement on a computer; the possible patterns of aggregate shocks between observations are finite
in number in a discrete framework, and the shape of the empirical distribution can be determined
either choosing the path that minimizes some empirical criterion function, or (more restrictively)
considering only the average across all the possible paths. We implemented both procedures on

U.S. aggregate durables consumption data, obtaining quite similar results.

able as to aggregate developments, we assume the realizations of aggregate uncertainty to be evenly
spread within each observation period. Namely, if we can infer from aggregate data that the average
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desired stock of capital increases by z% between t and t + h, then we model aggregate dynamics
as if the increase occurred at a constant rate z/h in the continuous time interval between observa-
tions. This is only an approximation, of course. Investment being irreversible, the time-aggregated
investment rate is path-dependent and the variability of desired capital at higher frequencies is, in
principle, relevant for the observed path of installed capital. The approximation also neglects the
infinite variation property of Brownian paths; we believe, however, that any empirical importance
of these issues is overshadowed by the substantial simplification of the analytical and estimation
problems: the proposed approach makes it possible for us, as external observers, to reduce the in-
tractable stochastic partial differential equation to a sequence of deterministic linear PDEs similar
to the one solved in Appendix B.

Specifically, let observations on desired and actual capital stocks be available at the times
(to,ty,t3,...), wWith ty —t4_y = At, h = 0,1,2,.... The discrete counterpart of equation (19) is
then

T(t) = T*(ta) + A3(ts)
where I'(t4) and I'"(t4) denote, respectively, the observed and desired ratios of gross investment to
capital between»t;._l and £;.

Since aggregate developments are approximated by a sequence of nonstochastic trends, the
results of Appendix B can be applied within each observation period. Defining

2F'(t,.)
-
vr

£ =

1

we can treat the cross-sectional distribution at the end of each period as the initial condition for
the next period, and compute cross sectional densities at each observation point by the following

recursive relationships:

f(s,h) = £ e 2 4 /oio A(B; h) e~ PN e'%g"" (cos(ﬂs) - ;—;-sin(ﬂs)) dg {23)

h)= ——2 [ fs.h—1)e5€ &g is.
A(B;R) = 1r(1+£,2|/4ﬂ2)/0 f(s,h —1)eZ5h® (cos(ﬂs) 28 sm(ﬂs)) d.s. (24)

If the investment/capital ratio were constant over time, as would be the case if 04 = 0, then we
would have £, = §,_, for all h, and the recursion would track at discrete times the convergent path
of the empirical distribution to its stable form in equation (21). If aggregate investment fluctuates
over time, however, the £, values relevant to each observation are different, and the recursion
generates a sequence of distributions linked by initial and final conditions.

The change in the mean of the cross sectional distribution, A3(t), is then readily computed by
the expression in equation (22):

< A(B,h)e~Mp / [ A(B,h ~ 1)e~ MO\

1 1
$(h) = — - LA A A, | s
ash =g /: raramm a5 ). Pavaam %)

(25)
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4. Empirical implications and evidence

Given a value of o; and a I'*(¢) sequence, we can construct a predicted path of aggregate

investment, I'"(¢) + A3(t), and compare it to the observed actual investment rate I'(t).

This section interprets the behavior of U.S. investment in light of our theoretical results. An
annual I'(?) data series is constructed as the ratio of gross investment to the relevant capital stock
over the 1954-1986 period. The corresponding I'"(¢) is not directly observable, of course. We
approximate it in two different ways, both based on the simple neoclassical model of investment.
Appendix C reports some derivations along with data sources and definitions, and the two approx-
imation methods are described below. These series correspond to the hypothetical investment rate
that would be observed if disinvestment were possible at the individual units’ level, and demand,
prices and interest rates were those actually observed in the U.S. economy. In our partial equilib-
rium exercise, these series simply summarize aggregate effects in the partial equilibrium investment
problems of ﬁrms, and do not represent counterfactual general equilibrium experiments.

The actual investment/capital ratio I'(t) and the two alternative I'*(t) series are plotted in
Figure 3. The observed series is clearly much less variable than the theoretical constructs: the
standard deviation of the former is 0.017, those of the latter are 0.046 and 0.047. The contem-
poraneous correlations between actual investment and the two series are only 0.29 and 0.30. The
first-order serial correlation coefficients of the I'*(t) series are 0.25 and 0.23, while I'(¢) exhibits
substantially higher (0.68) first-order serial correlation. Before proceeding, we need to verify the
realism of the constant drift and variance assumptions we made in our theoretical sections. In fact,
there is no evidence of different dynamics in the data: the estimated I'*(t) series is statistically
indistinguishable from white noise.

The dynamic effects of irreversibility

In previous research, these facts have been rationalized by postulating smooth and convex adjust-
ment cost functions and have led researchers to estimate partial-adjustment equations of doubtful
microeconomic realism. Irreversibility of investment decisions, like more familiar forms of ad-
Jjustment costs, reduces the responsiveness of endogenous variables to exogenous shocks: at the
individual unit’s level gross investment is completely unresponsive to the forcing variables when
the irreversibility constraint is binding. The extent to which microeconomic inaction affects ag-
gregate dynamics depends on the degree of synchronization of individual actions, which is in turn
determined by the form of the adjustment policy on the one hand, and by the importance of ag-
gregate developments relative to that of idiosyncratic uncertainty (see Bertola and Caballero 1990
and Caballero and Engel 1990).

In the problem we are considering, aggregate uncertainty is small relative to the drift: the
sample mean of the gross investment/capital ratio, which approximates © + ¢, is 0.16, almost four
times as large as its standard deviation. At the aggregate level, then, the irreversibility constraint
should almost never be binding if aggregate innovations are normally distributed as we assumed
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above; in fact, desired gross investment is always strictly positive in our sample. If idiosyncratic
uncertainty were negligible, then, all units would be bunched in a spike at the k;(t) = k¥(t) point,
and actual investment should track desired investment exactly.

If o is large, on the other hand, the irreversibility constraint is binding (for some of the units,
in some of the periods), and it is possible for changes in the cross-sectional distributions to smooth
out the response of ['(f) to movements in I'*(t). The investment actually observed in a short period
of time is that undertaken by those units which are in the neighborhood of the k(t) = k%(t) point:
the width of the relevant neighborhood increases with total uncertainty, since units within a given
distance from the investment point are more likely to hit it if k%(t) is highly volatile.

As oy becomes larger, an aggregate shock which shifts all units by a given amount in this space
triggers investment by fewer units, since the cross-section distribution of k(t) — k%(t) deviations
becomes flatter (see Figure 2, where a large o, yields a smaller £), and the proportion of units within
the relevant distance from the investment point which experience a positive change in their desired
capital stock tends to become constant as oy/o4 increases.® Thus, investment per unit time is
unresponsive to aggregate shocks when aggregate developments are drowned by idiosyncratic ones
and investment is irreversible at the microeconomic level.

Empirical results ,

We proceed to compare the observed sample path of investment with that implied by our model.
Since the unbounded state space implied by investment irreversibility is computationally imprac-
tical, we implement the solution derived for the case of a bounded state space in Appendix B,
choosing a value S for the upper reflecting barrier so large as to obtain a f(S) value smaller than
the precision of the numerical routines we use. We also need to truncate the Fourier series represen-
tation of equation (B12). Taking S = 10 (i.e., allowing actual capital to be over twenty thousand
times larger than desired capital) and considering 15 terms in equation (B12) yields a more than

satisfactory approximation.

We show in Appendix C that, under assumptions of Cobb-Douglas production and isoelastic

demand, the hypothetical desired investment series can be computed as

() = u(A In Y(t') -Aln rk(t)) +(1 = v)T(t) + vé - (26)

® A more detailed discussion of this insight is in Bertola and Caballero (1990). In the framework
considered there, however, another effect also came into play: if there is reflection at an upper
(disinvestment) boundary as well as at the k%(t) = k(t) point, similar considerations apply to dis-
investment and, since the effects are symmetric inasmuch as idiosyncratic uncertainty is concerned,
net adjustment tends to reflect aggregate shocks fully as idiosyncratic uncertainty increases. In
the symmetric driftless case we emphasized in that paper, this effect is the predominant one; in
the presence of drift, however, the relationship between idiosyncratic uncertainty and aggregate
smoothing is not monotonic even when reflection occurs at both boundaries of the inaction region.
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where Y(t) is real value added and ri(t) is the neoclassical “rental” cost of capital, an empirical
counterpart of (r 4+ § — 9;)P(t) in equation (6) constructed from price and interest rate data. We
set the parameter v, defined in Appendix C, to 1.1 (reasonable alternative values leave the results

unchanged).

In Figure 4 we plot the aggregate investment path predicted by our model for the forcing
process in (26), choosing o; = 0.6 to match the observed character of the actual investment series.
Although the fit is far from perfect, this simple implementation of our model is clearly capable of
smoothing the dynamics of the investment process, and of increasing the persistence of aggregate
events’ effects on capital accumulation. On the one hand, the standard deviation of investment is
reduced from 0.046 (the standard deviation of frictionless investment) to 0.015 (to be compared to
the actual investment's standard deviation, 0.017). On the other, the first order serial correlation
is raised from 0.25 (for frictionless investment) to 0.66 (recall that the this parameter is 0.68 for

actual investment).

A more flexible specification

The constant-elasticity functional forms assumed in Section 2 and in Appendix C imply unit co-
efficients for the rate of growth of output and the change in the rental cost of capital in equation
(26). Because these functional forms should be regarded as approximations to more general ones,
however, it may be desirable to relax this restriction. We consider the alternative specification

Tij@)= u(blA nY(t)+b0Aln rk(t)) + (1 - v)[(t) + vé. (26")

The left hand side variable is unobservable, making estimation of the coefficients b; and b, somewhat
problematic. However, estimation can exploit the cointegration properties of the model, which are
more easily understood considering the integral version of equation (26), derived in Appendix C:

kf(t) = v(by InY(t) + bo In r(2)) + (1 - »)k(2) + v In(7(1 - 7). (27)
Recalling that k(t) = k/(t) + 3(t), (27) can be written in tefms of installed capital:
k) =blnY () +blnre(t)+In(v(1-7n)) + -ll;é(t). (28)

The unobservable component of equation (28), 5(t), is stationary if our model is correctly specified
(see Bertola and Caballero 1990). The &(t), InY(t), and In ri(t) series, which are all integrated of
order one, must then be cointegrated with cointegrating vector (1, -by, -b2).

Our model implies a strong negative covariance between k/(t) and 3(t). Although this moment
is of lower asymptotic order than the variance of the nonstationary regressors, the small sample
biases in the estimates of b; and b; are likely to be large.” The first row of Table 1 shows that the

T Basic projection theory implies that the estimate of b, InY (¢)+b; Inri(t), the most important
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TABLE 1

PROCEDURE b by
Static OLS 1.35 -0.23
(-) (-)
Stock-Watson 1.19 -0.87
(0.12) (0.39)
All equations include a constant.
Standard errors in parenthesis.

conventional cointegrating approach (static OLS) yields an output coefficient slightly larger than
one, while the ¢oefficient of cost of capital is very close to zero.

The small sample bias can be reduced if the cointegrating vector is estimated by the procedure
proposed in Stock and Watson (1989) which, in its simplest form, requires adding leads and lags of
the first differences of InY (t) and In ri(t) to the right hand side of (28) until the leftover residual
becomes approximately orthogonal, at all leads and lags, to the integrated regressors.® The second
row of Table 1 reports the estimates of b, and b; when two leads and lags of the first difference
of each integrated regressor are added; results are not very sensitive to the number of leads and
lags included. The coefficients we obtain by this procedure are not significantly different from the
theoretical unitary ones implied by constant-elasticity functional form. The coeflicient of the cost
of capital variable is larger in absolute value than that obtained by static OLS estimation, and is
significant: this is interesting in itself, since finding significant effects of cost of capital variables on
investment is not always easy.

Figure 5 reports the path of [(t) along with those of the I'(t) and I'*(t) estimates obtained
by the Stock and Watson procedure. Once again, there is clear evidence of excess smoothness

and persistence in actual investment as compared with frictionless investment, and the path of
investment predicted by our model tracks actual investment fairly closely.®

component of our proxy for k/(t), must have smaller variance than k(t) if estimated from equation
(28). Our model implies that the variability of k(t) should be smaller than that of k/(t) instead:
thus, the small sample bias of the conventional cointegrating regression is particularly harmful in

the context of models like the one we propose. :
8 Theleads and lags are added for estimation purposes only. Also note that the projection theory

result mentioned in footnote 7 no longer applies: here the fitted values are obtained multiplying a
subset of the regressors by their respective coefficients, and their variance can be larger than the

variance of the left hand side variable.
9 The overall fit of the flexible model is slightly better, for a given o, than that of the more

restrictive model. With o7 = 0.60, the R? rises from 0.36 to 0.41, The R? and other goodness-of-fit
measures are, of course, much higher if computed on the levels of the capital stock series rather
than on their first differences (i.e. investment rates).
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On the results

It would be possible, in principle, to estimate o; by maximizing the fit of the f(t) series to the
observed T'(t) series. When we search over larger values of o, however, the R? improves but the
predicted series becomes too smooth. Monte Carlo experiments suggest that measurement errors
in ['"(t) might at least in part account for this. When an “observable™ I'(t) series is generated by
our model from a I'*(t) series with the same moments as the ones we consider, the fit is of course
maximized at the oy the value used in generating the data; if serially uncorrelated noise is added
to the artificial *(t) series, however, then the fit of the original I'(t) tends to be maximized at
much higher values of o, although the serial correlation properties of the two series remain by and
large unchanged. This suggests that our procedure is quite sensitive to measurement errors. We
have therefore chosen to match the volatility and serial correlation of the observed series rather

than maximizing the fit.

This criterion yields a oy in the neighborhood of the 0.6 value used in generating the series
reported in the Figures, to imply very high unit-level volatility of desired capital: if capital were
perfectly mobile across units instead of being irreversibly allocated to a specific production process,
the capital stock in use at a given unit would vary by as much as 60% on a yearly basis with very
high probability.'®

Since Section 2 provides a completely specified model of unit-level investment, we can char-
acterize the microeconomic importance of investment irreversibility by specifying its parameters
so as to match the observed rate of growth of capital and of capital costs as well as the degree
of idiosyncratic uncertainty implied by the smoothness of aggregate investment. The choice of

parameters

191 = 0.05, 192 = —0.02, g = (%5) y 02 = (0%0)

is realistic, in that when combined with a = 0.10 they yield ¢ = 0.614 and © = 0.049 for the pa-
rameters of equation (14) above, matching the empirical evidence quite closely.!! The depreciation

10 QOnce again, the “desired capital” construct simply reflects external influences on the firm’s
problem in our partial equilibrium setting. The volatility of installed capital would not necessarily
be so high in a world without irreversibility constraints: if, counterfactually, capital were perfectly
homogeneous and all investment decision were reversible, the process followed by the price of new

capital P(t) would of course be quite different.
11 The parameter a equals 0.10 if, for example, the share of equipment capital ip value added

is 13% and the markup coefficient is 24%. Note that we have assumed all units to have the
same structural parameters, and the only source of comovement to be exogenous aggregate shocks.
In a sense, structural heterogeneity plays a role very similar to that of exogenous idiosyncratic
uncertainty (Caballero and Engel 1990), while strategic interactions may exacerbate (strategic
complementarities) or dampen (strategic substitutability) the relative importance of aggregate
shocks (Caballero and Engel 1989). These factors should be taken into account in order to interpret
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rate implied by the capital and investment series we use (U.S. business equipment investment) is
large (0.12 per year), and we set r + & = 0.20 in our empirical work. As shown in Figure 1 above,
these parameters imply that when investment is positive at the unit level the stock of capital is
about 33% lower than it would be implied by equality of marginal revenue product and conventional

user cost of capital.

the magnitude of the sources of the uncertainty faced by individual units.
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8. Conclusions

This paper proposes a closed-form sequential irreversible investment rule, studies its implica-
tions for aggregate investment behavior when. both idiosyncratic and aggregate sources of uncer-
tainty are present, and provides some empirical evidence for the model using postwar U.S. private

equipment investment data.

We have shown that aggregate data are broadly consistent with a model in which microe-
conomic units rationally choose to install less capital than it would be implied by a frictionless
neoclassical model when they invest, and allow the installed capital stock to depreciate when the
irreversibility constraint becomes binding. In our model, microeconomic investment aims to keep
installed capital close to a moving target which depends on the level of activity as well as on the
cost of capital; the microeconomic irreversibility constraint, interacting with idiosyncratic sources
of uncertainty, yields a smooth, highly persistent response of aggregate investment to innovations

ia activity and in the cost of capital.

Our mode! of aggregate investment has sound microeconomic foundations, and should be used
to characterize tax policy experiments and business cycle dynamics in future applied work. The
results of this paper do not yet provided a complete interpretation of investment dynamics, however:
the fit of our specification is satisfactory, but leaves unexplained a nontrivial and serially correlated
error component. Future research should explore the role of delivery lags, of other non-convexities,
and of quasi-fixed factors other than capital. For this purpose, it will be important to study
more disaggregated data, and it might also be useful to allow the volatility of both aggregate and
idiosyncratic sources of uncertainty to vary within the sample.
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Appendix A

The value function is defined as a present discounted value of expected values, and heuristic
arguments (based, for example, on a discrete time approximation) suggest that optimal irreversible

investment should satisfy a Bellman equation in the form
rV(R(1),Z(t), P(t)) dt = %?.:c) K(t)*Z(t)dt — P(t)dG(t) + E{dV (K(t), Z(t), P(t))}
subject to dG(t) > 0

at all times t.

We conjecture (and verify later) that the function V (&', Z, P)) is bounded and twice contin-
uously differentiable in all its arguments for {A, Z, P} € (0,00)3. 1t5’s change-of-variable formula
then yields (omitting time indexes and the arguments of V(.}):

E{dV(.)} =E{0xV(.)dK + 82V (.)dZ + 8pV (.)dP
+ 3022V ()(d2)? + }0ppV()(dP)? + pzV()(dZ)(dP))
=0k V() —6Kdt +dG)+ dzV(.)Z01dt + @pV(.)PV2dt
+ 3 (0zzV ()2 ajovdt + BppV(.)P20}oydt + BpzV ()P Z(0h0y + 0h01)dl)

(A2)

where dxy f(z,y) denotes the partial derivative of a function f(.) with respect to z and y, evaluated
at X =z,Y=y.
Using (A2) in (A1), elementary Kuhn-Tucker formalism suggests that optimal irreversible
investment should satisfy the complementary slackness conditions
IV (K(t), Z2(t), P(t)) < P(t) Vi (A3)
Ik V(K (t),Z(t), P(t)) = P(t) Vt:dG(t)>0
If 3k kV(.) exists and is not zero, the second line of (A3) implicitly defines K% (Z(t), P(t)).
Along the optimal irreversible accumulation path, the maximization in (A2) can be taken for
granted, and (A1,A2,A3) imply that V(.) should satisfy the relationship
rV(.)=K°Z +0xV()N-6K)+ 8zV(.)ZV, + 8pV(.)PV;
+ 1 (822V(.)2%0}01 + BppV(.)P 0401 + OpzV(.)PZ(0}01 + 0401))
This functional equation holds identically along the optimal path, and can be differentiated term-
by-term with respect to K if the relevant derivatives exist. Defining v(K, Z, P) = 8xV (K, Z, P),
we obtain

(r + 8)v(.) =aK®='Z + Ok v(.)(~8K) + 8zv(.)Z9, + Bpv(.)P¥,
+ 38zzv(.) 2001 + }3ppv(.)P2d40, + Opzv(.)PZ(0} 0, + ohay)

(A4)

(AS)

By (A3), the investment policy pre\}ents v(K,Z,P) from ever exceeding P. Thus, v(.,.,.) must
satisfy (A5) as well as the boundary condition

vw(K%Z,P),Z,P)=P (A6)
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If the relevant derivatives exist (and, in particular, if K4(Z, P) is differentiable), differentiation of

(A6) yields
dxv(K%Z,P),Z,P)=0

pv(K4Z,P),Z,P)=1 (A7)
Azv(K%Z,P),Z,P)=0
Further, it must be the case that
lim »(K,Z,P) =0 (A8)

since Z = 0 is absorbing for the {Z(t)} process.
The solution to (A5) is

aKeTlz c=A co— A 1o
o(K.Z,P) = { rrab=t; ~ i1 (@K°712)" PI=4, K > K4(Z,P) (A9)
P, K < K%2,P)

where

= (81 + (1= ) ~ 9~ HIZ) + /(91 + (1 = a)6 — 92 — LIZI)® + 2(r + 6 - 35) |||
= =l

is the positive solution in z of

LIZlz? + (91 + (1 - a)6 - 92— L|IBY) z = (r + 6 — 95) = 0.
and c is given in equation (11) in the text.

It can be verified that 4 > 1/(1 - a) if condition (9) in the main text holds true, and that
c=r1+4+6—1; only if ||| = 0 and 9 — (1 ~ a)é — J;#> 0. This would be a degenerate special
case of Arrow’s (1968) nonstochastic model, in which disinvestment is never desirable and the
irreversibility constraint is completely irrelevant.

The investment policy characterized by (10) and (11) in the text is associated to a bounded,
twice continuously differentiable value function V(.), confirming the conjectures that led to (A1)
and (AS5). Over the region K > K?%(Z,P), the derivative of the value function with respect to
capital is v( K, Z, P) given by (A9); thus,

K
V(K,Z,P)=V (K%Z,P),Z,P) +/

v(k, Z, P)dk if K> K42, P) (A10)
K4 2Z,P)

Over the region K < K%(Z, P), by the definition of the desired capital stock, we have

V(K,Z,P)=V(K%Z,P),Z,P)) - (K*Z,P) - K) P (All)
Equation (A10) can be integrated .to yield
[ Koz K(Ala=0)+1) -4 (5 7)4 pi-4
- - H > rd
V(K.,Z,P)=Vo(Z,P)+ { T+al -7 (A-1)(a-1)A+1) K2 K4Z2,F)
—(K%Z,P)-K)P if K < K%Z,P)
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where Vo(Z,P) = V (K% Z,P),Z,P). Since the irreversibility constraint can only decrease the
value of the firm, V/(.} is bounded for P,Z in (0,00) if the condition in (9) is satisfied.

Appendix B

This appendix derives the dynamic density of a Brownian motion with reflecting barriers at

zero and at § > 0, and takes the appropriate limit as § — oo.

Finite state space

Let f{s,t) denote the probability density of a process s(¢) with stochastic differential
ds(t) = 0dt + o dW (1), 9<0, >0

where {W (1)} a standard Wiener process, and let {s} be reflected at 0 and at S > 0. The function
f(s,t) can be derived by solving the forward Kolmogorov equation

0:f(s,t) = 0284, f(s,1) — 99, f(s,1), (B1)

with boundary conditions
1029, f(0,t) = 9f(0,t) Wi, (B2)
1928, 1(8,t) = 9f(S,t) V1, (B3)

and given initial condition
fam=son [ s =1 (B4)

Separating the variables, we write f(s,t) = g(s)h(t) and obtain a couple of ordinary differential
equations. In the t direction,
K@)+ Mr(t) =0

has general solution h(t) = Ae~*!, 4 a constant of integration. In the s direction,

§"() +€6'(5) ~ Ada(s) = 0 (B5)
9(0) = ~£9(0) © o (B6)
g'(5) = ~¢9(S) (87)

where £ = ~29/0%, £ > 0.
Equations (B5-B7) define a Sturm-Liouville problem (see e.g. Churchill and Brown, 1987),

with characteristic equation

A
2 .
a’ + £a l’{ 0
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A< :_‘gg = 5—:"—2, the roots are real and solutions take the general form
g(s) = A1e™'* + Ae®?’, (B8)

Solutions in this form need to be considered only if they can satisfy the boundary conditions with

A, and/or A, different form zero: (B6) and (B7) require
A1 +6) + Az(a2 + &) =0 Are®S(ay + £) + Aze™5(az +£) = 0

All solutions in the form (B8) are then identically zero except the one corresponding to A = 0, with

o = —fv az = 0’A2 =0:
g(s;2=0)= 4e™%

2.3 .
We then consider the solutions obtained for A > 584 The roots are complex, and the solution

has the form
9(5:3) = €59 (A cos(B(A)s) + Bsin(A(A)s)) (B9)

where B(A) = /€ (% + f) Imposing (B6), we obtain
§A+B(M)B=-€A

to imply that B = ‘Ai%; for (B7) to be satisfied, we then need

/7 2 £2
A (71?35(75 - B(\) - 3!7((7\5) sin(B(\)S) = 0
Using the definition of 8 and simplifying, we get
Af% sin(B(A)S) =10

Thus, all solutions in the form of (B9) are identically zero except those for which sin(8(A)S) = 0,

or A f 2.2
nix
_5(34.4-)_-———52 , n=12,...

Combining the results, we find that the general solution to (B1-B3) can be written

f(s,t) =) Anfa(s)e™

n=0 i
Ao =0 a\ﬁ;%z("ﬂ:ﬁ-{-:—;), n=12,...
fols)=e"t  fu(s)= -39 (cos(%s) - %g sin(ﬁsz.s)) , n=12,...
The initial condition -
z Anfa(8) = §(s) (B10)

n=0
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determines the constants Ax, k = 0,1,2,.... Multiplying both sides of (B10) by fi(s)et?, in-
tegrating between 0 and S, and exploiting the fact that fos Fa(8)fu(s)et?ds = 0 for n # k, we
obtain
Ao =€/(1-e7%)
A= foi I3V fels)eCds.
Jo (Un(s)?) etods
The integral in the numerator of (B11) can be computed numerically for general g(.), and the

e =0,1,2,... (B11)

denominator has the closed form
s
2 3.3
|t etras = (5 + )
We note at this point that as n — co the constants converge to zero, and the As diverge to positive

infinity. Thus, truncation of the infinite series yields a satisfactory approximation to f(s,t).

The mean of f(s,t) can be computed analytically,

o S
3(t) = ZA,.e"’\“/ fa(s)ds
n=0 0
S 1 ad S¢ (B12)
= ‘1—'_‘_?5' + E + E A"eA-' (F(S, —5/2,71“'/5) ot ——-G(S’ —6/2'7;1/5))

T
n=0 211
where

F(z,a,b):/ €%* cos(bz)z dz
o .

_ (za cos(bz) + bsin(bz)  (a® — b%)cos(bz) + 2ab sin(bz)) g0 a? - b?
- a? + b (a? + b2)? (a? + b2)2

G(z,a,b) = /~ e** sin(bz)z dz
0

. (2abcos(bz) + (b — a®)sin(bz)  beos(bz) — asin(bz)) ar _ __2ab
= (a? + b%)2 z a? + b? € (a® +b2)?

Unbounded state space

Given that £ > 0,
lim f(S5,t)=0
S ~o0

and the boundary condition corresponding to (B6) is satisfied identically. All solutions in the form
1
[(s;8) = e 768 (cos(ﬂa) - 5% sin(ﬂs))

are therefore admissible, as well as fo(S) defined above, and the solution of the PDE takes the
integral form

f(5,1) = Aofo(s) + /O A () .
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where A(8) = 8~!(A). In the limit as § — oo, the expressions for A(4) and for the mean of the

distribution take the form reported in the main text.

Appendix C

This appendix discusses how the desired stock of capital can be inferred from observable
data under specific functional form assumptions, chosen to be consistent with the microeconomic
optimization model of Section 1 on the one hand, and to be readily approximated by available data

on the other.

Let every “unit” produce a homogeneous good by a constant-elasticity production function,
Y(t) = K(t)7¢,(t), and let the unit price of output be determined by a constant elasticity demand
function, P(t) = Y(t)""¢q4(t). Here ¢,(t) denotes the level effect on production of disembodied
productivity as well as that of inputs other than “capital,” taken as given in this paper, and (1)
indexes the strength of demand for the unit’s output.

If investment were not irreversible, the capital stock should be chosen at every point in time

to maximize
P()Y (t) - ri()K(t) = K ()"0~ "e, (1) ~Mea(t) — ru(t) K (2)

where r4(t) denotes the rental cost of capital at time t. As long as 0 < 7(1 -~ 5) < 1, the
maximization problem has a unique solution K/(2); in logarithmic form, the first order condition
yields

k()= ((1 -n)lnes(t)+Ineg(t) +In(7(1-n))-1In r,,(t))

S
1-9(1-9)

From the production and demand functions, we have
&) =Y(OK)™, et)=PO)Y(Q)",

where K (t) denotes the installed capital stock; using these relationships to eliminate the unobserv-

able €4(t) and €,(t), and defining
1

Ve ————— > 1,
1-9(1-19)

we obtain
k/(t) =v(InY(t) = lnre(t)) + (1 - v)k(t) + vin(7(1 - 7).

The individual unit’s desired gross investment to capital ratio can then be computed by the simple
expression in equation (26) in the main text.

Data definition

Our aggregate is the U.S. economy, and we use nonresidential private equipment for our capital
and investment series.
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We construct a ['*(t) series setting v = 1.1in (26) (we experimented with other values obtaining
essentially the same results), and identifying:
Y (t) with Gross National Product;

K{(t) with the stock of nonresidential private equipment (as reported by the Department of Com-
merce of the B.E.A.); h

rx(t) with the projection (in the logs) of (r+6)(1~T(¢))Pi(t)/((1—7(t))P(t)) on 7(t) and Pi(t)/ P(2),
where (r + §) is constant at 0.2,

7," :) is the ratio of National Account investment and GNP deflators,

T(t) is the perfect foresight present value of tax saving from investment credits constructed by
Auerbach and Hassett (1990), and

7(t) is the corporate tax rate, also from Auerbach and Hassett.
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