
1744 

Progress of Theoretical Physics, Vol. 52, No: 6, December 1974 

Irreversible. Circulation and Orbital Revolution 

--Hard Mode Instability in Far-from-Equilibrium Situation--
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The need and the use of the concept" of cyclic balance and irreversible circulation are 
demonstrated by a chemically reacting system with two ind~pendent degrees of ,freedom.· 
Under the presence of auto-catalytic channel, the reaction network may lead to instabilities. 
at a certain threshold for the controllable major reactant.. Attention is concentrated on the 
hard mode instability in particular, which leads to an orbital revolution. of the distribution 
function. By looking at the evolution of fluctuation as well as the drift, one finds that the 
irreversible circulation becomes singular at the marginal situation. The resulting limit cycle 
is just a macroscopic manifestation of the dynamically directed property which is latent in the 
fluctuation below threshold. The state beyond 'the threshold is analyzed with Prigogine
Lefever-Nicolis model. Emphasis is placed' on the fact· tha't temporal .oscillation is ·a new 
type of order which appears only far from equilibrium. 

§ 1. Introduction 

In a previous paper1> the concept of irreversible circulation of fluctuation 
was proposed for the description of the state of. a system of thermodynamically 
coupled degrees of freedom in a far from equilibrium situation. It was emphasized 
then that this co~cept is actually needed when there appears an instability through 
this circulation, in the sense that the resulting ordered·. state is· just a macroscopic ' 
manifestation of this circulation, i.e. a limit cycle. To elucidate the content of 
this proposal, a simplest significant example is treated in th~s paper. 

Although there may be any number ·of degrees of freedom according to tl1e · 
nature of the .problem, the essential feature of physics involved may be seen by 
a two-dimensional example, in so far as .. one is interested in the instabilities, i .. e. 
the behaviour of the system in the neighbourhood of the transition. When a 

I 
stable steady state becomes destabilized a small number of fluctuating modes are 
expected to slow down, thus eventually dominating the whole situation. Essentially 
there are only two typical cases, i.e. (1) soft mode instability, which is-familiar 
in thermodynamic equilibrium, and (2) hard n;_ode instability,2l which is associated 
with periodic variation in time, and is met only in far from equilibrium situation, 
i.e., in dissipative systems. In terms of the eigenvalues of regression rate matrix, . 
a soft mode instability is associated with single real eigenvalue, which ·becomes 
vanishing. The marginal situation is then expected to be characterized essentially 
by this one degree of freedom. On the other ha!Jd,' a hard mode instability ·J.s 
associated with a couple of conjugate imaginary eigenvalues at the marg-inal situa-
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.. Fig. 1. Chemical reaction network with two ind~pendent reference reactants X and Y.. Set

ting k,=k1 ,;,0, one finds a parallel model. A special case m=2 and n=O corresponds to 

Prigogine-Lefever-Nicolis model.•> Setting k.=k,=k..=O and adding an auto-catalysis 

m. to channel a, one finqs a series .model. Special· cases m.=n=l, and m.=O and n=2 

correspond to Lotka-Volterra model'> and the simplified Higgins-Sel'kov model.•> 

tion. Accordingly a .hard mode· instability is characterized essentially by two 

degrees of freedom, between which things are to librate. In this sense a two

dimensional example is just enough to look into the marginal situation. 

Introducing a concept of irreversible circulation a, a general treatment is, 

given in § 2 of a system with two thermodynamically coupled degrees of freedom. 

It is then shown that the existence of autocatalysis, i.e. nonlinearity, plays a 

positive role in giving rise to a hard mode instability .. The state beyond the 

threshold, i.e., the beha,;.ioui of ferro-cyclic phase is discussed in § 3, 'in which 

ah order parameter is introduced, indicating the angular momentum of the orbital 

revolution. 

As a concrete example which is p.ot trivial, a chemical reaction network 

with two independent reference reactants, i.e. X and Y, is taken up, which is 

illustrated in Fig. 1. .Here a dot i stands for a channel i with a forward rate 

codE.cient k,, and the encircled letters staiJ.d for the concentration of respective 

reactants. The backward reaction in -each channel is neglected. This scheme 

includes Prigogine-Lefever-Nicolis model8l (parall!'ll type), simplified Higgins

Sel'kov 1llodel'> (series type) ,and Lotka-Volterra model5l as its special cases. 

Explicit solutions of the nonlinear differential equations are obtained in § 4 

specializing to the. case of Prigogine-Lefever-Nicolis model. 

Discussion is given in § 5, including that on the applicability of a uniform 

stocha,stic model adopted in this paper. 

§ 2. General properties of a system with two degrees .of freedom 

--Hard versus soft mode instability--

Before going into a concrete example let us recapitulate the general theory 
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1746 K. Tomita, T. Ohta and H. Tomita 

and discuss the general properties of drift an.d variance expected in a system 
with two degrees of freedom. 

As a method to treat these reactions a stochastic approach is adopted/> be
cause one is interested in the nature· of fluctuation as well as secular motion. 

On the Markoffi.an assumption this reaction network is. governed by a master 
equation 

.E_P(X, t) = s{W(X-AX, AX)P(X-AX, t)- W{X, AX)P(X,t)}dAX. at 
The Kramers-Moyal expansion of this master equation acquires a realistic mean
ing, if one recognizes the local nature of transition, and introduces a scaling in 
terms of the system size parameter !J. Namely by using 

X=fJx=e-1x, -(e-1=!J), . } 
(1) fJrlP(X, t) =cp(x, t) and W(X, AX) =fJw(x, AX), 

the Kramers-Moyal expansion of the above equation looks 

.E_ c/J(x, t) = f: e"-1_!_(-__!_)" ·c,.(~)cp(x, t), at ft=1 n! ax (2)_ 

where 

c,.(x) = s dAXw(x, AX.) (AX)". (3} 

Van Kampen6> pointed out that the termination of (2) according to the.apparent 
power of e as it stands is not really consistent when the deviation from the most 
probable value stays microscopic. Introducing this idea by the transformation 

x= y(t) + e1f2E and P(E, t) =fJ1f2cp(y(t) + e111E, t), 
the final expansion according to the system size looks 

:t P <E. t) - fJ1f8y (t) . ap ~~ t) 

=fJ i: e"fB _!_(-__!_)" ·c,.(y(t) +e111E)P(E, t). 
,.=1 n! aE 

(4) 

(5) 

One may choose the hitherto undetermined function y(t) in such a way that the 
lowest order term is cancelled, which leads to the equation 

dy/dt=c1(y(t)). (6) 

Retaining, then, the lowest order term in the remainder, one is left with a 
linear Fokker-Planck equation, i.e. 

(7) 
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Irreversible Circulation and Orbital Revolution 1747 

where 

G(E, t) =K(y) ·EPCE. t)- (D(y)/2) · :E P(E, t) 

is the probability flux, and 

(8) 

stand for the drift regression and diffusion in the probability distribution, respec

tively, and may depend on time through y(t), which satisfies the kinetic equa

tion (6). 

From this master equation one may derive the evolution equations for a small 

deviation (Jy and the first and second moments, 

namely, 

and 

(d/dt) (Jy= K · (Jy, 

(d/ dt) p= K · p 

(d/dt)u= Ku+ Ku+ D, 

(9) 

(lOa) 

(lOb) 

where tilde "" denotes the transposed matrix. Here (9) for (Jy describes the 

time course of small non-stationary deviation. One may argue that (lOa) is 

redundant, because p=(E)=O in our approximation. Suppose, however, one 

observes a sample process of a spontaneous fluctuation from the most probable 

path y (t). Then the time course of the average deviation (E)c obeys (lOa) with 

the use of a conditional probability distribution as p (E, t). 

In a stationary situation the fact that Eq. (9) coincides with Eq. (lOa) pro

vides a proof of the assumption made by Onsager.7> The coincidence is by no 

means universal, and here it is the result of th~ system size expansion which 

assures the normal behaviour of the distribution function. 

By the use of the shift p and variance u, the solution of the original Fokker

Planck equation may be written as 

P(E, t) = [det(g(t)/2rc)]lf2 exp{¢(E, t)}, 

where 

¢CE. t) = -HE-p(t))·g(t) · CE-p(t)) (11) 

and 

g(t)u(t) =1. 

In the present approximation one is to set p = 0 hereafter. 
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1748 K. Tomita, T. Ohta and H. Tomita 

2.1. Drift evolution 

The secular drift y (t) obeys Eq. (6) and the steady state satisfies the con
dition c1 (y,) = 0. . The stability of the steady state may be discussed by looking 
at a small deviation (Jy from the steady State which obeys 

(d/dt)tJy=K,·tJy, (12) 

where 

K, . K (y,) = ( Ku (y,) K12(y,) ) 
Kz1 (y,) Kzz (y,) • 

(13) 

stands for the rate of. drift regression. Setting 

one finds a secular equation 

where 

T=Ku+Kzz=Tr K and i1=KuKzz-Kl2K2!=det K. 

Then ). is explicitly given by 

;.± = { - r ± ..; r- 4LI} 12 , 

{Cl) (b) 

Ar 
(1) 

(1) -· .. , ... -. --, . L1 
' ' '•, 

A~' .... I ........ 

Ai 

(2) 1 (2) 

0 

r 
Ar 

Fig. 2. Schematic representation of the eigenvalues as stability limit is approached: 
(a) Soft mode instability (.4~0, for a given F), (b) hard mode instability (F~O, 
for a given .4). In Fig. (2) arrows indicate ·the motion of the eigenvalues in the 
complex A-plane. (A=A.+iA1) 

(14) 

(15) 

(16) 
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Irreversible Circulation and Orbital Revolution 1749 

from which one immediately recognizes that there are two different cases in which 

the real part of A is to vanish. 

i) J~ocr<o) 

In this case A has no imaginary part when J becomes vanishing. This means 

that a single mode corresponding .. to L becomes unstable, and this one mode 

c).ominates the behaviour of the whole system at marginal situation. This is the 

case of soft mode instability, which is pbpular in the analysis of phase transi

tion in thermodynamic equilibrium. In fact this is the only type of instability 

which can be met in thermodynamic equilibrium, because the principle of micro

scopic reversibility applies to this case only. 

In a far from equilibrium situation, howeve~, a second type of instability 

may appear. -

ii) r ~o CJ>O) 

In this case a couple of modes~ i.e. A+ and L, become unstable at the same 

:time and the two eigenvalues become purely imaginary and conjugate to each 

other. In other words the transition has essentially a, twocdimensional character 

at the marginal situation. This new species may- be called a "hard mode insta

bility"/> which is characteristic only to far from equilibrium situation. Appearance 

of this new type instability implies that the detailed balance does not hold in 

this case, and the overall balance should be called a cyclic balance instead. The 

eigenvalues A±~ ± i JA stand for tlie frequency of an undamped drift rotation, of 

which. the sense is determined by the sign of 

p= (rot tJjr).=K21-Kl2. (17) 

2.2. Evolution of variance. 

The variance u (t) around the secular drift is governed by (lOb), and the 

steady state solution is. given by-

u.= -K--'-1 (D+2a)j2; (18) 

where 

~. ' ( 0 1 
a=(Ku-Ku)/2=a -l. 0 ) (19) 

stands for the . angular momentum 

a=t<[f(O),ECO)J>=t<ECO) xECO)), (20) 

or the areal velocity of the irreversible circulation of fluctuation. In fact it can 

be shown that the angular momentum is conserved not only for the average over 

distribution- but also along each stream line of the probability current. Alterna

tively a . is interpreted as the antisy;mmetric part of the Onsager kinetic coef~ 

ficient L 
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1750 K. Tomita, T. Ohta and H. Tomita 

By requnmg that u is symmetric in (18), one may explicitly obtain a. In 
our particular case of two-dimension a looks 

a= { (Ku- Kaa) D12 + K12Daa- KalDu} /2T, 

and in terms of a the variance (JiJ is expressed as 

6u= {K12(Du-2a) _-Ka~u} /2J ~ l 
6aa= {Kal (D12+ 2a) -KuDaa} /2J, 

612= {Kl~aa-Kaa(Dla+2a)} /211 
= {KalDu-Ku (D1a- 2a)} /2J . 

(21) 

(22) 

Let us now focus our attention ~m the possible singularities appearing in the 
variance u. First of all every component of the variance involves the determinant 
J=K11Kaa-K1$a1 in the denominator. This means that J~O corresponds to a 
diverging variance, ~hich is an indication of instability. Clearly this corresponds 
to the soft mode instability as was defined in the previous section by drift evolu
tion. In this case the time correlation function of the fluctuation is dominated 
by a single mode with purely real eigenvalue A.r~O, but the circulation a, although . 

~ it is not vanishing by itself, is relatively unimportant, because of the essentially 
one-dimensional character of the system at marginal situation. 

A second feature common to the components of variance is that they in
volve the irreversible circulation a. As is clear from the expression (21) for· 
a; a will be divergent when T=Tr 1<~0, which leads to a second instability of 
vanance u. This corresponds clearly to the case of hard i:node instability as 
defined in the previous section. From the point of view of the fluctuation this 
particular kind of instability is incurred through the pathological increase in the 
irreversible circulation, and a macroscopic circulation is expected to appear beyond 
the threshold. In this sense a may in no way be neglected in the ma,rginal 
situation, and the components of the variance are simply proportional to a in 
the marginal range of parameters, i.e. 

6 11 ~ -K12a/J, 6aa~ Ka1a/ J and 612~ Kua/ J~ -Kaaa/ J. (23) 
The trace of the variance is positive, therefore 

(24) 
This indicates that at marginal situation the sense of drift rotation p must coin
cides with that of irreversible circulation a, because J is expected to be positive 
definite. Furthermore, the average angular velocity of the fluctuation, defined 
by a/ .J det u, turns out to be identical with the orbital angular velocity .JA. 

§ 3. States beyond the instability 

In this section a qualitative discussion is given of the states beyond the in
stabilities, which were approached from the side of stable steady states in the 
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Irreversible Circulation and Orbital Revolution 1751 

previous section. 

3.L States beyond the soft mode instability 

As only one degree of freedom dominates the behaviour of the system at 

marginal situation, the newly emerging state is expected to be a node which is 

asymptotically stable. The transition, therefore, corresponds to an exchange of 

stability8> between :the old and the new steady states, of which the latter is ex

pected to be a static spatial pattern in wider sense. It will correspond to the 

eigenfunction belonging to the. particular eigenvalue which characterizes the dom

inant asymptotic state. The new states may correspond either to a combination 

of species, 'or a spatially non-uniform pattern of concentration when the effect 

of spatial diffusion is included. 

The discussion of stability of the n~w phase beyond the threshold from the 

point of view· of the fluctuation is quite parallel to that of the phase below the 

threshold, and it is expected that the regression matrix to the spatial pattern will 

have a vanishing determinant as one approaches the transition from above. 

3.2. States beyond the hard mode instability 

This is essentially the case of two degrees of freedom at the marginal situa

tion, which are characterized by a pair of conjugate eigenvalues of the regression 

matrix K. The state beyond the instability tends in most casts to a limit cycle 

y(t) which obeys the equation 

:ty(t)=cl(y(t)) and y(t+T) =y(t). (25) 

As the right~hand side is generally non-linear iny(t), the orbital revolution may 

be found only through numerical procedure. 

Corresponding to the small scale circulation a of the distribution below the 

threshold, one may now introduce a measure for the macroscopic orbital revolu

tion by 

A=l_ [y(t), y(t)] =l_ y(t) xy(t), 
2 2 

(26) 

where 

(2- l_. f r dsQ(s) 
T Jo · (27) 

stands for the average. over. one cycle of revolution. The quantity A is the av

erage angular momentum, or areal velocity of the orbital revolution. 

As the instability is incurred through the probability circulation a, which 

becomes· increasingly large when the transition is approached from below the 

threshold, the orbital revolution is naturally interpreted as a macroscopic manifesta

tion of cyclic balance in the underlying mechanism, and as characteristic to far 
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1752 K. Tomita, T. Ohta and· H. Tomita 

from equilibrium situation. In this sense the new phase may be called "ferro
cyclic" phase, which is characterized by ari order parameter A, i.e. its angular 
momentum. The situation below threshold corresponds, then, to the·" par.accyclic" 
phase, where the cyclic balance is latent. 

One may still discuss the stability of the orbital motion by using the equa
tion governing the small deviation, i.e. 

(d/dt)iJy=K(y(t)) ·iJy, (28) . 

where y(t) is the solution of (25) which is periodic in time. In this case the 
overall stability is assured when 

- Re). (i) = Tr K (y(t)) =Ku + K22 <o, (29) 

which is a condition due to Poincare. The stability criterion for the steady state 
in the "para-cyclic" phase is a special case of this formula. Although 

-Re X(y,) =Tr K (y,) >O 

in the ordered phase, it is expected that 
the above condition for the time averaged 
quantity is satisfied if the new phase is 
stable in wider sense. 

The extension of the stochastic de
scription to the case in which the coef
ficients in the linearized Fokker-Planck 
_equation are time-dependent is just enough 
to discuss the situation in ferro-cyclic phast:. · 

In treating the fluctuation under the 
presence of orbital revolution it is much 
simpler and more instructive to use a frame 
of reference which is moving with the 

c 

y 

r 

orbital revolution itself. A natural choice Fig. 3. Transformation from .the static 
of orthogonal frame is a set of the radial frame (x, y) to the moving frame (r, s) · 

The s-axis is chosen as tangential to direction r and the tangential direction s curve c, which is the most probable 
as is shown in Fig. 3. The transforma- path determin~d by Eq. (25). 
tion matrix u from x-y frame*> to r-s frame is th~n given by 

U(t)= ( 
cos rjJ(t) sin rjJ(t) ), 

-sin rjJ(t) cos rjJ (t) 
(30)·. 

.. 
and with this a vector V and a tensor T are transformed into V' and T' accord~ 
ing to the following formulae, respectively: 

V'=U(t) · V and T'=U(t)TU(t), (31) 

where u is the transpose of u. 

*> Here (x, y) are used instead of (x,, xs). 
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Irreversible Circulation and Orbital Revolution 1753 

In order to separate the microscopic circulation from the macroscopic orbital 
revolution in pursuing temporal variation, the only point is that one has to take 
substantial time derivatives of relevant quantities, i.e. . 

dV' =U· dV +dU. V=U· (dV +R· v) 
dt dt dt dt 

and 

dT 1 =U(dT +RT+TR)u, 
dt dt .. 

where 

R= d U U = dcjJ ( 0 1 ) 
dt dt -1 o-

stands for the rate of rotation of the frame itself. 

and 

Starting from (28) and (lOb) ·one finds. 

!!:_ 6y1 = (K 1 +R) · 8y1 

dt 

d --dt u 1 = (K 1 + R)u1 + (K 1 + R) u 1 +D 1
, 

(32) 

(33) 

(34) 

(35) 

(36) 

where K1 and 0 1 are regression and diffusion matrices in the rotating frame, re
spectiv~ly. 

By remembering that cjJ(t) is related to the vel9city v(s) =c1 (y) of the o~bital 
revoh,1tion through 

cos cjJ(t) =vy/v and sin ¢(t) = -v,jv, 

one finds 

dcjJ/dt= -K:,. (37) 

Based on this relation, the effective regression matrix K1 + R is now reduced, 
i.e. 

K l R- rr ( K 1 0 ) +- I I 1·> 

K,r+Kr• K,. 
(38) 

~hich means that the regression in the transverse direction to the orbit is now 
separated. Suppose the limit cycle is stable, it follows naturally .that K;, is 
n~gative definite, inspi~e of its temporal variation, and the periodicity assures 
K:. = 0, because K/, = dv Ids; Therefore the Poincare condition for the overall 
. stability of limit~ cycle is assured, i.e. 
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1754 K. Tomita, T. Ohta and H. Tomita 

Using the relation (38) one may now write down evolution equations for 
the variance u' (t) and the circulation a' (t), i.e. 

!!..._ ""'=2K'""'.+D' 
d urr rrvrr rr' 

t ' 
(39a) 

d I (K' K') I (K' K') I D' - (JTB= rr+ II fJrs+ sr+ TB rJrr+ TB 0 
dt 

(39b) 

(39c) 

and 

-----a' (t) = [ (K' + R) u'- (K' + R) u'] /2 

=! [(K:,+K,',.)rJ;,.+(K:.-K~)rJ:,] ( -~ ~)· (40) 

It is clear that (J;,. may be treated as one separate dimension, which exhibits 
a normal behaviour. In other words the negative definite contribution of 2K~;,. 
and the positive definite contribution of n;,. find a balance at finite ();,. in an 
asymptotic state. In fact one. can prove that the periodic nature of K~ and n;,. 
assures an asymptotic periodicity of (J;,. in time. Given the solution (J;,., (J:, be
comes also finite because the regression coefficient K~+ K:, is negative. If (J;, 
vanishes asymptotically, the. variance becomes diagonal in the ·present moving 
frame. 

As the circulation a'(t) involves orily (J;,. and (J;,, it is expected that a' (t) 
tends to a finite value, apart from a pe!iodic time variation .. 

The behaviour of (J:, is clearly different. In this case, as K:, is purely pe
riodic, i.e. K:, = 0, there is no negative definite contribution to drJ:,; dt, which 
means that rJ;, increases, however slowly, because of the effect of D;,. As the 
rate is very small the periodic temporal variation of y(t) may be observed over 
quite a number of cycles; however, the distribution is destined to diffuse along· 
the orbit of limit cycle. Clearly this does not contradict to the stability of the 
limit cycle. In this sense the limit cycle may be described as quasi-stable, hav
ing asymptotic orbital stability and marginal phase instability. This increase of 
(J;, is essentially proportional to t, and is generally called "phase diffusion". *l 

When rJ;, becomes macroscopic in size the original expansion (4)"" (7) may no 
more be used; however, it may be shown that there will be no change of the 
distribution along the tangential direction in this limit if a new consistent ex
pansion is introduced. (See Appendix) 

*> In order to avoid confusion with spatial diffusion, we propose a new term "ensemble de
phasing" for this phenomenon. (cf. § 5.) 
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Irreversible Circulation ··and Orbital Revolution 1755 

§ 4. A concrete model (Prigogine-Lefever-Nicolis type) 

One may start from the reaction network illustrated in Fig. 1, but discus
.sion and calculations are restricted to the following specialized type: 

k,. 
(41) 

X+nY+B~(n+1)Y, 

'11:., 

Y+mX~(m+1)X. 

Here m and n are also used as the multiplicities of auto-cata~yses · in reactions 
m and n, respectively. 

The transition probability Wt (:X, y·; JX, JY) of channel i are given by 

w,.(x,y;1,0)=k,.a, ~ 
w. (x, y; -1, 0) = k.x , 

w,. (x, y.; 1, -1):: k,.x"'~ , 

w,.(x, y, -1, 1) -k,.bxy. 

(42) 

Without loss of· generality one may put all the rate constants equal to unity 
in order to simplify the -calculation. 

The secular motion is now governed by 

'(43) 

from which the steady state is solved as 

x,=a and y,= (a"'-1/b)lf<'"-1>. (44) 

Small deviation from the steady state satisfies the drift evolution equation (9), 
where regression matrix' is given by 

K=( (m-1)by,"-1 

- (m-1)by," 

- (n-1)x,"' )· 

(n-1)x,"' 

The stability condition for the steady state (44) now looks 

(i) J={1-n)a"'>O 

against the soft mode instability, and 

(ii) F=- {1+ (1-n)a"'- (m-1)y,a"'-1}<0 

against the hard mo<!_e iil.stahility. 

(45) 
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1756 K. Tomita, T. Ohta and H. :Tomita 

In order to concentrate to the case in_ which there .appears hard mode in

stability in particular let us set n = 0. In order to fine! a hard _mode .instability 

it is needed according to (ii) that m>2. Let us speCify m = 2 and look into 

the concrete model after Prigogine, Lefever and Nicolis.8> 

The stable range corresponds to small values of b. On increasing b a mar

ginal situation is attained for which 

b=b.=a8 + 1. (46) 

For b>bc the steady state is unstable against a hard mode instability, i.e .. r>o. 
In the para-cyclic phase, the critical 'slowing down of the drift regression 

is expressed by 

Re l= -r=b.-b, 

and the rate of drift rotation is given by 

Im l~-./J =a. 

The associated variance 6ii and circulation a are given by 

6:c:c=a(b. +b) I (b. -b), 

611v=b(bc +b) I (be -b)a, 

6:c11 =6y:c=a= -2abl(b.-b). 
} (47) 

When the variance u is diagonalized, two eigenvalues are found- to be 

(48) 

and 

a= -2abj(b.-b). (49) 

In Fig. 4 the inverses of variance and circulation are plotted as functions 

of the parameter b in the neighbourhood of transition. 

It is clear that at the marginal situation the irreversible circulation a is 

divergent as well as the variance u, and a macroscopic manifestation of this 

tendency _is expected beyond the threshold~ 

This behaviour is parallel to that of the paramagnetic susceptibility X as a 

function of temperature in the neighbourhood of Curit! point, according to the 

molecular field theory. 

4.1. The ferro-cyclic phase 

The states beyond the threshold, i.e. the ferro-cyclic phase, may generally be 

accessed by numerical integration of the .non-linear differential equations ( 43) with 

m = 2 and n = 0. The limit cycle solution has been found8> as shown _in Figs. 5 

and 6(a). 

The stability of the orbital revolution has been confirmed -by the 'condition 

Tr K (t) = 2x (t) y (t) - (b + 1 + x(tY) <o , (50) 
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1-5 X 

·Fig. 4. Inverses of variance and circulation as. 

functions of parameter b. (a=l) Below the 

threshold bc=2.0, rlx, rJ,. and a are defined. 

by (48) and (49). Abov:e t.he threshold 

inverses -of time average of r~:, and a' are . 

plotted which are defined by (39a) and (40). 

The order paramete:r; A is· defined by (26), 

for which the seale is reduced to 1/5. 

Fig. 5. Limit cycle and limit gully. The full 

line is the limit cycle. The dashed lines 

represent the relative magnitude of the 

transverse fluctuation, i.e., limit gully. (See 

.the Appendix.) The parameters are chosen 

to be a=l.O and b=2.1. 

where the regression matrix K (t) is giv,en by 

( 
2x(t)y(t) -b-. 1 

K(t)= . 
b-2x(t)y(t) 

x(tY ) 

-x(tY · 
(51) 

In Fig. 4 the orderparameter A(b) is 'shown as a function of the param

eter b>bc. It can be shown that A is proportional to b- be at least in the 

· ne'ighbourhood of the transition. , 
One now proceeds to the evaluation of fluctuation, which again is a func

tion of time, due to the orbital revolution. The variance u (t) is governed by 

Eq. (10), where K (t) is given by (51) and. the phase diffusion matrix D (t) is 
given by . . 

(
. x(tYy(t) + a+x(t) + bx(t) 

D(t) = 
-x(tYy(t) ~bx(t) 

-x(tYy(t) -bx(t) ). 

x (tYy (t) + bx (t) 

.After solving the variance u{t) the circulation a(t) is expressed as 

a(t) = {(b-2xy)O"_.._..-x20"uu- (2xy-b-1+x2)0".-.u}/2. 

(52) 
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x,v 

v --------------------------- --··· 
(a) 

2 

X 

L--+---'-------+'-''TIME· 
135 140 

T ---..jr' 

u.. 
1d 

VVi '" 10·t 

L-----'-------~ 

102~ n n (c) 1 I 1 I I 

:.1._·~~; _\J_' ~___.._ 
(d) ~. l 

'" f 
101 L-----'-------..L-

-104 (e) 

a 

~I 
- 1 ~L--~5~20~-----~5~2"5--

Fig. 6. Numerical results of most probable path 
(a), variances a •• (b), a"" (c), aw (d) and 
circulation a (e) for one period of limit 
cycle, determined by Eqs. (25), (10) and 
(53), respectively. (a=l.O, b=2.1) All the 
quantities except fo:r: (a) are subject to .a 
small but secular increase. 

'·':l r···_->-----.--1. (a) 

1 X~ ~ 
135 ·140 TIME 

50 
(b) 

(c) 
a~·-~~~+---+-+-~~--

50 

r:r' .. 

a' 

100 

(d) 

(e) 

Fig. 7. Behaviour of the variances a:. (b), a:, 
(c), a,, (d) and circulation a' (e) in the 
moving frame (r, s). a' (t) and a' (t) are. cal
culated by using (39) and (40), respectively. 
(a=l.O, b=2.1) In Fig. (d) the dashed line 
represents a,, two periods earlier. Other 
quantities are strictly periodic. 

The results of numerical calculation are giv.en in Fig. 6. As a result of the 
orbital revolution all the quantities of fluctuation appearing in Fig. 6 behaves 
roughly periodic. In closer examination, however, a small secular increase is 
noted in every element of variance. ancl circulation. This is an indication of 
ensemble dephasing. 

A more sensible frame of reference is the one that is rotating with the orbital 
revolution, as was describ~d in § 3 and Fig. 3. The natural direction are then· 
r and s, which are normal and tangential to the local orbit, respectively. Looked 
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Irreversible Circulation and Orbital Revolution 1759 

from this moving frame the asymptotic behaviour of the transverse variance ():.,. 

is strictly periodic in time as shown in Fig. 7 (b). It should also be noted that 

():.,. is positive definite. 'This is a result expected in the previous section. The 

same. arguments apply to the cross variance ();,=a':., and its asymptotic behaviour 

is also strictly periodic as shown in Fig. 7 (c). The only difference is that ();, 

may have either sign depending on the phase along the o:rbit. 

As there exists no negative contribution to the time rate of the longitudinal 

variance ();,, there results a secular increase in addition to a periodic variation. 

As was discussed in the previous section it is only for ();, that there remains a 

secular increase in addition to a periodic variation as shown in Fig. 7 (d). 

It was found by diagonalizing the variance that the secular increase is con

fined to the greater eigenvalue () M (t), and the smaller eigenvalue () m (t) is prac

tically periodic. It was verified that ():.,.(t) is always very close to () 710 (t) and 

in fact coincides with it when ();, becomes vanishing. This indicates clearly that 

the axes of the ellipse of variance are actually rotating, the longer axis trying 

to keep tangential to the orbit. Thi1,1 is only approximate, however, because ();, 

exhibits non-zero values, though its time average is fairly small. It is also con

sonant that O";,(t) is found to be rather close to ()M(t) both in its magnitude and 

its change in time. 

The real merit of the moving frame lies in the fact that it allows a defini

tion of "residual circulation" a' (t), which is free from secular increase, as was 

discussed in the previous section. Actual results are shown in Fig. 7 (e). 

In .order to discuss the ferro-cyclic phase, it is appropriate to define time 

averages of relevant quantities over one period of revolution. One may thus 

define () (J and a' according 'to (27), and investigate their behaviour as functions 

of the controllable parameter b, as was done in the para-cyclic phase. Although 

they cannot be expressed 'in simple formulae definite results are obtained, which 

are shown in Fig. 4 as a ferro-cyclic counterpart of already mentioned para-cyclic 

quantities. Using a perturbation expansion in terms of (b- be) /b., one finds that 

in the post-critical neighbourhood of the transition. It is also found that 

(a'):-1~ 2 2 (b-b•), 
2a -2a+l be . 

(55) 

which, when combined with the results for A(b)~- (2a2/(a2 +2)) (b-b.), leads 

to a relation 

a'·A~- (as+l)(2as-2a+l) =const 
a2 +2 

in the neighbourhood of the transition,- which is alternatively written as 

(56) 
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1760 K. Tomita, T. Ohta and H. Tomita 

<EX E)· [y(t) xj(t)] = const. 

This relation is very similar to the relation 

X·M~ 2 =const, 

or 

(.dp· 4p)(M·M) =const, 

(57) 

which one finds for a ferromagnetic transition in the mean field approximation. 
The significance of the quantity A (b) as an ord.er parameter for ferro-cyclic 
phase is quite clear from this parallelism. .. 

§ 5. Discussion 

. In writing down the transition probability for a concrete model, gas kiq.etic 
cross section formulae were adopted in § 4. As there have been comments on 
this procedure in relation to the validity . of local equilibrium, short discussion 
seems appropriate here. As was discussed by Kuramoto,9> the essential point is 
the scale of measurement under consideration, hence an introduction of spatial 
inhomogeneity is needed. As will be shown elsewhere in detail the. variance 
u(q) associated with a wave number q is given by 

where A.. is the spatial diffusion constant and Yo is the steady state solution, both 
being diagonal matrices. a(q) is the corresponding irreversible circulation. 

Suppo-se a measurement with short enou~h wa.ve .. length under a given dif
fusion A. and a non-singular a (q). Then one may· attain a situation in which 
the effect of spatial diffusion dominates that of reaction.· In this case one expects 
that tr (q) ::::::y0, which is the normal Einstein relation assuring the stability -and 
justifies the local equilibrium picture for short wave measurements: The ·gas 
kinetic cross section formula is ~nly natural in this case p.rovided the concentra
tion is not too high. 

Suppose now a measurement with lon_g enough wave length. Then there 
may be cases in which the contribution of reaction dominates that of diffusion, 
i.e. 

u(q) :::::::::u(O) =.-! K-1 (D+2a), 

which is just the result obtained by neglecting spatial diffusion and has nothing 
to do with the Einstein relation. It is not surprising, therefore, that .in this 
particular limit one may find instability, side by side the stability of short wave. 

As a result of the above consideration the use of gas kinetic cross ·section 
combined with a scheme without including· spatial diffusion ~s justified, provided 
it may be interpreted ilS a long wave limit of a formulation for which the local 
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·equilibrium is assured, and the result is applied to modes having global scale 

only. 

Irreversible circulation a may not be needed quantitatively when a relation 

(i=/= j) 

exists among the components of Onsager coefficient. In the present notation this 

corresponds to a relation D ~a, which is expected in two typical cases. When 

the relevant scale q-1 of measurement is small enough D involves a large term 

_which is proportional to .A.cly0, as was shown earlier, thus dominating a :finite 

a. It is only for a glo.bal scale measurement, therefore, that one may expect an 

appreciable contribution of the circulation a. Secondly, irrespective of the scale 

of measurement, circulation cannot app~ar in one dimension. In the case of soft 

mode instability essentially a single mode dominates the whole system at the 

marginal situ~tion, thus the eff~ct of 'the circulation a is expected to be small. 

In the ~ase of hard mo<le instability, however, at least two degrees of freedom 

are degenerate, and the effect of the circulation a d:ominates the entire system 

at the marginal situation. In this paper stress has been placed on this last case, 

which does not seem to have been given due attention as it deserves. 

Temporal oscillations are not rare in purely mechanical systems; however, 

the irreversible orbital revolution treated in this paper is an. object of different 

nature. Let us dwell on the difference in what follows. 

Technically, temporally periodic v.ariations may be classified into two cate

gories either mathematically or physically. With;. respect to the asymptotic scale 

ofthe oscillation, e.g., amplit~de, they ~re classified mathematically into two cate

gories, i.e., (A) a parametrized cycle family, or ··(B) a uni.que limit cycle. With 

respect to the physical origin .or character of oscillation, e.g., frequency, they 

m~y be classified into two categories, i.e. (a) conservative oscillation, or (b) 

dissipative oscillation.· Combining the two kinds of classifications one finds four 

different cases, i.e. 

I. (A, a): Conservative cycle family, 

II. (B, a): Conservative limit cycle,*l 

III. (A, b): Dissipative cycle family, 

IV. (B; b): Dissipative limit cycle. 

It is Clear that purely mechanical oscillation belongs to Case I; however, 

undamped mechanical oscill~tion of a closed system is always an idealiz,ation, 

and any real oscillating system is· subject to dissipation,' thus the oscillation is 

damped eventually, unless the system is driven from outside in a periodic way. 

The asymptotic state is. a thermodynamic equilibrium, in which there remains no 

*> The "frequency" is determined by conservative origin, but the asymptotic "amplitude" 1s 

determined by dissipation. 
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1762 K. Tomita, T. Ohta and H. Tomita 

temporal change by definition. 
The behaviour -of a system having an influx of matter or energy from outside 

is quite different. The closest state to equilibrium one may find in this case is 
the steady state; however, it is only in the neighbourhood of equilibrium that 
this kind of state exhausts the possibility. For there may app.ear a new ordered 
phase which is associated with undamped temporal oscillation, as has been dem
onstrated earlier as a hard mode instability. All the remaining cases II, III and 
IV in the above classification belong to this category, and may be expected only 
at far from equilibrium situation. They are clearly different from purely me
chanical oscillations in that they can only be induced in a dissipative system: 

Ordinary lasing*> seems to belong to Case II, and also various kinds of driven 
clocks. The Lotka-Volterra model6l for interacting p~pulations seems to belong 
to Case ill. The chemical oscillation treated in § 4 belongs to Case IV, and 
also the undamped spiking10>· in laser system. 

As was shown in §§ 3 and 4, the limit cycle is associated in principle with 
the ensemble dephasing. However, it should be emphasized that it is experimentally 
possible to observe a macroscoPic sample system which exhibits negligible de-' 
phasing. In the case of chemical reaction the synphasing agent may be either 
a natural diffusion against a volume reaction surrounding a local probe like micro
electrode, or an artificial stirring of the whole system as is described by Zhabo
tinskii.11l The spatially uniform oscillation may be detected in and· only in this 
kind of macroscopic sample observation. 

Although the appearance of a new type of order, i.e. limit cycle, was em
phasized in this paper, actual situations require spatial.order as well as temporal, 
as is clear from the experiments of Zhabotinskii et al.11l Thorough discussion of 
the variety of induced orders in a non-uniform reacting system will be given in 

' a forth-coming paper. Also a separate paper is in preparation to describe the 
Belousov-Zha botinskii reaction. 
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Appendix 

Asymptotic state after ensemble dephasing 
One may start from the system size expansion of the master equation (5) 

in (xh x 2) frame, and transform it ~nto the curvilinear coordinate system (r, s). 

*> As the oscillation behaves sinusoidal in the r,otating wave approximation, one may alternatively visualize the lasing as a soft mode instability by a simple change of the frame of reference. 
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Irreversible Circulation and Orbital Revolution 1763 

In the present. case, ·however, fluctuations may be assumed microscopic only along 

transverse direction r, i.e. 

r=ro+ e1f2p, (Al) 

in which r 0 can be chosen as .zero to specify the secular orbit. The differentia

tion is transformed into 

a _.,.-l;aar a+ as a -- .. -- --, 
ax, ax, f}p ax, as 

(A2) 

in which it is clear that the term involving a ;ap is one order greater than the 

other terms. 

Expanding with respect to p and retaining only terms of zeroth order in e1f2, 

one is left with 

~ p(s, p; t) = -~ (v(s)p) -K(s) ~ pp+ _!_ D(s)L p, (A3) 
at as ap 2 ap2 

where 

and 

P(s, p; t) =e-112cp(x1(s, e1f2p), x 2 (s, e1/2p);t), ! 
K(s) =K:r(s, 0), D(s) =D:r(s, 0) 

v (s) = {c/'' (x1, xaY + c/'' Cx1, xsYV1sl r=o. 

One may easily separate r and s direction by putting 

(A4) 

p(s, p; t) =n(s, t)f(p; s, t), · (A5) 

where f(p; s, t) is assumed as a normalized radial distribution. The resulting 

equations are 

a a 
-n(s,t)+- (v(s)n(s,t))=O 
at as 

(A6) 

and 

~f(p;s,t)+v(s)aj =-K(s)~pf+ _!_ D(s) ass/. (A7) 
at as ap 2 ap 

Equation (A6) is clearly a continuity equation, therefore, the total probability 

is conserved along the orbit. By putting 

f(p; s, t) = [2nO'(s, t)]-11s exp[ -ps/20'(s, t)], (AS) 

Eq. (A7) may be converted into an evolution equation for 0' (s, t); 

~ O'(s, t) +v(s)~ O'(s, t) =2K(s)O'(s, t) +D(s): 
at as 

(A9) 

and the true variance is given by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

2
/6

/1
7
4
4
/1

8
4
8
2
0
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



1764 K. Tomita, T. Ohta and H. Tomita 

(p8),,, = n (s, t) (J (s, t)'. 

Let us introduce a new measure of distance along the orbit by 

dr=ds/v(s), 

then Eqs. (A6) and· (A9) become 

and 

( ~+ ~)v(t)n(r, t) =o 
fJt fJr _ 

( ~+.~)8Cr, t) =2K(r)fJ(r, t) +D{r), 
fJt fJr . 

where the sign A denotes 

K(r)==K(s(r)) etc. 

In the moving frame, i;e. r'=r-t, these equations now look 

! v(t+r')n(t+r', t) =0 

and 

! fJ(t+r', t) =2K(t+r')fJ(t+r', t) + D(t+r'). 

From Eq. (Al2)' one finds 

v(t+r')R(t+r', t) =v(r')n(r', 0), 

or 

v(r)n(r~ t) =v(r-t)n(r-t, O). 

.(AlO} 

(All) 

(Al2) 

(A13)' 

. (A12)' 

(A13y·· 

(A14) 

This indicates a macroscopic orbiting of an incompressible probability drop and 
the phase diffusion does not appear in this limit. 

It can be shown that Eq. (A13)'- has a periodic asymptote ·with respect to 
t, because the initial memory is washed out by the regression coefficient K (r) <O. 
This asymptote is just coincident with the stationary solution of (A13) under 
a periodic condition with respect to r, i.e. 

:r fJ(r) =2K(r)8(r) + D(r). and· fJ(r) =fJ(r+ T), (A15) 

which might be called a limit gully and indicated by ffg(r). Finally the asymp.
totic variance is given by (AlO), i.e. 

(p8),,, = n(s, t)(J g (s). 

It should be noted that even at the initial stage·· of phase diffusion, the var
iance along the radial direction is almost saturated in the limit gully, because 
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the inhomogeneous linear equation (39a) for (J:.,. (t) is essentially equivalent to 

Eq. (A15) or (A13)'. 
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