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Abstract – A Generalized Langevin Equation with exponential memory is proposed for the
dynamics of a massive intruder in a dense granular fluid. The model reproduces numerical
correlation and response functions, violating the Equilibrium Fluctuation-Dissipation Relations.
The source of memory is identified in the coupling of the tracer velocity V with a spontaneous
local velocity field U in the surrounding fluid: fluctuations of this field introduce a new time scale
with its associated length scale. Such identification allows us to measure the intruder’s fluctuating
entropy production as a function of V and U , obtaining a neat verification of the fluctuation
relation.

Copyright c© EPLA, 2010

Models of granular fluids are a natural framework where
the issues of non-equilibrium statistical mechanics can
be addressed [1]. Due to dissipative interactions among
the microscopic constituents, energy is not conserved and
external sources are necessary in order to maintain a
stationary state. Heat fluxes and currents continuously
pass through the system, time reversal invariance is broken
and consequently, properties such as the Equilibrium
Fluctuation-Dissipation Relation (EFDR) do not hold. In
recent years, a rather complete theory, at least in the
dilute limit, has been developed and numerous aspects
have been clarified, in good agreement with numerical
simulations [2,3]. However, a general understanding of
dense granular fluids is still lacking. A common approach
is the so-called Enskog correction [2,4], which reduces the
breakdown of molecular chaos to a renormalization of the
collision frequency. In cooling regimes, the Enskog theory
may describe strong non-equilibrium effects, due to the
explicit cooling-time–dependence [5]. However it cannot
describe dynamical effects in stationary regimes, such as
large violations of the Einstein relation [6,7].
In this letter, we propose a model for the dynamics

of a massive tracer moving in a gas of smaller granular
particles, both coupled to an external bath. In particu-
lar, taking as reference point the dilute limit, where the
system has a closed analytical description [8], we suggest
a Generalized Langevin Equation (GLE) with an expo-
nential memory kernel as first approximation capable of

(a)E-mail: alessandro.sarracino@roma1.infn.it

describing the dense case. Here, the main features are:
i) the decay of correlation and response functions is not
simply exponential and shows backscattering [9,10] and
ii) the EFDR [11,12] of the first and second kind do not
hold. In the model we propose, detailed balance is not
necessarily satisfied, non-equilibrium effects can be taken
into account and the correct behavior of correlation and
response functions is predicted. Furthermore, the model
has a remarkable property: it can be mapped onto a
two-variable Markovian system, i.e. two coupled Langevin
equations with simple white noises. The auxiliary variable
can be identified in the local velocity field spontaneously
appearing in the surrounding fluid. This allows us to
measure the fluctuating entropy production [13], and fairly
verify the fluctuation relation [12,14,15]. This is a remark-
able result, if considered the interest of the community [16]
and compared with unsuccessful past attempts [17,18].
We consider an “intruder” disc of mass m0 =M and

radius R, moving in a gas of N granular discs with mass
mi =m (i > 0) and radius r, in a two-dimensional box of
area A=L2. We denote by n=N/A the number density
of the gas and by φ the occupied volume fraction, i.e.
φ= π(Nr2+R2)/A and we denote by V (or v0) and
v (or vi with i > 0) the velocity vector of the tracer
and of the gas particles, respectively. Interactions among
the particles are hard-core binary instantaneous inelastic
collisions, such that particle i, after a collision with particle
j, comes out with a velocity

v′i = vi− (1+α)
mj

mi+mj
[(vi−vj) · n̂]n̂, (1)
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where n̂ is the unit vector joining the particles’ centers
of mass and α∈ [0, 1] is the restitution coefficient (α= 1
is the elastic case). The mean free path of the intruder
is proportional to l0 = 1/(n(r+R)) and we denote by
τc its mean collision time. Two kinetic temperatures
can be introduced for the two species: the gas granular
temperature Tg =m〈v2〉/2 and the tracer temperature
Ttr =M〈V 2〉/2.
In order to maintain a granular medium in a fluidized

state, an external energy source is coupled to each parti-
cle in the form of a thermal bath [19–21] (hereafter,
exploiting isotropy, we consider only one component of the
velocities):

miv̇i(t) =−γbvi(t)+ fi(t)+ ξb(t). (2)

Here fi(t) is the force taking into account the collisions
of particle i with other particles, and ξb(t) is a white
noise (different for all particles), with 〈ξb(t)〉= 0 and
〈ξb(t)ξb(t′)〉= 2Tbγbδ(t− t′). The effect of the external
energy source balances the energy lost in the collisions
and a stationary state is attained with mi〈v2i 〉� Tb.
For low packing fractions, φ� 0.1, and in the large

mass limit, m/M � 1, using the Enskog approximation
it has been shown [8] that the dynamics of the intruder is
described by a linear Langevin equation. In this limit the
velocity autocorrelation function shows a simple exponen-
tial decay, with characteristic time M/ΓE , where

ΓE = γb+ γ
E
g , with γEg =

g2(r+R)

l0

√
2πmTg(1+α),

(3)
and g2(r+R) is the pair correlation function for a gas
particle and the intruder at contact. Time-reversal and
the EFDR, which are very weakly modified for uniform
dilute granular gases [6,22,23], become perfectly satisfied
for a massive intruder. The temperature of the tracer is
computed as TEtr = (γbTb+ γ

E
g
1+α
2 Tg)/ΓE . For a general

study of a Langevin equation with “two temperatures”
but a single time scale (which is always at equilibrium),
see also [24].
As the packing fraction is increased, the Enskog

approximation is less and less effective in predicting
the memory effects and the dynamical properties of
the system. In particular, velocity autocorrelation
C(t) = 〈V (t)V (0)〉/〈V 2〉 and linear response function
R(t) = δV (t)/δV (0) (i.e. the mean response at time
t to an impulsive perturbation applied at time 0)
present an exponential decay modulated in amplitude
by oscillating functions [10]. Moreover violations of the
EFDR C(t) =R(t) (Einstein relation) are observed for
α< 1 [7,25].
Molecular-dynamics simulations of the system have

been performed by means of a standard event-driven
algorithm to treat hard core interactions: the algorithm
is supplemented with a “driving event” at times which
are multiples of a small timestep (smaller than all time
scales) which update the velocity of all particles by a
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Fig. 1: (Color online) Semi-log plot of C(t) (symbols) for
different values of φ= 0.01, 0.1, 0.2, 0.33 at α= 0.6. Times are
rescaled by the mean collision time τc. Continuous lines are the
best fits obtained with eqs. (9). Inset: C(t) and the best fit in
linear scale for φ= 0.33 and α= 0.6.

discretized version of eq. (2). In the simulations we have
measured C(t) and R(t), for several different values of
the parameters α and φ. In fig. 1 symbols correspond to
the velocity correlation functions measured in the inelastic
case, α= 0.6, for different values of the packing fraction φ.
The other parameters are fixed: N = 2500, m= 1,M = 25,
r= 0.005, R= 0.025, Tb = 1, γb = 200.
Notice that the Enskog approximation [2,8] cannot

predict the observed functional forms, because it only
modifies by a constant factor the collision frequency. In
order to describe the full phenomenology, a model with
more than one characteristic time is needed. As a first
proposal, we consider a Langevin equation with a single
exponential memory kernel [26,27]

MV̇ (t) =−
∫ t
−∞
dt′ Γ(t− t′)V (t′)+ E ′(t), (4)

where
Γ(t) = 2γ0δ(t)+ γ1/τ1e

−t/τ1 (5)

and E ′(t) = E0(t)+ E1(t), with
〈E0(t)E0(t′)〉= 2T0γ0δ(t− t′), (6)

〈E1(t)E1(t′)〉= T1γ1/τ1e−(t−t′)/τ1 (7)

and 〈E1(t)E0(t′)〉= 0. In the limit α→ 1, the parameter
T1 is meant to tend to T0 in order to fulfill the EFDR of
the 2nd kind 〈E ′(t)E ′(t′)〉= T0Γ(t− t′). Within this model
the dilute case is recovered if γ1→ 0. In this limit, the
parameters γ0 and T0 coincide with ΓE and T

E
tr of the

Enskog theory [8].
The exponential form of the memory kernel can be

justified within the mode-coupling approximation scheme.
In this framework [28], it can be written as a sum
of two contributions: Γ(t− t′) = β1δ(t− t′)+β2Γ̃(t− t′),
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Table 1: Parameters of model (10), as obtained by fitting the numerical data (see text for details).

α φ Ttr Tg γ0/M T0 T1 γ1/M τ1/τc ΓE/M γEg /M TEtr TEg
1.0 0.33 1.00 1.00 55 0.99 1.0 44 67 55 47 1.00 1.00
0.8 0.33 0.92 0.90 47 0.91 1.0 42 68 48 40 0.84 0.89
0.7 0.33 0.88 0.86 45 0.85 1.0 41 74 45 37 0.78 0.86
0.6 0.33 0.86 0.84 44 0.82 1.1 43 89 42 34 0.73 0.83
0.6 0.20 0.92 0.91 27 0.90 1.0 26 54 24 16 0.82 0.91
0.6 0.10 0.95 0.96 17 0.95 0.99 12 29 15 7 0.89 0.96
0.6 0.01 0.99 1.00 9.6 0.99 – 0 2.8 8.6 0.6 0.98 0.99
0.6 0.01∗ 0.88 0.94 21 0.88 – 0 21 20 12 0.85 0.93

where β1 and β2 are model-dependent coefficients, and
Γ̃(t− t′) is a sum over modes q of p(q)e−(ν+D)q2(t−t′),
where p(q) weights the modes relevant for the dynam-
ics of the tracer. Here D and ν are the diffusion coeffi-
cient and the kinematic viscosity of the fluid, respectively.
Following an old recipe [26], tested with success in equi-
librium contexts, we assume that, for not too high pack-
ing fractions, memory arises due to re-collisions within a
limited region at distance ∼ λ1 around the tracer and that
this can be modeled by an effective p(q) which is peaked
around q1 = 2π/λ1, i.e. a single mode contributes to the

sum, yielding Γ̃(t− t′)∼ e−(ν+D)q21(t−t′) and then

τ1 = λ
2
1(2π)

−2(ν+D)−1 ∼ τgc (λ1/lg0)2, (8)

with τgc and l
g
0 the fluid mean free time and mean free

path respectively. Equation (8) relates the time scale τ1,
characterizing the tail of the memory kernel, with a typical
length scale λ1 present in the system. This length scale will
turn out to play a central role in the following.
The model (4) predicts C = fC(t) and R= fR(t) with

fC(R) = e
−gt[cos(ωt)+ aC(R) sin(ωt)]. (9)

g, ω, aC and aR are known algebraic functions of γ0, T0, γ1,
τ1 and T1. In particular, the ratio aC/aR = [T0−Ω(T1−
T0)]/[T0+Ω(T1−T0)], with Ω= γ1/[(γ0+ γ1)(γ0/Mτ1−
1)]. Hence, in the elastic (T1→ T0) as well as in the dilute
(γ1→ 0) limit, one gets aC = aR and recovers the EFDR
C(t) =R(t). In fig. 1 the continuous lines show the result
of the best fits obtained using eqs. (9) for the correlation
function, at restitution coefficient α= 0.6 and for different
values of the packing fraction φ. The functional form fits
the numerical data very well.
Looking for an insight of the relevant physical mecha-

nisms underlying such a phenomenology and in order to
make the meaning of the parameters clear, it is useful to
map eq. (4) onto a Markovian equivalent model by intro-
ducing an auxiliary field [29]:

MV̇ = −γ0(V −U)+
√
2T0γ0EV ,

U̇ = −U
τ1
− γ1

γ0τ1
V +

√
2
T1γ1

γ20τ
2
1

EU ,
(10)

where EV and EU are white noises of unitary variance. The
variable

U(t)∝ γ1/(τ1γ0)
∫ t
−∞
e
− t−t′τ1 [V (t′)+ E1(t′)]dt′ (11)

is determined up to a multiplicative factor, as can be
checked by direct substitution. In the chosen form (10),
the dynamics of the tracer is remarkably simple: indeed V
follows a memoryless Langevin equation in a Lagrangian
frame with respect to a local field U . In the dilute limit
this is exact (see Appendix of [8]) if U is the local average
velocity field of the gas particles colliding with the tracer.
Extrapolating such an identification to higher densities,
we are able to both assign a meaning and predict a value
for most of the parameters of the model: 1) the self-drag
coefficient of the intruder in principle is not affected by
the change of reference to the Lagrangian frame, so that
γ0 ∼ ΓE ; 2) for the same reason T0 ∼ Ttr is roughly the
temperature of the tracer; 3) τ1 is the main relaxation
time of the average velocity field U around the Brownian
particle; 4) γ1 is the intensity of coupling felt by the
surrounding particles after collisions with the intruder;
5) finally T1 is the “temperature” of the local field U , easily
identified with the bath temperature T1 ∼ Tb: indeed,
thanks to momentum conservation, inelasticity does not
affect the average velocity of a group of particles almost
only colliding among themselves.
To find a confirmation of the above hypothesis, we

have explored the region of the space of parameters
α∈ [0.6, 1] and φ∈ [0.01, 0.33]. From the simultaneous
fit of the numerical data for correlation and response
functions against eqs. (9) we can determine the set of
parameters {g, ω, aC , aR, 〈V 2〉}. Then, by inverting the
relations between them and the set {γ0, T0, γ1, τ1, T1},
we are eventually able to determine all the parameters
entering (4). In table 1 such values are reported, together
with the predictions given by the Enskog approximation
(last four columns). The statistical error on these values
is about 1%. We used the external parameters mentioned
before, changing α or the box area A (to change φ):
this makes the limit φ→ 0 equivalent to γg ∼ 1/l0→ 0
(“super-dilute” limit). The last row reports about the
true dilute limit: i.e. R is reduced, at fixed l0 (equal to
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the value of the previous case φ= 0.2), in order to get
φ= 0.01 and γg > 0. Notice that in the two dilute cases
the simple Langevin equation is recovered (γ1 = 0) and the
dependence on the parameter T1 disappears. Remarkably
our predictions γ0 ∼ ΓE , T0 ∼ Ttr and T1 ∼ Tb are fairly
verified. The coupling time τ1 increases with the packing
fraction and, weakly, with the inelasticity. In the most
dense cases it appears that γ1 ∼ γEg ∝ φ: this is confirmed
in the “super-dilute” limit, but cannot hold in the dilute
one, where γ1→ 0� γEg . It is also interesting to notice
that at high density Ttr ∼ Tg ∼ TEg , which is probably due
to the stronger correlations among particles. Finally we
notice that, at large φ, Ttr >T

E
tr , which is coherent with

the idea that correlated collisions dissipate less energy.
A fundamental feature of this model is its ability to

reproduce violations of EFDR. In fig. 2, we plot the
correlation and response functions in a dense case (elastic
and inelastic): symbols correspond to numerical data and
continuous lines to the best-fit curves. In the inelastic case,
deviations from EFDR R(t) =C(t) are clearly observed. In
the inset of fig. 2 the ratio R(t)/C(t) is also reported. It
is interesting to note that a relation between the response
and correlations measured in the unperturbed system still
exists, but —in the non-equilibrium case— must take
into account the contribution of the cross correlation
〈V (t)U(0)〉, i.e.:

R(t) = aC(t)+ b〈V (t)U(0)〉 (12)

with a= [1− γ1/M(T0−T1)Ωa] and b= (T0−T1)Ωb,
where Ωa and Ωb are known functions of the parameters
(see for instance [29]). At equilibrium, where T0 = T1, the
EFDR is recorvered.
The mathematical definition of the auxiliary variable
U , eq. (11), which requires the knowledge of a part of
the noise E1, makes it very difficult to be measured in
simulations or in experiments. But the above discussion
has shown that U represents a spontaneous local velocity
field interacting with the tracer: therefore it can be
measured in the following manner. We fix a distance l
and average the velocity of the gas particles within a
circle Cl of radius l+R centered on the tracer. In this
way we define Ul = 1/Nl

∑
i∈Cl vi, where Nl is the number

of particles in Cl . Two methods are available to estimate
the correct length l∗, which is difficult to be predicted on
a general ground. A first guess is provided by identifying
it with λ1, which can be obtained by inverting eq. (8)
after having measured τ1, using the known values of D
and ν in a granular fluid. The second method is to measure
the correlations 〈V Ul〉 and 〈U2l 〉 and find the best value
lcor such that 〈V Ulcor 〉 ∼ 〈V U〉 and 〈U2lcor 〉 ∼ 〈U2〉 (where〈V U〉 and 〈U2〉 are easily computed from the model,
once all the parameters have been determined fitting C(t)
and R(t)). Remarkably, the two estimates give compatible
results and identify a narrow range of values for l∗ ∼ λ1 ∼
lcor. Hence, one can identify U ∼Ul∗ and the auxiliary
variable can be directly measured in numerical simulations
and experiments.
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Fig. 2: (Color online) Correlation function C(t) (black circles)
and response function R(t) (red squares) for α= 1 and α= 0.6,
at φ= 0.33. Continuous lines show the best-fits curves obtained
with eqs. (9). Inset: the ratio R(t)/C(t) is reported in the same
cases.

An important independent assessment of the effective-
ness of model 4 comes from the study of the fluctuat-
ing entropy production [13] which quantifies the deviation
from detailed balance in a trajectory. Given the trajectory
in the time interval [0, t], {V (s)}t0, and its time-reversed
{IV (s)}t0 ≡ {−V (t− s)}t0, in ref. [30] it has been shown
that the entropy production for the model (4) takes the
form

Σt = log
P ({V (s)}t0)
P ({IV (s)}t0)

≈ γ0
(
1

T0
− 1
T1

)∫ t
0

ds V (s)U(s).

(13)
Boundary terms —in the stationary state— are sublead-
ing for large t and have been neglected. This functional
vanishes exactly in the elastic case, α= 1, where equipar-
tition holds, T1 = T0, and is zero on average in the dilute
limit, where 〈V U〉= 0. Formula (13) reveals that the lead-
ing source of entropy production is the energy transferred
by the “force” γ0U on the tracer, weighed by the differ-
ence between the inverse temperatures of the two “ther-
mostats”. Following the procedure described above, in the
case φ= 0.33 and α= 0.6, we estimate for the correlation
length l∗ ∼ 9r∼ 6l0. Then, measuring the entropy produc-
tion of eq. (13) (by replacing U(t) with Ul∗) along many
trajectories of length t, we can compute the probability
P (Σt = x) and compare it to P (Σt =−x), in order to verify
the fluctuation relation

log
P (Σt = x)

P (Σt =−x) = x. (14)

In fig. 3 we report our numerical results. The main frame
confirms that at large times the fluctuation relation (14) is
well verified within the statistical errors. The inset shows
the collapse of logP (Σt)/t onto the large deviation rate
function for large times. Notice also that formula (13)
does not contain further parameters but the ones already
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Fig. 3: (Color online) Check of the fluctuation relation (14)
in the system with α= 0.6 and φ= 0.33. Inset: collapse of the
rescaled probability distributions of Σt at large times onto the
large deviation function.

determined by correlation and response measure, i.e. the
slope of the graph is not adjusted by further fits. Indeed
a wrong evaluation of the weighing factor (1/T0− 1/T1)≈
(1/Ttr − 1/Tb) or of the “energy injection rate” γ0U(t)V (t)
in eq. (13) could produce a completely different slope in
fig. 3.
In conclusion, we designed a first granular dynam-

ical theory describing non-equilibrium correlators and
responses for a massive tracer. The value of this proposal
is to offer a significant insight into the mechanisms of
re-collision and dynamical memory and their unexplored
relation with the breakdown of equilibrium properties.
It is remarkable that velocity correlations 〈V (t)U(t′)〉
between the intruder and the surrounding velocity field
are responsible for both the violations of the EFDR and
the appearance of a non-zero entropy production, provided
that the two fields are at different temperatures. Small
non-Gaussian corrections [23], always present in granular
fluids, are neglected here in favor of the largest contri-
bution given by memory terms to violations of EFDR
and entropy production. For some of the parameters
in the theory (γ0 ∼ ΓE , T0 ∼ Ttr and T1 ∼ Tb) we have
reasonable predictions, while τ1 and γ1, related to the
coupling between U and V , deserve further investigations.
Close analytical predictions of all the parameters could be
obtained through a full kinetic theory (beyond Enskog),
also to deduce eventual extensions to the case M ∼m,
larger densities, and hard spheres.
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