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Irreversible reorganization in a supercooled

liquid originates from localized soft modes
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The transition of a fluid to a rigid glass on cooling is a common
route of transformation from liquid to solid that embodies the
most poorly understood features of both phases1–3. From the
liquid perspective, the puzzle is to understand stress relaxation in
the disordered state. From the perspective of solids, the challenge
is to extend our description of structure and its mechanical
consequences to materials without long-range order. Using
computer simulations, we show that the localized low-frequency
normal modes of a configuration in a supercooled liquid are
causally correlated to the irreversible structural reorganization
of the particles within this configuration. We also demonstrate
that the spatial distribution of these soft local modes can persist
in spite of significant particle reorganization. The consequence of
these two results is that it is now feasible to construct a theory
of relaxation length scales in glass-forming liquids without
recourse to dynamics and to explicitly relate molecular properties
to their collective relaxation.

A crucial concept4–9 for the transition between liquid and
glass is that the dramatic increase in viscosity of a supercooled
liquid as it approaches vitrification is caused by the growth
of localized domains of particles that must rearrange for the
liquid to flow. Locating a causal link between local structure and
such dynamical heterogeneities has proven elusive10,11. Recently, a
fruitful computational approach to isolating the structural origin
of dynamical heterogeneity has been put forward in the dual
notions of an ‘iso-configurational ensemble’ and ‘propensity for
motion’12. The iso-configurational ensemble refers to the ensemble
of trajectories that are run from an identical configuration
of particles with random initial momenta sampled from the
equilibrium Boltzmann distribution. Propensity refers to the mean
squared displacement of individual particles when averaged over
the ensemble at a given time scale. The heterogeneous character
and increased clustering showed in the spatial propensity maps
has established that the spatial distribution of these dynamic
heterogeneities can be explicitly attributed to structural features, as
yet unidentified.

Our goal is to understand that aspect of dynamic heterogeneity
directly associated with structural relaxation. To this end we
are interested in motions that (1) involve local reorganization
of particle configurations (here measured in terms of changes
in nearest-neighbour pairings13) and (2) are irreversible over
some observation time14 and, hence, contribute to relaxation. To
investigate this we consider a two-dimensional binary mixture of
soft discs whose transition from liquid to glass-like behaviour has
been well characterized15. The temperature units and the timescale

τ are defined in the Methods summary. We first establish how
many nearest neighbours must be lost around a given particle
before the probability of the tagged particle recovering its original
environment falls below 5%. For the binary mixture of soft discs
under investigation here, this threshold is four neighbours (see
the Supplementary Information). Equipped with this measure,
we can determine how the irreversible reorganization (IR) is
distributed in a given configuration. We record, over an ensemble
of 100 iso-configurational runs, the number of runs in which
each particle meets the irreversibility criterion within a time
interval of 200τ (this corresponds to the time at which the peak
of the non-Gaussian parameter9 occurs at this temperature and
represents a timescale of about 2,000 collision events). Maps of
the log of this probability distribution for six configurations at
a reduced temperature T = 0.4 are shown in Fig. 1. The IRs
mapped in Fig. 1 are elementary components of the slow structural
relaxation characterized by a time τα (=673τ for the simulations
reported here15).

What aspect of the initial configuration is responsible for
the observed spatial distribution of irreversible events? Previously,
we have demonstrated that the spatial distribution of the free
volume11 and local potential energy10 do not show any significant
correlation with the spatial distribution of the propensity. To
move beyond these purely local measures, we have determined
the normal modes for the local potential energy minimum
(the ‘inherent structure’) associated with a number of initial
configurations. We shall refer to these as quenched normal modes.
The participation fraction of particle i in eigenmode eω is given
by pi = |ei

ω
|2. In Fig. 2 we have plotted maps of the particle

participation fractions summed over the 30 lowest-frequency
modes for each of our initial configurations. An examination
of the individual mode eigenfunctions (see the Supplementary
Information) indicates that these low-frequency modes include
both localized and delocalized character16–18.

To establish the connection between the mode structure and
the subsequent IR, we have plotted in Fig. 3 the positions (white
circles) of those particles with ≥0.01 probability of meeting our IR
condition during the entire 200τ interval in the iso-configurational
ensemble on top of the maps of the participation fractions for
the low-frequency modes at time t = 0. Note that the majority
contribution to the IR map comes from particles that lost their
fourth neighbour late in the trajectory. While these results do not
address the question of when or even whether a given soft local
mode will become involved in IR, they do strongly support a picture
in which the IR of a configuration originates from these modes.
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Figure 1 The spatial distribution of irreversible reorganization (IR). Contour plots of the probability (log10) of a particle losing four original neighbours, the criterion for IR,

within 200τ over 100 iso-configurational runs for six different initial configurations.
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Figure 2 The spatial distribution of the low-frequency normal modes. Contour plots of the participation fraction summed over the 30 lowest-frequency modes for the

quenched initial configurations of the same six configurations as used in Fig. 1.
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Figure 3 A comparison of the spatial distribution of IR and low-frequency normal modes. Contour plots of the low-frequency mode participation (as in Fig. 2), overlaid

with the location of particles (white circles) whose iso-configurational probability of losing four initial nearest neighbours within 200τ is greater than or equal to 0.01.

Two points are worth emphasizing. The mode participation
fractions, whose spatial distributions are mapped in Fig. 2, are
properties of the static initial configurations. Our demonstration
of a strong correlation between the mode maps and the
irreversible reorganization maps constitutes a significant success
in understanding how structure determines relaxation in an
amorphous material. Indeed, as Fig. 2 illustrates, we may provide
semiquantitative prediction of IR domains as they emerge at
relatively long times from the initial configuration alone. The
second point is that, because we have used quenched modes, we
have used only information about the bottom of the local potential
minima. While it is quite possible that the timescale required for a
reorganization event will depend on the energy barriers associated
with the transition, our results indicate that the spatial structure
of such events is largely determined by the distribution of soft
quasilocalized modes in the initial configuration.

Given our conclusion that relaxation originates with soft
quasilocalized modes, it follows that our capacity to predict the
subsequent spatial distribution of the IR depends on how persistent
the mode distribution is in a configuration. After all, should the
mode maps evolve rapidly then the structural information in a
given configuration would quickly become irrelevant. The fact that
we observe strong spatial correlations between the initial modes
and relaxation some 200τ later indicates that the spatial structure of
the modes does generally persist over such times. This is remarkable
given that small variations in the quenched modes, indicative of a
change in the local minimum (or inherent structure), occur over
∼1τ intervals. Details of these rapid changes are provided in the
Supplementary Information. We conclude that the spatial structure
of the quenched soft modes can often persist over many changes
in the inherent structure. Preliminary results indicate that this

persistence is also found in three-dimensional mixtures (including
temperatures below the empirical mode-coupling temperature)
(see the Supplementary Information).

We do, however, see configurations where the mode structure is
not so stable. An example of this is shown in Fig. 4. In Fig. 4a,b we
compare the mode participation map for the initial configuration
with the map of the maximum participation fraction observed per
particle over five 10τ runs starting from the configuration in Fig. 4a.
The difference in spatial structure between these maps is a measure
of the degree of variability of the mode structure. In Fig. 4c,d we
overlay the particles showing IR within 200τ (as defined in Fig. 3)
over the maps of Fig. 4a,b, respectively. While the mode structure of
the initial configuration does not provide a quantitative predictor
of the spatial distribution of IR (Fig. 4c), the cumulative mode
structure sampled over the multiple short runs does (Fig. 4d). This
result demonstrates that, even when the soft-mode structure is not
stable, the IR still originates with these soft modes, but now this
IR is not well predicted by any single configuration. It seems that
configurations such as that analysed in Fig. 4 represent those caught
in transit between configurations with more stable mode structure.

In this paper we have presented two important results relating
to the slow relaxation in a model supercooled liquid. The first is
that the irreversible reorganization originates at the sites of the
low-frequency quasilocalized quenched modes. The second is that
these modes typically persist for timescales significantly longer than
the lifetime of a given inherent structure. These results show that
the spatial location and extent of IR regions at relatively long
times may be reasonably predicted by a simple, static property
of the static initial condition. A number of previous reports have
linked localized dynamics with the presence of soft modes16–20

during or immediately before the appearance of the motion in
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Figure 4 The consequences of rapid variations in normal mode structure. a, Contour plot of the participation fraction summed over the 30 lowest-frequency modes for a

quenched configuration. b, Contour plot of the maximum value of the participation fraction observed over five 10τ runs starting from the configuration in a. c, Particles whose

iso-configurational probability of losing four initial nearest neighbours within 200τ is greater than or equal to 0.01 (white circles) overlaid on the participation fraction map for

the initial configuration. d, As in c except that the overlay is over the map of the maximum participation fraction shown in b.

question. In contrast, we have demonstrated that soft localized
modes are typically present in configurations well in advance of
the appearance of the IR associated with them. The results of
this paper suggest that the quasilocalized modes can provide a
unification of many of the major themes in current research on the
glass transition. Can the growth in the four-point susceptibility χ4

near the glass transition6,21 and the jamming transition in granular
material22, along with the growth in the related kinetic correlation
length, be directly connected to an equilibrium correlation function
of the soft-mode distribution? A recent paper23 has examined
the localization of vibrational modes in granular material. Does
the persistence of the mode structure in real space reflect the
transient confinement of the system trajectory within a ‘metabasin’
in configuration space24? How both the spatial character of the
quasilocalized normal modes and their correlation with subsequent
relaxation varies with temperature remains the most fundamental
question raised by this paper and is the subject of ongoing research.
We have established that these quasilocalized modes represent
the strongest causal link yet established between structure and
dynamic heterogeneity and, hence, an exciting route forward to
establish how molecular properties influence relaxation in the
supercooled liquid.

METHODS

For a glass-forming liquid, we use a two-dimensional equimolar binary mixture

of particles interacting via purely repulsive potentials of the form

uab(r) = ε

[ σab

r

]12

, (1)

where σ12 = 1.2×σ11 and σ22 = 1.4×σ11. All units quoted will be reduced

so that σ11 = ε = m = 1.0, where m is the mass of both types of particle.

Specifically, the reduced units of time are given by τ = σ11 (m/ε)1/2. The

average collision time at T = 0.4 in the binary mixture is 0.1τ. The reduced

units of temperature are kB/ε. A total of N = 1,024 particles were enclosed

in a square box with periodic boundary conditions. Molecular dynamics

simulations were carried out in the N PT ensemble using a Nosé–Poincaré–

Andersen algorithm developed by Sturgeon and Laird25. The structural or

‘alpha’ relaxation time τα is defined as the time required for the self intermediate

scattering function Fs(q, t),

Fs(q, t) =
1

N

〈

N
∑

j=1

exp{iq · [rj(0)−rj(t)]}

〉

,

to decay to a value of 1/e. The magnitude of the wavevector q is set equal to the

value at the first Bragg peak.
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For the normal-mode analysis, the inherent structure of each configuration

was found using the conjugate-gradient method. The dynamical matrix of the

inherent structure was then defined, D = (∂2
Φ(r)/∂rk

i ∂rk
j ), where rk

i is the kth

component of the position ri of particle i, Φ(r) =
∑N

i=0

∑N
j=1,j 6=i uab(rij),

uab(r) is the intermolecular potential from equation (1) and rij = |ri − rj|.

The dynamical matrix was diagonalized using the template numerical toolkit

(http://math.nist.gov/tnt/index.html).

To visualize the spatial distribution of the propensity, it is useful to remove

the additional complexity of the configuration and use contour plots. As the

data points are located at irregularly spaced particle coordinates, it is necessary

to interpolate between them. We have used the modified version of Shepard’s

method as implemented in the NAG libraries.
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